
	

	

	

	

	

	

ARTE	

A Robotics Toolbox for Education

	

PRACTICAL	
 SESSION	
 6:	
 INDEPENDENT	
 PID	

CONTROL	

	

	

	

	

	

Arturo	
 Gil	
 Aparicio	

arturo.gil@umh.es	

	

	

	

	

OBJECTIVES	

 After this practical session, the student should be able to:

− Simulate the control of a robotic arm.

− Observe the influence of the PID parameters in the control of the robotic
arm.

1 Introduction

The PID control is by far the most typical scheme used in classical control
theory. The typical control layout is presented in Figure 1.

	

	

In our case, we can think that the process being governed is a DC motor. In our
case, the process input is the voltage applied to the motor whereas the process
output is the position of the motor axis. Thus, this case represents the control in
the position of a motor that is governed by a voltage V applied. We would like to
make the position of the motor’s rotor follow a particular profile. For example,
the final position of the robot should place the robot at a given joint position. In
the scheme, the PID control implements the following equation:

	

that means that the control action u(t) (the voltage V applied to the motor) is
proportional to the error (Kp), proportional to the variation of the error with
respect to time (Kd) and proportional to the integral of the error (Ki).

In this session we apply this scheme to each of the joints of the robot
independently. This kind of control is extremely simple, but nevertheless, used
in some comercial robots. Most importantly, this kind of control does not
consider the torques applied to a joint as a consequence of the movement of
the rest of the joints. In this way, the control of each joint is treated individually.
We apply this scheme in simulation and simulate the movement of the robot
using a direct dynamic model of the arm. During this practical session, the
student will try different values for the PID constants and observe its
consequences.

There exist some experimental methods to tune PID controllers. None of them
is perfect, however the underlying concepts are simmilar to all of them and can
be summed up in the following steps:

a) Try to make the output faster by increasing the proportional gain Kp. This
action will make the system faster and also it will increase the system’s
overshoot (which is particularly undesirable in this case).

b) Increase Kp until you observe a 15% of overshoot.

c) Now increase the derivative gain Kd to reduce the overshoot to zero.

d) Finally, if there exists error in the steady state, increase Ki.

You can observe the output in the following figures:

a) Low Kp.

higher Kp

Now the output is faster. You should achieve a 15% of overshoot
approximately.

Now, increase Kd to reduce the overshoot to zero

2 Tuning the PID parameters

Open the file tunePID1.mdl (arte/demos/simulink/tunePID1.mdl). This file
simulates the robot when a step input is applied as a reference at its first joint.
In order to simulate any robot, you must load it in the workspace:

>> init_lib
>> robot=load_robot('unimate', 'puma560');

The step input models a sudden change in the position of the first joint (that is,
the robot controller desires to make a sudden change in position). We consider
that during the movement of this first joint the rest of the joints remain stopped.
The block motor simulates the behaviour of a typical DC motor when a voltage
V is applied. If you double click on the PID block you should be able to change
the PID parameters of the controller.

	

Figure 1

	
 	

Exercise	
 1:	
 	

Change	
 the	
 PID	
 values	
 of	
 the	
 controller.	
 Complete	
 the	
 following	
 table.	

When	
 Overshoot	
 Stablishment	
 time	

Kp	
 is	
 large	

Kp	
 is	
 small	

Kd	
 is	
 large	

Kd	
 is	
 small	

Ki	
 is	
 large	

Ki	
 is	
 small	

Exercise	
 2:	
 	

Adjust	
 the	
 PID	
 parameters	
 of	
 the	
 first	
 joint	
 to	
 obtain	
 the	
 best	
 result	
 (no	
 overshoot	

and	
 a	
 fast	
 response	
 is	
 obtained).	
 	

Repeat	
 the	
 process	
 for	
 the	
 rest	
 of	
 the	
 joints.	
 The	
 files	
 tunePID2.mdl,	

tunePID3.mdl…	
 can	
 be	
 used	
 as	
 a	
 starting	
 point.	

3 Simulating the control	

Now	
 it’s	
 time	
 to	
 simulate	
 the	
 robot	
 at	
 a	
 real	
 work	
 situation.	
 In	
 our	
 case,	
 we	
 are	

going	
 to	
 test	
 the	
 PID	
 parameters	
 when	
 the	
 robot	
 follows	
 a	
 line	
 in	
 space.	
 We	
 would	

observe	
 an	
 error	
 between	
 the	
 planned	
 trajectories	
 and	
 the	
 trajectories	
 really	

atained	
 by	
 the	
 robot.	
 This	
 error	
 depends	
 directly	
 on	
 the	
 quality	
 of	
 the	
 PID	

parameters	
 tuned	
 in	
 the	
 previous	
 section.	
 Now,	
 you	
 should	
 open	
 the	
 file	

simulate_puma560_steps.mdl.	

Next,	
 you	
 should	
 modify	
 the	
 PID	
 parameters	
 of	
 each	
 joint	
 according	
 to	
 	
 the	
 values	

set	
 in	
 the	
 last	
 section.	
 The	
 simulink	
 scheme	
 applies	
 a	
 step	
 input	
 to	
 each	
 of	
 the	

joints	
 simultaneously.	
 You	
 should	
 observe	
 the	
 behaviour	
 of	
 the	
 joint	
 position	
 and	

compare	
 with	
 the	
 outputs	
 obtained	
 using	
 the	
 file	
 tunePID1.mdl,	
 tunePID2.mdl	
 etc.	

Figure	
 2	
 presents	
 a	
 typical	
 result	
 on	
 the	
 joint	
 positions	
 when	
 applying	
 multiple	

steps	
 to	
 each	
 joint	
 simultaneously.	
 Please	
 note	
 that	
 the	
 torques	
 applied	
 to	
 any	
 joint	

will	
 be	
 seen	
 by	
 the	
 other	
 joints	
 as	
 a	
 reaction,	
 thus,	
 the	
 control	
 is	
 fully	
 coupled.	
 In	

our	
 case,	
 you	
 should	
 observe	
 that	
 the	
 simple	
 control	
 scheme	
 allows	
 to	
 obtain	

reasonably	
 accurate	
 results.	
 Please,	
 observe	
 that	
 the	
 output	
 corresponding	
 to	
 joint	

6	
 has	
 a	
 large	
 overshoot.	
 Try	
 to	
 modify	
 the	
 PID	
 parameters	
 to	
 compensate	
 this	

effect.	
 	

Finally,	
 Figure	
 3	
 presents	
 the	
 error	
 between	
 the	
 references	
 and	
 the	
 joint	
 positions.	

Please,	
 observe	
 that,	
 at	
 the	
 final	
 time,	
 during	
 simulation,	
 the	
 error	
 becomes	
 zero.	

	

	

	

Figure	
 2	

	

	

Figure	
 3	

Now,	
 you	
 should	
 open	
 the	
 file	
 simulate_puma560_line.mdl.	
 In	
 this	
 case,	
 the	

simulink	
 scheme	
 simulates	
 that	
 the	
 robot	
 is	
 following	
 a	
 line	
 in	
 space	
 with	
 a	

coordinated	
 motion.	
 In	
 this	
 way,	
 we	
 are	
 simulating	
 the	
 robot	
 when	
 it	
 performs	
 a	

real	
 task.	
 Given	
 that	
 all	
 the	
 joints	
 move	
 at	
 the	
 same	
 time	
 and	
 that	
 the	
 control	
 is	

performed	
 at	
 a	
 pose	
 that	
 does	
 not	
 coincide	
 with	
 the	
 pose	
 of	
 the	
 robot	
 where	
 the	

PID	
 parameters	
 where	
 tuned,	
 we	
 should	
 expect	
 worse	
 results.	
 In	
 consequence,	
 the	

position	
 of	
 each	
 of	
 the	
 joints	
 will	
 not	
 be	
 equal	
 to	
 the	
 one	
 planned.	
 This	
 will	
 be	

translated	
 to	
 an	
 error	
 in	
 the	
 position	
 and	
 orientation	
 of	
 the	
 end	
 effector.	
 	
 	

	

Exercise	
 3:	
 	

Analyse	
 the	
 errors	
 in	
 the	
 joints	
 when	
 the	
 motion	
 is	
 performed.	
 Plot	
 the	
 results.	
 	

Analyse	
 the	
 errors	
 in	
 the	
 position	
 of	
 the	
 robot’s	
 end	
 effector	
 with	
 respect	
 ot	
 its	

base	
 reference	
 system.	
 Plot	
 your	
 results.	
 Compare	
 the	
 planned	
 line	
 trajectory	
 with	

the	
 trajectory	
 really	
 followed	
 by	
 the	
 robot.	

Where	
 do	
 these	
 errors	
 come	
 from?	

	

4 Simulating your robot	

You	
 should	
 create	
 a	
 new	
 simulink	
 model	
 to	
 test	
 the	
 independent	
 control	
 with	
 your	

robot.	
 Please,	
 don’t	
 forget	
 to	
 load	
 your	
 robot	
 in	
 the	
 Matlab	
 workspace	
 before	

simulating.	

>>	
 init_lib	

>>	
 robot	
 =	
 load_robot(‘my_manufacturer’,’my_model’);	

	

Exercise	
 4:	
 	

Simulate	
 the	
 control	
 of	
 your	
 robot	
 under	
 different	
 situations.	
 What	
 kind	
 of	

conclusions	
 can	
 you	
 extract?	
 	

	

	

5 Summary	

Everything is summarized in the following videos:

- Tuning of the PID parameters corresponding to joint 1 for a puma 560 6 DOF
robot.

(fichero::pr6_pid_control.mp4)	

	

