A Roeortics TooLeoX FOR EDUCATION

PRACTICAL SESSION 2: INVERSE KINEMATICS

Arturo Gil Aparicio

arturo.gil@umbh.es

()
A(i@\E
OBJECTIVES

After the practical session, the student should be able to:

- Solving the inverse kinematic problema of a serial manipulator using
geometric methods.
Implementing this code in Matlab for a chosen robotic arm.
Generating joint trajectories so that the end effector follows a linear
trajectory in the cartesian space.
Analyzing singular points by means of the Jacobian matrix.

Index
1. First steps
2. The inverse kinematic problem
3. Solving the inverse kinematic problem for a 6 DOF robot
4. Adding your robot to the library
5. Direct and inverse Jacobian
6. Follow aline in space

1 First steps

We first start with a kinematic analysis of the SCARA robot arm represented in
Figure 1. The table with the Denavit-Hartenberg parameters is specified next:

Theta D A Alfa
1 q1 [;=0.5m [2=0.5m 0
2 q:z 0 [3=0.3m T
3 0 qs 0 0

-

Figure 1

To begin with, we are going to compute the direct position and orientation of
end effector as a function of the joint coordinates. You can type the following
commands at the Matlab prompt:

>> init_lib
>> robot=load robot('example', 'scara')
>> T=directkinematic(robot, [0 0 0.1 0])

T =
1.0000 0 0 0.8000
0 -1.0000 -0.0000 -0.0000
0 0.0000 -1.0000 0.4000
0 0 0 1.0000

>> drawrobot3d(robot, [0 0 0.1 pi/4])

Figure 2 presents the result of the drawrobot3d function.

X (m) ¥{em)

Figure 2

2 The inverse kinematic problem

Given a position and orientation of the end effector, we would like to compute
the joint coordinates that bring the robot’s end effector to it. In the case of the
example SCARA we can achieve it with the following commands. Generally,
there exist more than one solution to achieve it.

>> pwd

ans =
/Users/arturogilaparicio/Desktop/arte3.1.6

>> init_lib

>> T=directkinematic(robot, [0 0 0 0])

>> ginv = inversekinematic(robot, T)

Computing inverse kinematics for the Scara example 4GDL arm robot
ginv =

0 0
0 0
0 0
0 0

>> T=directkinematic(robot, [pi/2 pi/4 0.1 pi/81])

>> ginv = inversekinematic(robot, T)
Computing inverse kinematics for the Scara example 4GDL arm robot
ginv =

2.1498 1.5708
-0.7854 0.7854
0.1000 0.1000
-0.5991 0.3927

Note that, after initializing the library, we compute the direct kinematics for the
robot’s initial position g=fo0 o o o03. A call to the function ginv =
inversekinematic(robot, T) takes two arguments. The first stores the robot
parameters, whereas the second, T, specifies the position and orientation of the
end effector. The function ginv = inversekinematic(robot, T) iS common for
all the robots in the library, however, the function calls internally a different
function, named inversekinematic_scara that is placed at the robot’'s home
directory arte3.1.6/robots/example/scara. The name of the inverse kKinematic

function is specified in the parametersm file, in the line
robot.inversekinematic_fn = 'inversekinematic_scara(robot, T)'.

function robot = parameters()

$Path where everything is stored for this robot
robot.path = 'robots/example/scara';

$Kinematic parameters
robot.DH.theta= '[qg(1l) qg(2) 0 g(4)]1';
)

robot.DH.d='[0.5 0 q(3 01';

robot.DH.a='[0.5 0.3 0 01';

robot.DH.alpha= '[0 pi 0 0]1';

¢$Jacobian matrix. Variation of (X, Y, Z) as a function of (wl, w2, w3)
robot.J="'[-a(2)*sin(qg(l)+g(2))-a(l)*sin(g(l)) -a(2)*sin(gq(l)+g(2)) O0;
a(2)*cos(g(l)+g(2))+a(l)*cos(g(l)) a(2)*cos(g(l)+g(2)) 0; 0 0 -1]1;";

robot.name="'Scara example 4GDL arm';

robot.inversekinematic_fn = 'inversekinematic scara(robot, T)';

It is important to note that the inversekinematic function returns two posible
solutions for qinv, only one of them matches the initial q specified in the direct
kinematic function. However, both solutions for ginv match the original matrix T.
You can test these ideas with:

>> T=directkinematic(robot, [pi/2 pi/4 0.1 pi/81])

T =
-0.3827 0.9239 0.0000 -0.2121
0.9239 0.3827 -0.0000 0.7121
-0.0000 0.0000 -1.0000 0.4000
0 0 0 1.0000

>>ginv = inversekinematic(robot, T)

>>T=directkinematic(robot, ginv(:,1))

-0.3827
0.9239
-0.0000
0

0.9239
0.3827
0.0000

0

0.0000
-0.0000
-1.0000

0

-0.2121
0.7121
0.4000
1.0000

>> T=directkinematic(robot, ginv(:,2))

T =
-0.3827
0.9239
0.0000

0

0.9239
0.3827
0.0000

0

0.0000
0.0000
-1.0000
0

-0.2121
0.7121
0.4000
1.0000

You can observe this by calling drawrobot3d for both solutions to the inverse

kinematics.

>> drawrobot3d(robot, ginv(:,1))
>> drawrobot3d(robot, ginv(:,2))

3 Solving the inverse kinematic problem for a 6
DOF robot

Next, Figure 3 presents the ABB IRB 140 robot. Next, its corresponding D-H
table is presented.

1,-380 L:=65
X

670

Figure 3

0 d a o
qi 0.352 0.070 -m/2
qz-T/2 0 0.360 0
g3 0 0 -m/2
q4 0.380 0 /2
gs 0 0 -T/2
(o3 0.065 0 0

You can observe these parameters in the parameters.mfile, which resides in
arte3.1.6/robots/abb/irb140

robot.DH.theta= '[q(l) q(2)-pi/2 g(3) g(4) g(5) g(6)]1';
robot.DH.d="'[0.352 0 0 0.380 0 0.065]1"';
robot.DH.a='[0.070 0.360 0 0 0 0]"';

robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]1';
robot.J=[];

robot.inversekinematic_fn = 'inversekinematic_irbl40(robot, T)';

The inverse kinematic problem is solved by the function
inversekinematic_irb140(robot, T) thatis placed at
arte3.1.6/robots/abb/irb140. You can find some more information about
solving this inverse kinematic problem in the ARTE reference manual.

Exercise 1:

You should analyse the inverse kinematic problem for the IRB 140 robot. In this

case, in general there exist 8 different solutions to achieve a position/orientation
of the end effector in space. You should analyse that any of the eight different
solutions q returned by the function allows to achieve the same
position/orientation in space (the same homogeneous matrix T).

4 Direct and inverse jacobian

The functions Jacobian matrix associated with the position of the end effector
allows to:

- Compute the speed of the end effector given the joint speeds.

- Compute the joint speeds, given a desired speed of the end effector in
coordinates of the base reference frame.

Please try the functions compute end velocity and compute joint velocity
and observe the results.

Exercise 2:

In the case of the SCARA example arm, the expresién of the Jacobian matrix is
provided as a function of the joint variables.

a) Compute the end effector’'s speed when the joint speeds are wq = (0.1 rad/s,

0.1 rad/s, 1 m/s)=(wq1, Wq2, Wq3). Note that the third joint is translational and that
the joint speed wq4 does not contribute to the end effector’s speed.

b) Compute the joint speeds necessary to obtain an end effector's speed of
V=(1, 1, 1) m/s when the end effector is at P=(0.5, 0.5, 0) m. Please note that
there are two possible solutions.

5 Follow a line in space

Exercise 3:

Implement a function:
function g=followline_myrobot(robot, p1, p2, R, options)

To follow a line in cartesian space. The function should interpolate a number of
points along the line that connects the points p1 and p2. Next, for each of these
points, you should find a solutions of the inverse kinematic. The parameter options
should be used to choose one of the posible solutions. The orientation of the end
effector should be constant and equal to R along the whole movement. You should:
a) Animate the trajectory of the robotm using the function drawrobot3d.

b) Represent the joint trajectories.

c) Plot the joint speeds, asuming that the movement between pl and p2 is
accomplished in 1 second.

d) Enumerate the possible errors that may appear during this movement:

- Points outside the workspace of the robot.

- Singular points where det(])=0 that indicate the need of infinite joint speeds.

- Joints out of range.

6 Use the teach pendant

Execute the graphical teach pendant (Figure 4). The teach pendant GUI application
allows to move the robot ‘s end effector in the following ways:

- With an independent movement of each robot axis. Using the sliders at the
top left area.

- Moving the end effector along along X, Y and Z in coordinates of:

o The base reference system.
o The end effector.

- Change the values of the T matrix and solve the inverse kinematic problem.
The application calls internally the inversekinematic function. The
application shows the joint configuration closest to the current one.
Alternatively you can change the position and orientation in the Q controls.

000 Figure 1
File Edit View Insert Tools Desktop Window Help

- DEEde b LR0PEA- 2 08 a0

(=D Curent vaiue — Target polnts———————————— Load-Save program
(deg, m)
@ — 00 [save wmnlnmalu] [191 ‘ Load
—
a4 -_—— 0o !
a5 - 0.0 @@ [Language
as -— o0 &= oo
= -
(o————— \- Instruction Target point Speed Precsion
Kind of movement | Line s [woves 2l][vmax]| e] 100l0Wobj=wobj0;
0.000 0.000 1000 |[o515 | | Base il LIS
T= -0.000 1.000 0.000 0.000 [Move to] e Hgh N ;]
-1.000 0.000 -0.000 0712 = Simulate instruction Save Instruction
Q= [o707 |[0000 |[0707 |[0000 |
Move to Load Robot
Px. Py, P2)
Figure 4

7 Summary

