
	

	

	

PRACTICAL	
 SESSION	
 1:	
 DIRECT	
 KINEMATICS	

	

Arturo	
 Gil	
 Aparicio	

arturo.gil@umh.es	

	

	
 	

	

	

	

	

	

	

	

OBJECTIVES	

	
 The	
 main	
 objective	
 is	
 to	
 reinforce	
 the	
 student	
 in	
 the	
 following	
 topics:	

-­‐ Homogeneous	
 transformation	
 matrices:	
 joint	
 representation	
 of	

translation	
 and	
 orientation.	

-­‐ Denavit-­‐Hartenberg’s	
 parameters	
 of	
 a	
 robotic	
 manipulator.	
 A	
 solution	

for	
 the	
 direct	
 kinematic	
 problema	
 for	
 a	
 serial	
 manipulator.	

-­‐ Kinematic	
 analysis	
 of	
 the	
 end	
 effector’s	
 velocity.	

	

Index	

1. First	
 steps	

2. Direct	
 kinematics	
 for	
 a	
 simple	
 robot	

3. Direct	
 kinematic	
 for	
 a	
 6	
 DOF	
 robot.	

4. Error	
 analysis.	

5. Using	
 the	
 teach	
 pendant	

1 First steps

You can start by initializing the library and running a demo:

>> pwd
ans =
/Users/arturogilaparicio/Desktop/arte3.1.4
>> init_lib
ARTE (A Robotics Toolbox for Education) (c) Arturo Gil 2012
http://www.arvc.umh.es/arte
>> demos
INVERSE AND DIRECT KINEMATICS DEMO
THE DEMO PRESENTS THE DIRECT AND INVERSE KINEMATIC PROBLEM
q =

 0.5000 0.2000 -0.2000 0.5000 0.2000 -0.8000

ans =
/Users/arturogilaparicio/Desktop/arte_lib2.7/robots/abb/IRB140

Reading link 0
EndOfFile found...
Reading link 1
EndOfFile found...
Reading link 2
EndOfFile found...
Reading link 3
EndOfFile found...
Reading link 4
EndOfFile found...
Reading link 5
EndOfFile found...
Reading link 6
EndOfFile found...

ADJUST YOUR VIEW AS DESIRED.
Press any key to continue...

Follow the steps to execute the demos. The following figures 1 and 2 present
some of the results that you should obtain. To start with, we analyse a simple
robotic manipulator. Figure 3 presents a 4 DOF robotic manipulator and its
corresponding D-H table. A D-H reference system has been placed at each link.
During the rest of the practical sessions you will be involved in the details
concerning direct and inverse kinematics, dynamics, as well as robot
programming.

An introduction to the library can be viewed here:

http://www.youtube.com/watch?v=s8QQydJ9PwI&list=PLClKgnzRFYe72qDYmj
5CRpR9ICNnQehup&index=18

	

Figure	
 1

	

Figure	
 2

	

	

Next, we are going to test and understand the placement of the D-H reference
systems. In order to do this, we will employ the following Matlab functions
included in the library.

-­‐ init_lib:	
 initialize the library. This command stores the current path as
the base library path and initializes some configuration variables.

-­‐ load_robot:	
 Load a robot in a variable.
-­‐ directkinematic(robot, q):	
 Compute the direct kinematics for a

robot, given the joint coordinates q.
-­‐ drawrobot3d(robot, q):	
 Makes a 3D representation of the robot

with joint coordinates q. The D-H reference systems are also drawn.
	

	

You can type the following commands at the Matlab prompt:

>> init_lib
ARTE (A Robotics Toolbox for Education) (c) Arturo Gil 2012
http://www.arvc.umh.es/arte

>> robot=load_robot('example','3dofplanar')

>> ans =

/Users/arturogilaparicio/Desktop/arte/arte3.1.4/robots/example/3dofpla
nar

[…]
EndOfFile found...
robot =
 name: [1x23 char]
 DH: [1x1 struct]
 DOF: 3
 J: []
 kind: 'RRR'
 inversekinematic_fn: [1x37 char]
 directkinematic_fn: [1x25 char]
 maxangle: [3x2 double]
 velmax: []
 accelmax: []
 linear_velmax: 0
 T0: [4x4 double]
 debug: 0
 q: [3x1 double]
 qd: [3x1 double]
 qdd: [3x1 double]
 time: []
 q_vector: []
 qd_vector: []
 qdd_vector: []
 last_target: [4x4 double]
 last_zone_data: 'fine'
 tool0: [1x19 double]
 wobj0: []
 tool_activated: 0
 path: [1x73 char]
 graphical: [1x1 struct]
 axis: [1x6 double]
 has_dynamics: 1
 m: [1 1 1]
 r: [3x3 double]
 I: [3x6 double]
 Jm: [0 0 0]
 G: [0 0 0]
 friction: 1
 B: [0 0 0]
 Tc: [3x2 double]

T = directkinematic(robot, [pi/4 pi/4 pi/4])

T =

 -0.7071 -0.7071 0 0.0000
 0.7071 -0.7071 0 2.4142
 0 0 1.0000 0
 0 0 0 1.0000
>> drawrobot3d(robot, [pi/4 pi/4 pi/4])

	

First, the command init_lib initializes the library path and some variables.
Next, a robotic arm has to be loaded. This is accomplished with the command
load_robot. The variable robot stores the parameters associated with the
desired robot. In our case, after calling
robot=load_robot('example','3dofplanar'), the library reads the parameters

stored in the file	
 robots/example/3dofplanar/parameters.m. Alternatively, a
short call to load_robot such as:

>> robot = load_robot

is also valid. You should navigate and select the parameters.m file of any robot
in the library. You should now take a look at this parameters.m file. The meaning
of each variable is described in the ARTE reference manual. Next, the call to
the function:

>> T=directkinematic(robot, [pi/4 pi/4 pi/4])

Yields, as a result, the homogeneous matrix T describing the position and
orientation of the Denavit-Hartenberg reference system 4 with respect to the
reference system 0 (placed at the robot base). The vector [pi/4 pi/4 pi/4]
corresponds to the joint coordinates. Please note that the joint coordinates 1, 2
and 3 are rotational. Finally, drawrobot3d(robot, [pi/4 pi/4 pi/4]) makes a
3D representation of the D-H systems, as shown in Figure 3.

	

Figure	
 3

	

A general call to the function load_robot is:

robot=load_robot('manufacturer', 'robot_model');

For example:

robot=load_robot('kuka', 'KR5_scara_R350_Z200');

Loads the parameters of the KR5 scara R350 Z200 robot manufactured by
KUKA roboter GmbH. Most of the robots already included in the library possess
graphic files so that we can have a more pleasant view of the robot. For
example, type the following commands:

>> robot=load_robot('kuka', 'KR5_scara_R350_Z200');
>> robot.graphical.draw_axes=0;
>> drawrobot3d(robot, [0 0 0.1 0]);
>> robot.graphical.draw_transparent=1
>> drawrobot3d(robot, [0 0 0.1 0]);
>> robot.graphical.draw_axes=1;
>> drawrobot3d(robot, [0 0 0.1 0]);

	

The property robot.graphical.draw_axes controls whether you want to draw
the D-H axes on the robot. Typing robot.graphical.draw_axes=1; draws the
axes on the robot (type 0 to hide them). On the other hand, the property
robot.graphical.draw_transparent allows to draw the links with transparency.
Typing robot.graphical.draw_transparent=1; draws the robot with
transparency (0 is the default value for this property). You should now
experiment with these parameters and observe the results. Here are some of
the views that you should have obtained (Figure 4 and Figure 5).

	

Figure	
 4	

	

Figure	
 5	

Now, try loading other robots. All the robots can be found at the robots
directory. For example, try loading and drawing the KUKA KR90 R2700 pro, the
ABB IRB 140 and the ABB IRB 6620. The KUKA robot is shown in Figure 6.

	

Figure	
 6

Next we analyze the function	
 directkinematic.	
 You can look up the help
associated with this function with:

>>	
 help	
 directkinematic	

DIRECTKINEMATIC	
 	
 Direct	
 Kinematic	
 for	
 serial	
 robots.	

	
 	

	
 	
 	
 T	
 =	
 DIRECTKINEMATIC(robot,	
 Q)	
 returns	
 the	
 transformation	
 matrix	

	
 	
 	
 	
 of	
 the	
 end	
 effector	
 according	
 to	
 the	
 vector	
 q	
 of	
 joint	
 values.	

	
 	
 See	
 also	
 denavit.	

	
 	

	
 	
 	
 	
 Author:	
 Arturo	
 Gil.	
 Universidad	
 Miguel	
 Hernández	
 de	
 Elche.	
 	

	
 	
 	
 	
 email:	
 arturo.gil@umh.es	
 date:	
 	
 	
 01/04/2012	

	

The function receives two parameters: robot is a variable storing the parameters
(kinematic, dynamic and graphical) of the robot. Q is a vector that stores the
joint coordinates of the arm. As a result, the transformation matrix T is obtained.
The matrix T relates the position and orientation of the last reference system in
coordinates of the system	
 0	
 (X0,	
 Y0,	
 Z0).	
 You should have a look at the functions
directkinematic and the function denavit. You can find these functions at the
directory	
 lib/kinematics	

% DIRECTKINEMATIC Direct Kinematic for serial robots.
%
% T = DIRECTKINEMATIC(robot, Q) returns the transformation matrix T
% of the end effector according to the vector q of joint
% coordinates.
%
% See also DENAVIT.
%
% Author: Arturo Gil. Universidad Miguel Hern·ndez de Elche.
% email: arturo.gil@umh.es date: 01/04/2012
function T = directkinematic(robot, q)

theta = eval(robot.DH.theta);
d = eval(robot.DH.d);
a = eval(robot.DH.a);
alfa = eval(robot.DH.alpha);

n=length(theta); %number of DOFs

if robot.debug
 fprintf('\nComputing direct kinematics for the %s robot with %d
DOFs\n',robot.name, n);
end
%load the position/orientation of the robot's base
T = robot.T0;

for i=1:n,
 T=T*denavit(theta(i), d(i), a(i), alfa(i));
end
	

2 A more detailed analysis

Figure 7 shows an ABB IRB 140 robot (the units are millimeters). Generally, we
should follow these steps to perform a kinematic analysis of a robotic arm.

i) Place the Dentavit-Hartenberg reference systems according to the rules.
ii) Write a D-H table.
iii) Write the D-H matrices i-1Ai, i=1, ..., n, as a function of the joint

coordinates.

	

Figure	
 7	

Exercise	
 1:	

Place the D-H reference systems at each link of the IRB 140 robot. 	

	

Exercise	
 2:	

Write the D-H table for the IRB 140 manipulator. Write the D-H matrices. 	

	

	

Figure	
 8	

Figure 8 presents the location of the D-H reference systems on the IRB 140
robot. Please note that the placement of the D-H systems is not unique. The D-
H table for this robot can be observed at robots/abb/IRB140/parameters.m

robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)+pi]';
robot.DH.d='[0.352 0 0 0.380 0 0.065]';
robot.DH.a='[0.070 0.360 0 0 0 0]';
robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]';
	

Where q(1), q(2)… etc are the joint coordinates. Please note that the variables
robot.DH.theta, d, a and alpha are text strings written as a function of the joint
coordinates q(i). In order to use them we have to evaluate them at the current
joint coordinates values. For example, the following code computes the D-H
matrix 0A1 using the function denavit:

q=[0 0 0 0 0 0]
theta = eval(robot.DH.theta);
d=eval(robot.DH.d);
a=eval(robot.DH.a);
alpha=(robot.DH.alpha);
A01 = denavit(theta(1), d(1), a(1), alpha(1))
	

Now, we can test the kinematic analysis of this robot. At the Matlab prompt,
type:

>> robot=load_robot('abb', 'IRB140');
>> T=directkinematic(robot,[0 0 0 0 0 0])

T =

 -0.0000 -0.0000 1.0000 0.5150
 -0.0000 1.0000 0.0000 0.0000
 -1.0000 -0.0000 -0.0000 0.7120
 0 0 0 1.0000

>> drawrobot3d(robot, [0 0 0 0 0 0])

As a result, the homogeneous matrix T represents the position and orientation
of the reference system 6 with respect to the base reference system when
every joint position is null. After calling drawrobot3d(robot, [0 0 0 0 0 0])
you should check that the position and orientation presented in the Matlab’s
prompt is correct.

We should also test that the relative transformation between the systems is
correct. In order to do so, we can compute each D-H Matrix using the denavit
function. Please type:

>> T01 = denavit(robot, [0 0 0 0 0 0], 1)

T01 =

 1.0000 0 0 0.0700
 0 0.0000 1.0000 0
 0 -1.0000 0.0000 0.3520
 0 0 0 1.0000

>> T02 = denavit(robot, [0 0 0 0 0 0], 2)

T02 =

 0.0000 1.0000 0 0.0000
 -1.0000 0.0000 0 -0.3600
 0 0 1.0000 0
 0 0 0 1.0000

>> T03 = denavit(robot, [0 0 0 0 0 0], 3)

T03 =

 1.0000 0 0 0
 0 0.0000 1.0000 0
 0 -1.0000 0.0000 0
 0 0 0 1.0000

Where T01 represents the position and orientation of the D-H system 1 with
respect to the base system 0, T02 represents the system 2 and so on. We can,
for example analyse T01:

T01 =

 1.0000 0 0 0.0700
 0 0.0000 1.0000 0
 0 -1.0000 0.0000 0.3520
 0 0 0 1.0000

The vector (0.07, 0, 0.352) is the position of the origin of the system 1 in
coordinates of the system 0 (X0, Y0, Z0) . The first column in T01 (1, 0, 0)
represents the orientation of X1 in coordinates of the system 0 (X0, Y0, Z0), the
second column in T01 (0 0 -1) represents Y1 and, finally, the third column in T01
(0 1 0) represents Z1. You should test that T02, T03 are also correct. Finally, we
should now test that T represents adequately the position and orientation of the
end effector with different coordinate values, for example:

>>	
 T	
 =	
 directkinematic(robot,	
 [pi/2	
 pi/4	
 pi/4	
 0	
 0	
 0])	

	

T	
 =	

	
 	
 	
 	
 0.0000	
 	
 	
 	
 1.0000	
 	
 	
 -­‐0.0000	
 	
 	
 -­‐0.0000	

	
 	
 	
 	
 1.0000	
 	
 	
 -­‐0.0000	
 	
 	
 	
 0.0000	
 	
 	
 	
 0.3246	

	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 -­‐0.0000	
 	
 	
 -­‐1.0000	
 	
 	
 	
 0.1616	

	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 0	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1.0000	

	

>>	
 drawrobot3d(robot,	
 [pi/2	
 pi/4	
 pi/4	
 0	
 0	
 0])	

	

The results are presented in Figure 9.

	

Figure	
 9	

	

	

Exercise	
 3:	

Try different configurations of the robot and draw it using drawrobot3d. 	

3 Using the teach pendant

You can use the teach function to move a robot interactively. Type:

>>	
 init_lib	

ARTE	
 (A	
 Robotics	
 Toolbox	
 for	
 Education)	
 (c)	
 Arturo	
 Gil	
 2012	

http://www.arvc.umh.es/arte	

>>	
 robot=load_robot('abb',	
 'IRB140');	

	

ans	
 =	

/Users/arturogilaparicio/Desktop/arte_lib2.7/robots/abb/IRB140	

	

Reading	
 link	
 0	

EndOfFile	
 found...	
 	

Reading	
 link	
 1	

EndOfFile	
 found...	
 	

Reading	
 link	
 2	

EndOfFile	
 found...	
 	

Reading	
 link	
 3	

EndOfFile	
 found...	
 	

Reading	
 link	
 4	

EndOfFile	
 found...	
 	

Reading	
 link	
 5	

EndOfFile	
 found...	
 	

Reading	
 link	
 6	

EndOfFile	
 found...	
 	

	

>>	
 teach	

Select	
 the	
 desired	
 view	
 for	
 your	
 robot	

>>

The graphical application appears (Figure 10):

	

Figure	
 4

This graphical application covers different topics, such as direct kinematics,
inverse kinematics, quaternions and RAPID programming. For the moment we
will concentrate on the direct kinematic problem. Use the slider controls to
modify the joint coordinates of the robot. You can observe the position and
orientation of the end effector by looking at the homgeneous matrix T and also
with the orientation quaternion Q and (Px, Py, Pz).

5 Summary

Everything is summarized in the following videos:

- Initializing the library and running the demos:
http://www.youtube.com/watch?v=s8QQydJ9PwI

-Loading a robot, direct kinematics and obtaining a 3D representation of the
robot: http://www.youtube.com/watch?v=Qg5HdVuTl3A

- Execute the teaching pendant application (teach)

http://www.youtube.com/watch?v=Qg5HdVuTl3A&t=29m21s

- Add a new robot. The videos show how to add a robot to the library. First, the
CAD file (e.g. in STEP format) has to be imported to your CAD program. Next,
each link has to be exported independently to STL format. Please note that the
STL files represent the position of a series of points belonging to each file in
coordinates of the robot base reference system (the units in the library are
meters).

http://arvc.umh.es/arte/ videos/pr1_video4_divide_links_base.mp4

Next, the following video shows how to copy the STL files and edit the
parameters.m file to create the links. After the call to the function
transform_to_own, the files link0.stl, link1.stl… are referred to each of the D-H
reference systems.

http://arvc.umh.es/arte/videos/pr1_video5_add_D-H_parameters_transform_test.mp4

	

	

6 Final exercises

Exercise	
 4:	
 	

You can now try a more advanced exercise using the robot that you are
including in the library.

Asume that there exists a gaussian error in the first three joints (zero mean and
standard deviation sq=0.002 rad). This error models the lack of total precisión in
the position sensors of the joints. Ask the following questions:
5.a) Asume that your robot is as the joint position q=(0, 0, 0, 0, 0, 0). Compute
the error matrix in the position of the robot wrist center (X, Y, Z).
 5.a.1) Asuming a linear error propagation.
 sX=f(sq)
 sY=f(sq)
 sz=f(sq)
 5.a.2) Using a Monte-Carlo method.
5.b) ¿Is the error independent of the joint positions q?
5.c) ¿When is the error large/low?
	

