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OBJECTIVES	
  

	
  The	
  main	
  objective	
  is	
  to	
  reinforce	
  the	
  student	
  in	
  the	
  following	
  topics:	
  
-­‐ Homogeneous	
   transformation	
   matrices:	
   joint	
   representation	
   of	
  

translation	
  and	
  orientation.	
  
-­‐ Denavit-­‐Hartenberg’s	
  parameters	
  of	
  a	
  robotic	
  manipulator.	
  A	
  solution	
  

for	
  the	
  direct	
  kinematic	
  problema	
  for	
  a	
  serial	
  manipulator.	
  
-­‐ Kinematic	
  analysis	
  of	
  the	
  end	
  effector’s	
  velocity.	
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1 First steps  

You can start by initializing the library and running a demo: 

>> pwd 
ans = 
/Users/arturogilaparicio/Desktop/arte3.1.4 
>> init_lib 
ARTE (A Robotics Toolbox for Education) (c) Arturo Gil 2012 
http://www.arvc.umh.es/arte 
>> demos 
INVERSE AND DIRECT KINEMATICS DEMO 
THE DEMO PRESENTS THE DIRECT AND INVERSE KINEMATIC PROBLEM 
q = 
 



    0.5000    0.2000   -0.2000    0.5000    0.2000   -0.8000 
 
ans = 
/Users/arturogilaparicio/Desktop/arte_lib2.7/robots/abb/IRB140 
 
Reading link 0 
EndOfFile found...  
Reading link 1 
EndOfFile found...  
Reading link 2 
EndOfFile found...  
Reading link 3 
EndOfFile found...  
Reading link 4 
EndOfFile found...  
Reading link 5 
EndOfFile found...  
Reading link 6 
EndOfFile found...  
 
ADJUST YOUR VIEW AS DESIRED.  
Press any key to continue... 
 

Follow the steps to execute the demos. The following figures 1 and 2 present 
some of the results that you should obtain. To start with, we analyse a simple 
robotic manipulator.  Figure 3 presents a 4 DOF robotic manipulator and its 
corresponding D-H table. A D-H reference system has been placed at each link. 
During the rest of the practical sessions you will be involved in the details 
concerning direct and inverse kinematics, dynamics, as well as robot 
programming. 

An introduction to the library can be viewed here: 

http://www.youtube.com/watch?v=s8QQydJ9PwI&list=PLClKgnzRFYe72qDYmj
5CRpR9ICNnQehup&index=18 



	
  
Figure	
  1 



	
  
Figure	
  2 

	
  

	
  

Next, we are going to test and understand the placement of the D-H reference 
systems. In order to do this, we will employ the following Matlab functions 
included in the library. 

-­‐ init_lib:	
  initialize the library. This command stores the current path as 
the base library path and initializes some configuration variables. 

-­‐ load_robot:	
  Load a robot in a variable.  
-­‐ directkinematic(robot, q):	
  Compute the direct kinematics for a 

robot, given the joint coordinates q. 
-­‐ drawrobot3d(robot, q):	
  Makes a 3D representation of the robot 

with joint coordinates q. The D-H reference systems are also drawn. 
	
  
	
  
You can type the following commands at the Matlab prompt: 

>> init_lib 
ARTE (A Robotics Toolbox for Education) (c) Arturo Gil 2012 
http://www.arvc.umh.es/arte 
 
>> robot=load_robot('example','3dofplanar') 
 
>> ans = 



 
/Users/arturogilaparicio/Desktop/arte/arte3.1.4/robots/example/3dofpla
nar 
 
 
[…] 
EndOfFile found...  
robot =  
                   name: [1x23 char] 
                     DH: [1x1 struct] 
                    DOF: 3 
                      J: [] 
                   kind: 'RRR' 
    inversekinematic_fn: [1x37 char] 
     directkinematic_fn: [1x25 char] 
               maxangle: [3x2 double] 
                 velmax: [] 
               accelmax: [] 
          linear_velmax: 0 
                     T0: [4x4 double] 
                  debug: 0 
                      q: [3x1 double] 
                     qd: [3x1 double] 
                    qdd: [3x1 double] 
                   time: [] 
               q_vector: [] 
              qd_vector: [] 
             qdd_vector: [] 
            last_target: [4x4 double] 
         last_zone_data: 'fine' 
                  tool0: [1x19 double] 
                  wobj0: [] 
         tool_activated: 0 
                   path: [1x73 char] 
              graphical: [1x1 struct] 
                   axis: [1x6 double] 
           has_dynamics: 1 
                      m: [1 1 1] 
                      r: [3x3 double] 
                      I: [3x6 double] 
                     Jm: [0 0 0] 
                      G: [0 0 0] 
               friction: 1 
                      B: [0 0 0] 
                     Tc: [3x2 double] 
 
T = directkinematic(robot, [pi/4 pi/4 pi/4]) 
 
T = 
 
   -0.7071   -0.7071         0    0.0000 
    0.7071   -0.7071         0    2.4142 
         0         0    1.0000         0 
         0         0         0    1.0000 
>> drawrobot3d(robot, [pi/4 pi/4 pi/4]) 

	
  

First, the command init_lib initializes the library path and some variables. 
Next, a robotic arm has to be loaded. This is accomplished with the command 
load_robot. The variable robot stores the parameters associated with the 
desired robot. In our case, after calling 
robot=load_robot('example','3dofplanar'), the library reads the parameters 



stored in the file	
   robots/example/3dofplanar/parameters.m. Alternatively, a 
short call to load_robot such as: 

>> robot = load_robot 

is also valid. You should navigate and select the parameters.m file of any robot 
in the library. You should now take a look at this parameters.m file. The meaning 
of each variable is described in the ARTE reference manual. Next, the call to 
the function: 

>> T=directkinematic(robot, [pi/4 pi/4 pi/4]) 

Yields, as a result, the homogeneous matrix T describing the position and 
orientation of the Denavit-Hartenberg reference system 4 with respect to the 
reference system 0 (placed at the robot base). The vector [pi/4 pi/4 pi/4] 
corresponds to the joint coordinates. Please note that the joint coordinates 1, 2 
and 3 are rotational. Finally, drawrobot3d(robot, [pi/4 pi/4 pi/4]) makes a 
3D representation of the D-H systems, as shown in Figure 3. 

	
  
Figure	
  3 

	
  



A general call to the function  load_robot is:  

robot=load_robot('manufacturer', 'robot_model'); 

For example: 

robot=load_robot('kuka', 'KR5_scara_R350_Z200'); 

Loads the parameters of the KR5 scara R350 Z200 robot manufactured by 
KUKA roboter GmbH. Most of the robots already included in the library possess 
graphic files so that we can have a more pleasant view of the robot. For 
example, type the following commands: 

>> robot=load_robot('kuka', 'KR5_scara_R350_Z200'); 
>> robot.graphical.draw_axes=0; 
>> drawrobot3d(robot, [0 0 0.1 0]); 
>> robot.graphical.draw_transparent=1 
>> drawrobot3d(robot, [0 0 0.1 0]); 
>> robot.graphical.draw_axes=1; 
>> drawrobot3d(robot, [0 0 0.1 0]); 

	
  

The property robot.graphical.draw_axes controls whether you want to draw 
the D-H axes on the robot. Typing robot.graphical.draw_axes=1; draws the 
axes on the robot (type 0 to hide them). On the other hand, the property 
robot.graphical.draw_transparent allows to draw the links with transparency. 
Typing robot.graphical.draw_transparent=1; draws the robot with 
transparency (0 is the default value for this property). You should now 
experiment with these parameters and observe the results. Here are some of 
the views that you should have obtained (Figure 4 and Figure 5). 

	
  
Figure	
  4	
  



	
  
Figure	
  5	
  

Now, try loading other robots. All the robots can be found at the robots 
directory. For example, try loading and drawing the KUKA KR90 R2700 pro, the 
ABB IRB 140 and the ABB IRB 6620. The KUKA robot is shown in Figure 6. 

	
  
Figure	
  6 

 



 

Next we analyze the function	
   directkinematic.	
   You can look up the help 
associated with this function with: 

>>	
  help	
  directkinematic	
  
DIRECTKINEMATIC	
   	
   Direct	
  Kinematic	
  for	
  serial	
  robots.	
  
	
  	
  
	
  	
  	
   T	
  =	
  DIRECTKINEMATIC(robot,	
  Q)	
  returns	
  the	
  transformation	
  matrix	
  
	
  	
  	
  	
  of	
  the	
  end	
  effector	
  according	
  to	
  the	
  vector	
  q	
  of	
  joint	
  values.	
  
	
  	
   See	
  also	
  denavit.	
  
	
  	
  
	
  	
  	
  	
  Author:	
  Arturo	
  Gil.	
  Universidad	
  Miguel	
  Hernández	
  de	
  Elche.	
  	
  
	
  	
  	
  	
  email:	
  arturo.gil@umh.es	
  date:	
  	
  	
  01/04/2012	
  
	
  

The function receives two parameters: robot is a variable storing the parameters  
(kinematic, dynamic and graphical) of the robot. Q is a vector that stores the 
joint coordinates of the arm. As a result, the transformation matrix T is obtained. 
The matrix T relates the position and orientation of the last reference system in 
coordinates of the system	
  0	
  (X0,	
  Y0,	
  Z0).	
  You should have a look at the functions 
directkinematic and the function denavit. You can find these functions at the 
directory	
  lib/kinematics	
  

%   DIRECTKINEMATIC     Direct Kinematic for serial robots. 
% 
%   T = DIRECTKINEMATIC(robot, Q) returns the transformation matrix T 
%   of the end effector according to the vector q of joint  
%   coordinates. 
% 
%   See also DENAVIT. 
% 
%   Author: Arturo Gil. Universidad Miguel Hern·ndez de Elche.  
%   email: arturo.gil@umh.es date:   01/04/2012 
function T = directkinematic(robot, q) 
  
theta = eval(robot.DH.theta); 
d = eval(robot.DH.d); 
a = eval(robot.DH.a); 
alfa = eval(robot.DH.alpha); 
  
n=length(theta); %number of DOFs 
  
if robot.debug 
    fprintf('\nComputing direct kinematics for the %s robot with %d 
DOFs\n',robot.name, n); 
end 
%load the position/orientation of the robot's base 
T = robot.T0; 
  
for i=1:n, 
    T=T*denavit(theta(i), d(i), a(i), alfa(i));     
end 
	
  

 



2 A more detailed analysis 

Figure 7 shows an ABB IRB 140 robot (the units are millimeters). Generally, we 
should follow these steps to perform a kinematic analysis of a robotic arm. 

i) Place the Dentavit-Hartenberg reference systems according to the rules.  
ii) Write a D-H table. 
iii) Write the D-H matrices i-1Ai, i=1, ..., n, as a function of the joint 

coordinates. 
 
 

	
  
Figure	
  7	
  

Exercise	
  1:	
  
Place the D-H reference systems at each link of the IRB 140 robot. 	
  

	
  

Exercise	
  2:	
  
Write the D-H table for the IRB 140 manipulator. Write the D-H matrices. 	
  

	
  



	
  
Figure	
  8	
  

Figure 8 presents the location of the D-H reference systems on the IRB 140 
robot. Please note that the placement of the D-H systems is not unique. The D-
H table for this robot can be observed at robots/abb/IRB140/parameters.m 

robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)+pi]'; 
robot.DH.d='[0.352 0 0 0.380 0 0.065]'; 
robot.DH.a='[0.070 0.360 0 0 0 0]'; 
robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]'; 
	
  

Where q(1), q(2)… etc are the joint coordinates. Please note that the variables 
robot.DH.theta, d, a and alpha are text strings written as a function of the joint 
coordinates q(i). In order to use them we have to evaluate them at the current 
joint coordinates values. For example, the following code computes the D-H 
matrix 0A1 using the function denavit: 

q=[0 0 0 0 0 0] 
theta = eval(robot.DH.theta); 
d=eval(robot.DH.d); 
a=eval(robot.DH.a); 
alpha=(robot.DH.alpha); 
A01 = denavit(theta(1), d(1), a(1), alpha(1)) 
	
  



Now, we can test the kinematic analysis of this robot. At the Matlab prompt, 
type: 

>> robot=load_robot('abb', 'IRB140'); 
>> T=directkinematic(robot,[0 0 0 0 0 0]) 
 
T = 
 
   -0.0000   -0.0000    1.0000    0.5150 
   -0.0000    1.0000    0.0000    0.0000 
   -1.0000   -0.0000   -0.0000    0.7120 
         0         0         0    1.0000 
 
>> drawrobot3d(robot, [0 0 0 0 0 0]) 

As a result, the homogeneous matrix T represents the position and orientation 
of the reference system 6 with respect to the base reference system when 
every joint position is null. After calling drawrobot3d(robot, [0 0 0 0 0 0]) 
you should check that the position and orientation presented in the Matlab’s 
prompt is correct. 

We should also test that the relative transformation between the systems is 
correct. In order to do so, we can compute each D-H Matrix using the denavit 
function. Please type: 

>> T01 = denavit(robot, [0 0 0 0 0 0], 1) 
 
T01 = 
 
    1.0000         0         0    0.0700 
         0    0.0000    1.0000         0 
         0   -1.0000    0.0000    0.3520 
         0         0         0    1.0000 
 
>> T02 = denavit(robot, [0 0 0 0 0 0], 2) 
 
T02 = 
 
    0.0000    1.0000         0    0.0000 
   -1.0000    0.0000         0   -0.3600 
         0         0    1.0000         0 
         0         0         0    1.0000 
 
>> T03 = denavit(robot, [0 0 0 0 0 0], 3) 
 
T03 = 
 
    1.0000         0         0         0 
         0    0.0000    1.0000         0 
         0   -1.0000    0.0000         0 
         0         0         0    1.0000 

Where T01 represents the position and orientation of the D-H system 1 with 
respect to the base system 0, T02 represents the system 2 and so on. We can, 
for example analyse T01: 

T01 = 
 
    1.0000         0         0    0.0700 
         0    0.0000    1.0000         0 
         0   -1.0000    0.0000    0.3520 
         0         0         0    1.0000 



The vector (0.07, 0, 0.352) is the position of the origin of the system 1 in 
coordinates of the system 0 (X0, Y0, Z0) . The first column in T01 (1, 0, 0) 
represents the orientation of X1 in coordinates of the system 0 (X0, Y0, Z0), the 
second column in T01 (0 0 -1) represents Y1 and, finally, the third column in T01 
(0 1 0) represents Z1. You should test that T02, T03 are also correct. Finally, we 
should now test that T represents adequately the position and orientation of the 
end effector with different coordinate values, for example: 

>>	
  T	
  =	
  directkinematic(robot,	
  [pi/2	
  pi/4	
  pi/4	
  0	
  0	
  0])	
  
	
  
T	
  =	
  
	
  	
  	
  	
  0.0000	
  	
  	
  	
  1.0000	
  	
  	
  -­‐0.0000	
  	
  	
  -­‐0.0000	
  
	
  	
  	
  	
  1.0000	
  	
  	
  -­‐0.0000	
  	
  	
  	
  0.0000	
  	
  	
  	
  0.3246	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  -­‐0.0000	
  	
  	
  -­‐1.0000	
  	
  	
  	
  0.1616	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  0	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1.0000	
  
	
  
>>	
  drawrobot3d(robot,	
  [pi/2	
  pi/4	
  pi/4	
  0	
  0	
  0])	
  
	
  

The results are presented in Figure 9. 

	
  
Figure	
  9	
  

	
  

	
  



Exercise	
  3:	
  
Try different configurations of the robot and draw it using drawrobot3d. 	
  

 

3 Using the teach pendant 

You can use the teach function to move a robot interactively. Type: 

>>	
  init_lib	
  
ARTE	
  (A	
  Robotics	
  Toolbox	
  for	
  Education)	
  (c)	
  Arturo	
  Gil	
  2012	
  
http://www.arvc.umh.es/arte	
  
>>	
  robot=load_robot('abb',	
  'IRB140');	
  
	
  
ans	
  =	
  
/Users/arturogilaparicio/Desktop/arte_lib2.7/robots/abb/IRB140	
  
	
  
Reading	
  link	
  0	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  1	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  2	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  3	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  4	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  5	
  
EndOfFile	
  found...	
  	
  
Reading	
  link	
  6	
  
EndOfFile	
  found...	
  	
  
	
  
>>	
  teach	
  
Select	
  the	
  desired	
  view	
  for	
  your	
  robot	
  
>> 
 

 

The graphical application appears (Figure 10): 



	
  
Figure	
  4 

This graphical application covers different topics, such as direct kinematics, 
inverse kinematics, quaternions and RAPID programming. For the moment we 
will concentrate on the direct kinematic problem. Use the slider controls to 
modify the joint coordinates of the robot. You can observe the position and 
orientation of the end effector by looking at the homgeneous matrix T and also 
with the orientation quaternion Q and (Px, Py, Pz). 

 

5 Summary 

Everything is summarized in the following videos: 

- Initializing the library and running the demos: 
http://www.youtube.com/watch?v=s8QQydJ9PwI 

-Loading a robot, direct kinematics and obtaining a 3D representation of the 
robot: http://www.youtube.com/watch?v=Qg5HdVuTl3A 

- Execute the teaching pendant application (teach) 

http://www.youtube.com/watch?v=Qg5HdVuTl3A&t=29m21s 

- Add a new robot. The videos show how to add a robot to the library. First, the 
CAD file (e.g. in STEP format) has to be imported to your CAD program. Next, 
each link has to be exported independently to STL format. Please note that the 
STL files represent the position of a series of points belonging to each file in 
coordinates of the robot base reference system (the units in the library are 
meters). 

http://arvc.umh.es/arte/ videos/pr1_video4_divide_links_base.mp4 

Next, the following video shows how to copy the STL files and edit the 
parameters.m file to create the links. After the call to the function 
transform_to_own, the files link0.stl, link1.stl… are referred to each of the D-H 
reference systems. 

http://arvc.umh.es/arte/videos/pr1_video5_add_D-H_parameters_transform_test.mp4 

	
  



	
  

6 Final exercises 

Exercise	
  4:	
  	
  
You can now try a more advanced exercise using the robot that you are 
including in the library. 
 
Asume that there exists a gaussian error in the first three joints (zero mean and 
standard deviation sq=0.002 rad). This error models the lack of total precisión in 
the position sensors of the joints. Ask the following questions: 
5.a) Asume that your robot is as the joint position q=(0, 0, 0, 0, 0, 0). Compute 
the error matrix in the position of the robot wrist center (X, Y, Z). 
 5.a.1) Asuming a linear error propagation. 
   sX=f(sq) 
  sY=f(sq) 
  sz=f(sq) 
 5.a.2) Using a Monte-Carlo method. 
5.b) ¿Is the error independent of the joint positions q? 
5.c) ¿When is the error large/low? 
	
  


