
Add your own robot to the library

…a step by step guide…
The ARTE library has been designed to let the students add freely more robots
to the library. The following example presents how to do so:

1 Obtain 3D CAD files to represent the robot
Robot manufacturers provide 3D CAD files for their robots. They are in different
formats. Normally, you can either download separate files for each of the links
or the whole robot arm in a single file. You will find different CAD formats
available. You should choose the STL format preferably, in particular ASCII STL
format. In case you have downloaded the arm as a whole, divide it in their
independent links. Link0_base is the base, link1_base, link2_base … etc. Each
of these links should be exported to STL (STereoLithography) format This is a
common format for many CAD software. You can find more information under
http://en.wikipedia.org/wiki/STL_(file_format)

For example, download the files for the ABB IRB6650S 90 390. Go into:
http://www.abb.com/product/us/9AAC910011.aspx

Or navigate to www.abb.comà productsà robotics.

Download CAD files. Beware of the robot versión you are downloading. You
can either download the compl (whole arm), or joint (separate links). In this
example we will download the joint version. Extract the files and save them
under robot/abb/IRB6650S_90_390

2 Copy the files to the directory of your robot
You may place all the CAD files in the following directory:

Arte_libX.X/robots/abb/IRB6650S_90_390, if we have a look at it:

You should also copy a parameters.m file belonging to other robot and
place it in the same directory.

Most CAD programs will read the STL files. For example, download and install
Meshlab: meshlab.sourceforge.net, for Windows, Mac or Linux. You
should now have a look at the files. In Meshlab, open each of the files to view
them. If you open the first file, you should find something like:

 Or, the second file:

Third file:

The reader should observe that some of the files constitute the basic shape of
some of the robot links, whereas other files are details. You can merge some
files into a single file to obtain a more detailed view of any of the links. To do so,
you should have a look at the complete robot:

For example, start by opening the files with indexes 2, 8, 11, 12, 16. To do

so, click on Fileà Import Mesh

Select several files by clicking on Ctrl or cmd button.

For example, after opening the files with index 2, 8, 11, 12, 16, you should
have the following view of link 1.

Next, open files 2, 8, 11, 12 and 16. Additionally, you should go to
FiltersàLayersà Flatten visible layers

Next, click on Apply to combine the meshes.

Finally, save the file by selecting FileàExport Mesh As. Select STL as format.
And name the file as link1_base.stl. The suffix base means that the points in the
STL file are referred to the base reference system.

Next, de-select the Binary encoding option, which stores the file in ASCII
format, that can be later read by Matlab.

Repeat the process for the rest of the files. The table shows the file indices that
should be merged (flattenned) together.

Robot ARTE file Robot file index

link0_base.stl

Base, system 0

1

link1_base.stl

Link 1, system 1.

2, 8, 11, 12, 16

link2_base.stl

Link 2, system 2.

3, 9

link3_base.stl

Link 3, system 3.

4, 10, 13

link4_base.stl

link 4, system 4.

5, 14, 15

link5_base.stl

link 5, system 5.

6

link6_base.stl

link 6, system 6.

7

You can now try to visualize the files in Matlab. To do so, place the current
folder in arte_libX.X/robots/IRB6650S_90_390 and type the following
commands:

>>[fout, vout, cout] = stl_read('link0_base.stl');

>>draw_patch(fout, vout, cout,0)

After calling the draw_patch function, the following figure appears:

Please, note the scale (mm) and that the origin of the figure is not placed inside
the link (points are referred to the base reference system).

3 Transform the files to a different reference system
Now, you should edit the parameters.m file to include the basic parameters of
the arm, namely the D-H parameters, axes ranges, etc. In order to do so, copy
a parameters.m file from a different robot and edit it. You should read the
datasheet of the robot to obtain the main data.

From the datasheet, we observe the positive turn direction for each joint and the
main dimensions.

In our case, A=2.042 meters. According to the version of the arm. Using the
drawing above, place the D-H systems and write a D-H table. A possible
placement for the standard D-H systems is shown next.

Which has the following D-H table associated:

θ d a α

θ1 0.630 0.600 -π/2

θ2-π/2 0 1.280 0

θ3 0 0.200 -π/2

θ4 2.042 0 π/2

θ5 0 0 -π/2

θ6 0.200 0 0

Edit the parameters.m file to indicate the previous table. Note the variables,
robot.DH.theta, robot.DH.d, etc.:

function robot = parameters()

robot.name= 'ABB_IRB6650S_90_390';

%Path where everything is stored for this robot
robot.path = 'robots/abb/IRB6650S_90_390';

robot.DH.theta= '[q(1) q(2)-pi/2 q(3) q(4) q(5) q(6)]';
robot.DH.d='[0.630 0 0 2.042 0 0.2]';
robot.DH.a='[0.600 1.280 0.2 0 0 0]';
robot.DH.alpha= '[-pi/2 0 -pi/2 pi/2 -pi/2 0]';

robot.J=[];

robot.inversekinematic_fn = 'inversekinematic_irb6650S_90_390(robot,
T)';

%number of degrees of freedom
robot.DOF = 6;

%rotational: 0, translational: 1
robot.kind=['R' 'R' 'R' 'R' 'R' 'R'];

%minimum and maximum rotation angle in rad
robot.maxangle =[deg2rad(-180) deg2rad(180); %Axis 1, minimum, maximum
 deg2rad(-40) deg2rad(160); %Axis 2, minimum, maximum
 deg2rad(-180) deg2rad(70); %Axis 3
 deg2rad(-300) deg2rad(300); %Axis 4:
 deg2rad(-120) deg2rad(120); %Axis 5
 deg2rad(-360) deg2rad(360)]; %Axis 6:

%maximum absolute speed of each joint rad/s or m/s
robot.velmax = [deg2rad(100); %Axis 1, rad/s
 deg2rad(90); %Axis 2, rad/s
 deg2rad(90); %Axis 3, rad/s
 deg2rad(150); %Axis 4, rad/s
 deg2rad(120); %Axis 5, rad/s
 deg2rad(235)];%Axis 6, rad/s
% end effectors maximum velocity
robot.linear_velmax = 0.0; %m/s, unavailable from datasheet

%base reference system
robot.T0 = eye(4);

Each STL file stores the 3D position of a set of points belonging to the link in
coordinates of its own DH reference system. For example link0.stl has the
position of the base points in coordinates of DH system 0. Link1.stl stores
the position of the points belonging to link1 in coordinates of system 1, etc.
However, the files, link1_base.stl, link2_base.stl… etc store the points in the
base reference system. In addition, the units in this files are millimeters. The
function transform_to_own will help you transform each stl file for each of

the reference systems, and at the same time, transform the scale to meters.
Before executing transform_to_own, you should have created the
robot.DH table before. The function reads the files link0_base.stl,
link1_base.stl… and transforms each link to its own D-H reference system.
Finally, the links are wrote to the same directory as link0.stl, link1.stl, etc. Read
the transform_to_own help for more details.

>> help transform_to_own

Now, execute transform_to_own for the robot. You should obtain the following

>> transform_to_own('abb','IRB6650S_90_390', 1000)

ans =

/Users/arturogilaparicio/Desktop/arte_lib3.0/robots/abb/IRB6650S_90_39
0

Reading link0_base.stlEndOfFile found... Wrote 2608 facets
Reading link1_base.stlEndOfFile found... Wrote 5674 facets
Reading link2_base.stlEndOfFile found... Wrote 5388 facets
Reading link3_base.stlEndOfFile found... Wrote 4764 facets
Reading link4_base.stlEndOfFile found... Wrote 9759 facets
Reading link5_base.stlEndOfFile found... Wrote 5522 facets
Reading link6_base.stlEndOfFile found... Wrote 1476 facets

4 Test everything
Test everything! First, load the robot:

>> robot=load_robot('abb', 'IRB6650S_90_390');
ans =

/Users/arturogilaparicio/Desktop/arte_lib3.0/robots/abb/IRB6650S_90_39
0

Reading link 0
EndOfFile found...
Reading link 1
EndOfFile found...
Reading link 2
EndOfFile found...
Reading link 3
EndOfFile found...
Reading link 4
EndOfFile found...
Reading link 5
EndOfFile found...
Reading link 6
EndOfFile found...

Now, you can use the teach GUI to test your robot. Use the sliders to move the
joints and test that everything is correct.

>> teach

Large robots may require that you modify the axis in the matlab figure. Edit the
parameters.m file and modify the robot.axis variable:

robot.axis=[-3 3 -3 3 0 3];

Set robot.graphical.draw_transparent=1 if you prefer to observe the D-H
systems and a transparent representation of the robot.

>> robot.graphical.draw_transparent=1

5 What’s next?
During the next practical sessions you will modify the parameters.m file to
add more functionality to your robot, solving the inversekinematic problem,
adding dynamics and programming the robot.

	

