
	

	

	

	

	

	

ARTE	
A Robotics Toolbox for Education

	

PRACTICAL	 SESSION	 6:	 INDEPENDENT	 PID	
CONTROL	

	

	

	

	

	

Arturo	 Gil	 Aparicio	
arturo.gil@umh.es	

	

	

	

	

OBJECTIVES	
 After this practical session, the student should be able to:

− Simulate the control of a robotic arm.

− Observe the influence of the PID parameters in the control of the robotic
arm.

1 Introduction

The PID control is by far the most typical scheme used in classical control
theory. The typical control layout is presented in Figure 1.

	

	

In our case, we can think that the process being governed is a DC motor. In our
case, the process input is the voltage applied to the motor whereas the process
output is the position of the motor axis. Thus, this case represents the control in
the position of a motor that is governed by a voltage V applied. We would like to
make the position of the motor’s rotor follow a particular profile. For example,
the final position of the robot should place the robot at a given joint position. In
the scheme, the PID control implements the following equation:

	

that means that the control action u(t) (the voltage V applied to the motor) is
proportional to the error (Kp), proportional to the variation of the error with
respect to time (Kd) and proportional to the integral of the error (Ki).

In this session we apply this scheme to each of the joints of the robot
independently. This kind of control is extremely simple, but nevertheless, used
in some comercial robots. Most importantly, this kind of control does not
consider the torques applied to a joint as a consequence of the movement of
the rest of the joints. In this way, the control of each joint is treated individually.
We apply this scheme in simulation and simulate the movement of the robot
using a direct dynamic model of the arm. During this practical session, the
student will try different values for the PID constants and observe its
consequences.

There exist some experimental methods to tune PID controllers. None of them
is perfect, however the underlying concepts are simmilar to all of them and can
be summed up in the following steps:

a) Try to make the output faster by increasing the proportional gain Kp. This
action will make the system faster and also it will increase the system’s
overshoot (which is particularly undesirable in this case).

b) Increase Kp until you observe a 15% of overshoot.

c) Now increase the derivative gain Kd to reduce the overshoot to zero.

d) Finally, if there exists error in the steady state, increase Ki.

You can observe the output in the following figures:

a) Low Kp.

higher Kp

Now the output is faster. You should achieve a 15% of overshoot
approximately.

Now, increase Kd to reduce the overshoot to zero

2 Tuning the PID parameters

Open the file tunePID1.mdl (arte/demos/simulink/tunePID1.mdl). This file
simulates the robot when a step input is applied as a reference at its first joint.
In order to simulate any robot, you must load it in the workspace:

>> init_lib
>> robot=load_robot('unimate', 'puma560');

The step input models a sudden change in the position of the first joint (that is,
the robot controller desires to make a sudden change in position). We consider
that during the movement of this first joint the rest of the joints remain stopped.
The block motor simulates the behaviour of a typical DC motor when a voltage
V is applied. If you double click on the PID block you should be able to change
the PID parameters of the controller.

	

Figure 1

	 	

Exercise	 1:	 	
Change	 the	 PID	 values	 of	 the	 controller.	 Complete	 the	 following	 table.	

When	 Overshoot	 Stablishment	 time	

Kp	 is	 large	

Kp	 is	 small	

Kd	 is	 large	

Kd	 is	 small	

Ki	 is	 large	

Ki	 is	 small	

Exercise	 2:	 	
Adjust	 the	 PID	 parameters	 of	 the	 first	 joint	 to	 obtain	 the	 best	 result	 (no	 overshoot	
and	 a	 fast	 response	 is	 obtained).	 	

Repeat	 the	 process	 for	 the	 rest	 of	 the	 joints.	 The	 files	 tunePID2.mdl,	
tunePID3.mdl…	 can	 be	 used	 as	 a	 starting	 point.	

3 Simulating the control	

Now	 it’s	 time	 to	 simulate	 the	 robot	 at	 a	 real	 work	 situation.	 In	 our	 case,	 we	 are	
going	 to	 test	 the	 PID	 parameters	 when	 the	 robot	 follows	 a	 line	 in	 space.	 We	 would	
observe	 an	 error	 between	 the	 planned	 trajectories	 and	 the	 trajectories	 really	
atained	 by	 the	 robot.	 This	 error	 depends	 directly	 on	 the	 quality	 of	 the	 PID	
parameters	 tuned	 in	 the	 previous	 section.	 Now,	 you	 should	 open	 the	 file	
simulate_puma560_steps.mdl.	

Next,	 you	 should	 modify	 the	 PID	 parameters	 of	 each	 joint	 according	 to	 	 the	 values	
set	 in	 the	 last	 section.	 The	 simulink	 scheme	 applies	 a	 step	 input	 to	 each	 of	 the	
joints	 simultaneously.	 You	 should	 observe	 the	 behaviour	 of	 the	 joint	 position	 and	
compare	 with	 the	 outputs	 obtained	 using	 the	 file	 tunePID1.mdl,	 tunePID2.mdl	 etc.	
Figure	 2	 presents	 a	 typical	 result	 on	 the	 joint	 positions	 when	 applying	 multiple	
steps	 to	 each	 joint	 simultaneously.	 Please	 note	 that	 the	 torques	 applied	 to	 any	 joint	
will	 be	 seen	 by	 the	 other	 joints	 as	 a	 reaction,	 thus,	 the	 control	 is	 fully	 coupled.	 In	
our	 case,	 you	 should	 observe	 that	 the	 simple	 control	 scheme	 allows	 to	 obtain	
reasonably	 accurate	 results.	 Please,	 observe	 that	 the	 output	 corresponding	 to	 joint	
6	 has	 a	 large	 overshoot.	 Try	 to	 modify	 the	 PID	 parameters	 to	 compensate	 this	
effect.	 	

Finally,	 Figure	 3	 presents	 the	 error	 between	 the	 references	 and	 the	 joint	 positions.	
Please,	 observe	 that,	 at	 the	 final	 time,	 during	 simulation,	 the	 error	 becomes	 zero.	

	

	

	

Figure	 2	
	

	

Figure	 3	

Now,	 you	 should	 open	 the	 file	 simulate_puma560_line.mdl.	 In	 this	 case,	 the	
simulink	 scheme	 simulates	 that	 the	 robot	 is	 following	 a	 line	 in	 space	 with	 a	
coordinated	 motion.	 In	 this	 way,	 we	 are	 simulating	 the	 robot	 when	 it	 performs	 a	
real	 task.	 Given	 that	 all	 the	 joints	 move	 at	 the	 same	 time	 and	 that	 the	 control	 is	
performed	 at	 a	 pose	 that	 does	 not	 coincide	 with	 the	 pose	 of	 the	 robot	 where	 the	
PID	 parameters	 where	 tuned,	 we	 should	 expect	 worse	 results.	 In	 consequence,	 the	
position	 of	 each	 of	 the	 joints	 will	 not	 be	 equal	 to	 the	 one	 planned.	 This	 will	 be	
translated	 to	 an	 error	 in	 the	 position	 and	 orientation	 of	 the	 end	 effector.	 	 	

	

Exercise	 3:	 	
Analyse	 the	 errors	 in	 the	 joints	 when	 the	 motion	 is	 performed.	 Plot	 the	 results.	 	

Analyse	 the	 errors	 in	 the	 position	 of	 the	 robot’s	 end	 effector	 with	 respect	 ot	 its	
base	 reference	 system.	 Plot	 your	 results.	 Compare	 the	 planned	 line	 trajectory	 with	
the	 trajectory	 really	 followed	 by	 the	 robot.	

Where	 do	 these	 errors	 come	 from?	

	

4 Simulating your robot	

You	 should	 create	 a	 new	 simulink	 model	 to	 test	 the	 independent	 control	 with	 your	
robot.	 Please,	 don’t	 forget	 to	 load	 your	 robot	 in	 the	 Matlab	 workspace	 before	
simulating.	

>>	 init_lib	
>>	 robot	 =	 load_robot(‘my_manufacturer’,’my_model’);	
	

Exercise	 4:	 	
Simulate	 the	 control	 of	 your	 robot	 under	 different	 situations.	 What	 kind	 of	
conclusions	 can	 you	 extract?	 	
	

	

5 Summary	

Everything is summarized in the following videos:

- Tuning of the PID parameters corresponding to joint 1 for a puma 560 6 DOF
robot.

(fichero::pr6_pid_control.mp4)	

	

