
	

	

	

	

	

	

PRACTICAL	
 SESSION	
 5:	
 RAPID	
 PROGRAMMING	

	

	

Arturo	
 Gil	
 Aparicio	

arturo.gil@umh.es	

	

	

	

	

OBJECTIVES	

 After this practical session, the student should be able to:

− Program a robotic arm using the RAPID language.
− Simulate a program using the ARTE library. This program will then be

translated to a RAPID program so that you can program the real robot.

1 Introduction

The ARTE library includes a subset of instructions of the ABB RAPID language.
Programming in ARTE will be done in the following way:

i) The teach graphical user interface (GUI) allows to simulate the robot
and program target points. The user will place the robot in different
points in the workspace that will be needed, for example, to pick a
piece or place it inside a box.

ii) These points will be defined in a .m file. In order to do this, the points
created in the teach aplication can be exported to a .m file. Next, the
user should write a program using the equivalent Matlab functions
provided, such as MoveJ(), MoveL() or MoveAbsJ().

iii) The program can be simulated under Matlab. By using its debugging
tools you may execute the program step by step ore ven look into the
Matlab’s functions.

iv) Finally, the program can be translated to a RAPID file. This is done by
means of the matlab2RAPID function. The resulting file can be used
to program the real robot. There are different ways to transfer the
RAPID file to the robot’s controller, by using Robotstudio or by means
of a basic FTP client.

The whole process will be summarized in Section 3.

The simulation speed of the GUI highly depends on your computer resources.
Thus, if you find that the simulation is too slow, you may edit the
configuration.delta_time variable. Values near 0.01 s will increase the
simulation speed whereas 0.001 will make the simulation too slow in most PCs.

>> init_lib
>> configuration.delta_time=0.08

2 Using teach to program the robot in simulation

This section explains the usage of the teach graphical user interface (GUI).
First, initialize the library and load a robot into the Matlab’s workspace.

>> init_lib
>> robot=load_robot('abb', 'IRB140');
>> teach

You can try loading other robots. Robots from other manufacturers different
from ABB can also be simulated and programmed using RAPID language. After
calling teach, the graphical interface shown in Figure 1 appears. In addition, a
figure showing a 3D representation of the robot is presented. The robot
variable is special inside the library. It is declared as a global variable in the
workspace so that the teach application i sable to access the current loaded
robot easily.

	

Figure 1

	
 	

In order to program the robot we will be using the “Target points” menu to store
and visualize target points. These target points will be used as:

- End points: That is positions and orientations where we wish to
place the end effector. E. g. To pick a piece from a conveyor belt
and place it in a lathe.

- Through points: positions and orientations that will be used to
define a trajectory inside the robot’s workspace. E. g. It is usually
interesting to define a point A near the piece we would like to
grab, thus planning a fast approach to A and a precise
approximation to the final point so that the piece is gripped
precisely.

a) The Load Robot button allows you to load a different robot interactively
and program it. Of course, if you plan to program a real IRB 140, this
should be your choice.

Add a tool to the end effector. This is achieved by clicking on the Load end tool
button. Different tools can be loaded from the
arte/robots/equipment/end_tools directory. Two examples are presented in
Figure 2. For example, click on the Load end tool button and select the
angular gripper parameters.m file placed at
arte/robots/equipment/end_tools/angular_gripper/parameters.m. You may
also load the vacuum_1, vacuum_2 or spot_welding tool. It is important to pay
attention to the robot.TCP variable. This variable is a homogeneous matrix that
defines the Tool Center Point (TCP) of the tool. For a gripper, the TCP is the
point where the pieces should be grabbed. For a spot welding tool, the TCP
defines the position and orientation of the tool tip where the welding takes

place. If you wish to program the IRB 140 robot at the UMH laboratory,
please select the parallel gripper 0 tool.

Figure 2

a) Finally, the environment should be represented. Conveyor belts, tables,
machines, bowl feeders can be loaded in the same environment. This will
surely help in the development of any robotic application. The Load
equipment button allows to include auxiliary equipment in the robot’s
environment. The student should pay attention to the placement of the
robot with respect to its environment. Figure 3 presents some of the
environments included in the library. Load, for example, the bodywork
environment located at arte/robots/equipment/bodywork/parameters.m.
It is worth noting that the enviroments are modelled as a single link robot
with no joints, meaning that they are static. In addition, the position and
orientation of the robot inside the environment can be modified. To do
this, edit the parameters.m file corresponding to the environment and
modify the robot.T0 parameter. The T0 variable is a homogeneous
matrix that defines the position and orientation of the environment with
respect to the base of the robot. Alternatively, you can also modify the T0
variable of the robot.

b) The a), b) and c) steps can be programmed in a Matlab script. See the
manufacturing_demo.m under the demo directory.

3 Basic RAPID functions

First, move the robot end effector to a desired placed (e.g. a place to grasp a
piece). This can be performed by moving the sliders to move the joints
independently or by using the X+, X-, Y+,Y- or Z+, Z- buttons to move the end
effector in (X, Y, Z), either in the base or end effector’s reference frame.

Once the robot is placed at the desired position and configuration. Save this
robot pose as a target point. A target point in RAPID is defined as a robtarget
data type:	

CONST robtarget pos_b_rec:=[[-200,-550,200],[0,0.707,0.707,0],[-2,0,-
1,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

Where [-200,-550,200] is the position of the end effector, [0,0.707,0.707,0] is a
quaternion defining the orientation of the end effector and

[-2,0,-1,0] defines the configuration of the arm. Please remember that, in
general, there exist different solutions of the inverse kinematic problem that
bring the arm to the same position and orientation. The data type confdata =

[cf1, cf4, cf6, cfx] define the quadrants where the joints should be. The
quadrants are defined as integer values for positive and negative values as
shown in Figure 2. For example, a joint position q = [-90 35 179 200 -50 40]
(degrees) is specified univoquely a the configuration [-1 2 0 1].

Please note that cfx is not used at present and is reserved for other kind of
robots. Finally [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09] is used to
synchronize the position of up to 6 external axis (such as moving platforms to
help the robot in its chore). These values means that no synchronization is
present.

The target points are stored in the “Program” section, under the “Target point”
menú.

Finally, these target points can be selected as arguments for the movement
functions. You can build up a movement action by selection one of the available
move functions in RAPID:

MoveJ: Moves the robot with a isochronous independent joint movement.

MoveL: Moves the robot end effector (TCP) with a line in space.

MoveC: Moves the robot with a circular trajectory.

MoveAbsJ: Moves the robot to an absolute joint position.

Offs(robtarget, X, Y, Z): Program a relative displacement from the specified
robtarget destination.

	

Figure	
 3	

	

3 Basic programming

We can start by adding two target points. In order to do so, move the robot to
the following positions and orientations. Change the fields in Q and P and click
on the “Move to” button:

	

Press, “Move to”. Next, press “Save current target as” à RT_tp1. The text field
can be edited to

Change the destination point to:

	

Press, “Move to”. Next, press “Save target point” à RT_tp2. You should be able
to observe the target points in the “Target points” section.

Now, press the “Save TPs to file” button. Select a file and click OK. As a result,
the file will contain the following:

RT_tp1=[[0.4000, 0.3000, 0.7000],[1.0000, -0.0000, -0.0000, -0.0000], [0, -1, -1, 0],
[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

RT_tp2=[[0.1000, -0.4000, 0.7000],[0.0000, -0.0000, 0.0000, 1.0000], [-1, -1, -2, 0],
[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

Now, we are going to execute a MoveJ instruction. Edit the file to include the
following code:

RT_tp1=[[0.4000, 0.3000, 0.7000],[1.0000, -0.0000, -0.0000, -0.0000], [0, -1, -1, 0],
[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
RT_tp2=[[0.1000, -0.4000, 0.7000],[0.0000, -0.0000, 0.0000, 1.0000], [-1, -1, -2, 0],
[9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

tool0=[1,[[0,0,0],[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

MoveJ(RT_tp1, 'vmax' , 'fine' , tool0, 'wobj0');
MoveJ(RT_tp2, 'vmax' , 'fine' , tool0, 'wobj0');
MoveL(RT_tp1, 'vmax' , 'fine' , tool0, 'wobj0');
MoveL(RT_tp2, 'vmax' , 'fine' , tool0, 'wobj0');

At the top of the file, you should observe the definition of the target points. This
definition is equivalent to the RobTarget data type defined in RAPID. Next, the
tool0 definition is included. If no tool has been added to the simulation, the
student should use tool0, meaning that the end effector of the robot
corresponds to the last reference system S6. Next, the program can be

simulated by clicking on . In addition, breakpoints can be added easily by

clicking on the line numbers on the left. Click on to execute a program line.

Click on to stop debugging. As a result, you will observe the robot
moving from one target point tp1 to the other, describing linear (MoveL) or joint
coordinate trajectories (MoveJ).

	

Figure	
 4	

	

Figure	
 5	

	

	

	

	

4 Translate it to RAPID

Assume that the following code is stored in a file named test_1.m:

function test_1
global RT_tp1 RT_tp2 TD_tool0

RT_tp1=[[0.4000, 0.3000, 0.7000],[1.0000, -0.0000, -0.0000, -0.0000], [0, -1,
-1, 0], [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
RT_tp2=[[0.1000, -0.4000, 0.7000],[0.0000, -0.0000, 0.0000, 1.0000], [-1, -1,
-2, 0], [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

TD_tool0=[1,[[0,0,0],[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

main;
end

function main()
global RT_tp1 RT_tp2 TD_tool0

MoveJ(RT_tp1, 'vmax' , 'fine' , TD_tool0, 'wobj0');
MoveJ(RT_tp2, 'vmax' , 'fine' , TD_tool0, 'wobj0');
MoveL(RT_tp1, 'vmax' , 'fine' , TD_tool0, 'wobj0');
MoveL(RT_tp2, 'vmax' , 'fine' , TD_tool0, 'wobj0');

end
	

Please, note that the code should be defined in a Matlab script that starts by a
function. Once this is done, type:

>> matlab2RAPID

The following dialog appears. Select the test_1.m file and click on Open.

	

As a result, in the command prompt you should observe:

>>	
 matlab2RAPID	

Converting	
 Matlab	
 into	
 RAPID	
 lenguaje...	

Sink_name	
 =	

test_1.prg	

Next, the test_1.prg file is created in the same directory where
test_1.m exists. If you edit this file, you can observe the following code.

MODULE test_1

CONST robtarget RT_tp1:=[[0.4*1000, 0.3*1000, 0.7*1000],[1, -0, -0, -0], [0, -
1, -1, 0], [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];
CONST robtarget RT_tp2:=[[0.1*1000, -0.4*1000, 0.7*1000],[0, -0, 0, 1], [-1, -
1, -2, 0], [9E+09,9E+09,9E+09,9E+09,9E+09,9E+09]];

CONST tooldata
TD_tool0:=[1*1000,[[0*1000,0*1000,0],[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

 PROC MAIN

MoveJ RT_tp1,vmax,fine,TD_tool0\WObj:=wobj0;
MoveJ RT_tp2,vmax,fine,TD_tool0\WObj:=wobj0;
MoveL RT_tp1,vmax,fine,TD_tool0\WObj:=wobj0;
MoveL RT_tp2,vmax,fine,TD_tool0\WObj:=wobj0;

 ENDPROC

ENDMODULE

This is finally the RAPID code that is equivalent to the Matlab code that
we have been using until now. This code is directly portable to program a robot.
Just use a FTP client to transfer this file to the robot’s controller and program it.

4 Making a more advanced program	

The	
 following	
 code	
 includes	
 all	
 the	
 functions	
 that	
 can	
 be	
 used	
 in	
 the	
 library.	
 All	

these	
 functions	
 can	
 be	
 translated	
 to	
 RAPID	
 equivalent	
 functions.	
 Please,	
 note	
 that	

only	
 a	
 subset	
 of	
 functions	
 are	
 included	
 in	
 Matlab,	
 but	
 they	
 suffice	
 to	
 generate	
 a	
 vast	

number	
 of	
 applications.	
 In	
 the	
 following	
 code,	
 we	
 have	
 used	
 the	
 MoveAbsJ	

function,	
 the	
 MoveC	
 function	
 and	
 the	
 Offs()	
 function.	
 For	
 loops	
 are	
 also	
 included	
 in	

the	
 code.	
 Edit	
 the	
 file	
 arte/RAPID/programs/test_2.m.	

function test_2

global RT_tp1 RT_tp2 q0 TD_tool0

TD_tool0=[1,[[0,0,0],[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

%initial position
q0=[0 0 0 0 0 0]';
%target points
RT_tp1=[[0.3,0.0089,1.0195],[0.2175,0.0971,-
0.0689,0.9688],[1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];
RT_tp2=[[0.7150,-0.2000,0.5120],[0.7071,0.0,0.7071,0.0000],[-1,-
1,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

main;
end

function main()
global RT_tp1 RT_tp2 q0 TD_tool0

%The MoveAbsJ function performs a joint coordinate planning to the
%specified joint values
 MoveAbsJ(q0, 'vmax' , 'fine' , TD_tool0, 'wobj0');

 MoveJ(RT_tp1, 'vmax' , 'fine' , TD_tool0, 'wobj0');
 MoveJ(RT_tp2, 'vmax' , 'fine' , TD_tool0, 'wobj0');
 MoveL(RT_tp1, 'vmax' , 'fine' , TD_tool0, 'wobj0');
 MoveL(RT_tp2, 'vmax' , 'fine' , TD_tool0, 'wobj0');
 %Return to tp1
 MoveJ(RT_tp1, 'vmax' , 'fine' , TD_tool0, 'wobj0');

 %use the Offs function to move relative to tp1
 % The Offs function makes a relative displacement in X, Y and Z directions
 %Please note that, by using Offs, the specified axes configuration may
 %differ from the one specified in tp1.
 MoveJ(Offs(RT_tp1,0.1,0,-0.1), 'vmax' , 'fine' , TD_tool0, 'wobj0');

 %use MoveL inside a Loop, moving incrementally
 for i=1:4,
 MoveL(Offs(RT_tp1,0.1,i*0.1,-0.2), 'vmax' , 'fine' , TD_tool0, 'wobj0');
 end

end

Again,	
 use	
 matlab2RAPID	
 to	
 create	
 a	
 RAPID	
 program	
 that	
 can	
 be	
 uploaded	
 to	
 the	
 real	

controller.	

!
MODULE test_2

PERS tooldata
 tool0:=[1*1000,[[0*1000,0*1000,0],[1,0,0,0]],[0,[0,0,0],[1,0,0,0],0,0,0]];

!initial position
q0:=[0 0 0 0 0 0]';
!target points

CONST robtarget
 tp1:=[[0.3*1000,0.0089*1000,1.0195*1000],[0.2175,0.0971,-
0.0689,0.9688],[1,0,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];
CONST robtarget
 tp2:=[[0.715*1000,-0.2*1000,0.512*1000],[0.7071,0,0.7071,0],[-1,-
1,0,0],[9E9,9E9,9E9,9E9,9E9,9E9]];

PROC MAIN

!The MoveAbsJ function performs a joint coordinate planning to the
!specified joint values
 MoveAbsJ q0, 'vmax' , 'fine' , tool0, 'wobj0');
 MoveJ tp1,vmax,fine,tool0\WObj:=wobj0;
 MoveJ tp2,vmax,fine,tool0\WObj:=wobj0;
 MoveL tp1,vmax,fine,tool0\WObj:=wobj0;
 MoveL tp2,vmax,fine,tool0\WObj:=wobj0;
!Return to tp1
 MoveJ tp1,vmax_,fine_,tool0\WObj:=wobj0;

!use the Offs function to move relative to tp1
! The Offs function makes a relative displacement in X, Y and Z directions
!Please note that, by using Offs, the specified axes configuration may
!differ from the one specified in tp1.
 MoveJ Offs(tp1,0.1*1000,0.0*1000,0.1*1000),vmax,fine,tool0\WObj:=wobj0;

!use MoveL inside a Loop, moving incrementally
 FOR i FROM 1 TO 4 DO
 MoveL Offs(tp1,0.1*1000,i*0.1*1000,0.1*1000),0.2,vmax,fine\WObj:=wobj0;
 ENDFOR

ENDPROC

ENDMODULE

	

Exercise	
 1:	
 	

a)	
 Open	
 the	
 file	
 test_2.m.	
 Simulate	
 it	
 step	
 by	
 step.	

b) Edit the target points to different 3D positions. What kind of WARNINGS or
ERRORS do you obtain. Why?	
 	

	

	

5 Simulating a packaging application	

Other aspects are important when developing a robotic application.

a) You should have an environment that ressembles the real one.

b) The robot should have a suitable end tool, similar to the one that uses
the real robot that you aim to program.

c) There should exist a piece that is being moved. For example, in a
packaging application, the pieces will be picked, from a conveyor belt
and placed in a box.

The three items above are covered easily inside the teach GUI application.

a) Click on the Load Robot button to swap easily between the robots in
the library.

b) Click on Load end tool to load an end effector.

c) Click on Load equipment to load auxiliar systems such as conveyor velts,
machining tools, robotic cells, etc.

d) Finally, load a piece that will be grabbed by the robot by clicking on the
“Load a piece” button.

e) Moreover, there exist functions that are used during the simulation to
provide the feeling that the piece is grabbed by the robot and moves with
the end tool.

The piece position/orientation is defined by the robot.piece.T0
homogeneous transformation and should be defined during the simulation.

We are now prepared to simulate the first packaging application.

a) Open the script under arte/RAPID/programs/practice_1_programming.m.

b) Run teach, load an IRB 140 robot.

c) Click on Load end Tool and load the
arte/robots/equipment/end_tools/parallel_gripper_0 that defines a
parallel gripper.

d) Click on Load equipment and load
arte/robots/equipment/tables/table_two_areas that represents a
conveyor belt with two workin areas.

e) Click on Load a piece and load
arte/robots/equipment/cylinders/cilynder_tiny that represents a
piece.

Finally, you can simulate the practice1_programming.m script in Matlab using

the button. The script simulates that the robot picks a picece and then
drops it in the packaging area.	

	

Exercise	
 2:	
 	

a)	
 Open	
 the	
 file	
 practice_1_programming.m	
 and	
 simulate	
 it	
 step	
 by	
 step.The	
 initial	

position	
 of	
 the	
 piece	
 is	
 at	
 the	
 end	
 of	
 a	
 conveyor	
 belt.	
 The	
 position	
 and	
 orientation	

of	
 the	
 piece	
 is	
 defined	
 by:	
 	

robot.piece.T0(1:3,4)=[-0.1 -0.5 0.2]';

The	
 box	
 has	
 dimensions	
 0.3x0.3x0.2	
 m	
 and	
 its	
 center	
 is	
 located	
 at	
 (X,	
 Y,	

Z)=(0.5,	
 -­‐0.5,	
 0.2)	

b) Now you should edit the file by including more targetpoints and define
functions to simulate a more realistic packaging application. First, consider that
the four pieces have to be placed as shown in Figure 5.

c) Repeat the program to produce a different packaging. In this case, the pieces
should be placed in a box as represented in Figure 6. The box

An example is presented in the following video:

https://drive.google.com/file/d/0Bx_eBHgZLv8Kc1hUd190OEV3c28/edit?usp=sharing	

	

Figure	
 5	

	

	

Figure	
 6	

7 Program the real robot

Programming a real robot can be done in different ways. Often, the robot
manufacturers provide a GUI to simulate and program the controller. In the case
of the SC4+ controller we will be using a simple FTP client to transfer the
RAPID file to the controller.

a) Call matlab2RAPID and select the .m Matlab script.

>> matlab2RAPID

b) if the file arte/RAPID/programs/practice_1_programming.m is selected, a
new file arte/RAPID/programs/practice_1_programming.prg will be
generated. This last file is in RAPID language.

c) Edit this last file, some of the functions used in simulation will not be
understood by RAPID. Edit practice_1_programming.prg and remove
any call to:

robot.piece.T0(1:3*1000,4):=[0 -0.45 0.2]';
!robot.tool.piece_gripped=0;

drawrobot3d(robot, robot.q);

!close the tool
simulation_close_tool;
simulation_open_tool;
simulation_open_piece;
simulation_release_piece;

d) In order to program the SC4+ robot controller, the following data should be
useful. Configure the communications with the controller with the following
network configuration in the PC:	

IP ADDRESS: 192.168.125.82
MASK: 255.255.255.240
GATEWAY:192.168.125.81

Use a simple ftp client such as Filezilla to connect to the Server with
address: 192.168.125.1.

	

	

	

Exercise	
 3:	
 	

a)	
 Simulate	
 a	
 packaging	
 application	
 for	
 the	
 real	
 robot	
 presented	
 in	
 Figure	
 7.	

b) The positions and orientations of the end tool to grip a piece or release it
should be known in order to develop your application. A simple way of doing
this, (if you have the possibility to handle the real robot) is to use the robot as a
measurement unit: place the robot at the desired position and orientation and
store this data. Proceed to the release area and repeat the process.

c) Simulate the packaging application. You can use the test_functions.m and
the test_packaging.m scripts as examples.

d) Once the student considers that the problems are solved and the target
points are correct, the real robot may be programmed. Thus, use
matlab2RAPID to obtain a RAPID program. Edit it to assure that the syntax is
correct. Finally, use Filezilla to transfer the program to the robot.	

8 Program a different robot	

Prior to the call to the “teach” GUI you can load any robot and program it.
Please note that other robots may have different restrictions, such as the size of
their workspace and the different orientations that can be reached.

>> init_lib
>> robot=load_robot('abb', 'IRB6620');
>> teach

	

Or, for example, load a KUKA robot and program it in RAPID:

>> init_lib
>> robot=load_robot('kuka', ' KR5_arc');
>> teach

	

