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An approximate analytical solution for forced convection of power-law fluids in the entrance region of
parallel-plates ducts with the uniform heat flux boundary condition (H condition) is presented and ana-
lyzed. It is based on the assumption of similarity between the profiles of the velocity and the temperature
in the respective boundary layers and in the fully developed region where exact analytical profiles are
obtained from the differential conservation equations. The axial evolutions of the hydrodynamic and
thermal boundary layers, of the pressure loss, of the skin friction coefficient and of the Nusselt number
are also obtained by applying the integral form of the conservation equations in the entrance region. For a
flow behavior index equal to unity (Newtonian fluid) the predicted values of these parameters are in good
agreement with corresponding data from the literature.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Many fluids in the food and petrochemical industries are non-
Newtonian. In such applications the determination of parameters
such as the friction factor and the Nusselt number is necessary
for the calculation of pressure losses and heat transfer rates or
temperature distributions. This can be achieved either experimen-
tally or theoretically by solving the appropriate transport equa-
tions for typical common geometries (circular ducts, flat ducts,
etc.). An important characteristic of these fluids is that they have
large apparent viscosities. Therefore, laminar flow conditions occur
more often than with Newtonian fluids.

In this paper we analyze the steady-state developing laminar
flow of a power-law fluid with constant properties within a
parallel-plates duct.

For Newtonian fluids this problem has been solved by several
investigators for uniform wall temperature (T condition) and uni-
form heat flux (H condition). The hydrodynamically developing
isothermal flow was solved numerically by Bodoia & Osterle [1]
and analytically by Bhatti & Savery [2]. The corresponding thermal
entrance problem was solved analytically by Sparrow et al. [3] for
the H condition and by Nusselt, Graetz and Lévêque [4] for the T
condition. Their expressions for the temperature and Nusselt num-
bers are given in [4]. According to Shah & Bhatti [4] the most accu-
rate results for the simultaneously developing flow with both
thermal boundary conditions are those of a numerical study by
Hwang & Fan [5] who presented them in tabular form. For Pr ¼ 0
(slug flow) exact analytical expressions for the temperature distri-
bution and the local and average Nusselt numbers are given in [4].

For non-Newtonian fluids this problem has been often studied
for isothermal flows. It has also been addressed for forced convec-
tion with uniform constant wall temperature (T condition). Thus,
Yau & Tien [6] applied the momentum and energy integral method
to determine the simultaneous development of velocity and tem-
perature profiles for a constant property fluid obeying the
Ostwald-de Waels model (power law). The inlet temperature and
velocity profiles were assumed uniform and they obtained approx-
imate expressions for the non-dimensional temperature, velocity
and pressure drop as well as for the Nusselt number. The values
of the constants appearing in these expressions depend on the flow
behavior index and were determined numerically but are not
included in [6]. It should be noted that at x ¼ Lhy the approximate
velocity profile determined by Yaw & Tien does not match the
exact analytically determined fully developed velocity profile.
Richardson [7] extended the Lévêque solution for hydrodynami-
cally developed flow in ducts with constant wall temperature for
the case of a power law fluid. The effect of heat generation by vis-
cous dissipation was included. Matras & Nowak [8] developed a
transformation method which converts the isothermal flow of a
power-law fluid to an equivalent pseudo-Newtonian flow. They
then used the momentum integral method to solve the
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Nomenclature

b half-distance between plates [m]
Cf skin friction coefficient
cp specific heat [J kg�1 K�1]
Dh hydraulic diameter, Dh ¼ 4b [m]
k conductivity [Wm�1 K�1]
Lhy; Lth hydrodynamic, thermal development lengths [m]
L�hy non-dimensional hydrodynamic entrance length,

L�hy ¼ Lhy=ðDhReÞbLth non-dimensional thermal entrance length,bLth ¼ Lth=ðDhRePrÞ
m fluid consistency coefficient [Pa sn]
_m mass flowrate [kg s�1]
n flow behavior index
P pressure [Pa]
P� non-dimensional pressure, P� ¼ ðP0 � PðxÞÞ=ð0:5qU2

0Þ
Pr Prandtl number, Pr ¼ cpmUn�1

0 =ðkDn�1
h Þ

€qw wall heat flux [Wm�2]
Re Reynolds number, Re ¼ qU2�n

0 Dn
h=m

T temperature [K]
T0 inlet temperature [K]
U0 inlet velocity [m s�1]
Umax velocity at y ¼ 0 in the hydrodynamically developed

region [m s�1]

UðxÞ velocity in the core region of the developing flow
[m s�1]

u; v velocity components [m s�1]
x; y Cartesian coordinates [m]
x� non-dimensional axial position x� ¼ x=ðDhReÞ
x̂ non-dimensional axial position x̂ ¼ x=ðDhRePrÞ
z non-dimensional boundary layer thickness z ¼ d=b

Greek letters
D;Dth thickness of core region for hydrodynamic, thermal

problems [m]
d; dth boundary layer thickness for hydrodynamic, thermal

problems [m]
� ¼ ðnþ 1Þ=n
h non-dimensional temperature, h ¼ ðT � T0Þ=ð€qwb=kÞ
q density [kg m�3]
r stress [Pa]

Subscripts
b bulk
fd fully developed
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hydrodynamic entry problem for the pseudo-Newtonian flow and
obtained a single correlation (independent of the flow behavior
index) between the pressure drop and the axial distance which
agrees well, for Re > 500, with experimental data from the litera-
ture. Cotta and Özis�ik [9] used the sign-count method to solve
the thermal entrance region heat transfer for laminar forced con-
vection of power-law fluids inside a circular tube and parallel plate
channel with the T condition. They presented the local Nusselt
number for the entrance region for fluids with values of the flow
behavior index n ¼ 1=3;1;3. Magno et al. [10,11] used the general-
ized integral transform technique to solve numerically the bound-
ary layer equations for simultaneously developing laminar flow of
power-law fluids in a parallel plates channel with the T condition
as well. They presented the bulk temperature and Nusselt number
at different axial positions along the channel for various flow
behavior indices and apparent Prandtl numbers. They noted that
for flow behavior indices greater than unity the convective effects
near the wall diminish and result in lower values for the Nusselt
number in the entrance region. In the thermally developed region
they found that, for a fixed value of the apparent Prandtl number,
the Nusselt number is essentially independent of the flow behavior
index. Gupta [12] applied he transformation method by Matras &
Nowak [8] to hydrodynamically developing isothermal flows of
power-law fluids in circular pipes and parallel-plates ducts and
compared the results of four integral approaches used to solve
the equivalent pseudo-Newtonian flow. Recently, Galanis & Rashidi
[13] obtained a new solution for the Graetz problem extended to
power-law fluids and mass transfer with phase change at the walls.
The temperature and concentration spatial distributions were used
to illustrate the effects of the fluid nature on the axial evolution of
the sensible and latent Nusselt numbers as well as on the local
entropy generation due to velocity, temperature and concentration
gradients.

Our literature search has yielded few studies for forced convec-
tion of power-law fluids in ducts with the H condition (constant
uniform heat flux). Cotta & Özis�ik [14] addressed this problem
for hydrodynamically developed flows in circular tubes and
parallel-plate ducts and derived exact expressions for the local
and average Nusselt numbers. However, to the best of our knowl-
edge, the simultaneously developing hydrodynamic and thermal
flow of power-law fluids in ducts with the H condition has not
been treated. In view of this situation the present study was under-
taken. It presents approximate analytical expressions for the veloc-
ity and temperature distributions in the entrance region of the duct
which match the corresponding exact expressions at Lhy and Lth
respectively. These expressions are used to calculate the axial evo-
lution of the friction coefficient and the Nusselt number for differ-
ent fluids.
2. Statement of the problem

We consider the two-dimensional flow of an incompressible
power-law fluid with constant properties between two parallel
plates (Fig. 1). A constant uniform heat flux is applied at the two
solid-fluid interfaces. At the duct inlet (x ¼ 0) the velocity and tem-
perature of the fluid are constant and uniform (respectively U0 and
T0 with the former parallel to the plates). Therefore this is a steady-
state forced convection problem, i.e. the hydrodynamic field
does not depend on the temperature. In Fig. 1 d and dth are the
Fig. 1. Schematic configuration of the problem under study.
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hydrodynamic and thermal boundary layer thicknesses respec-
tively; D and Dth are the distances between the edge of these two
boundary layers and the symmetry plane at y ¼ 0.

3. Solution of the hydrodynamic field

3.1. Hydrodynamically developed region

The equations of continuity and motion in the hydrodynami-
cally developed region (x > Lhy) where v ¼ 0 are

q
@u
@x

� �
¼ 0 ð1Þ

@P
@x

þ @ryx

@y
¼ 0 ð2Þ

@P
@y

� �
¼ 0 ð3Þ

For a power-law fluid

ryx ¼ m
@u
@y

� �n

ð4Þ

Therefore u does not depend on x; P does not depend on y and
@P=@x is equal to a constant. By replacing Eq. (4) in Eq. (2), integrat-
ing the resulting expression with respect to y and taking into
account the no-slip condition (u ¼ 0 at y ¼ b) we obtain the follow-
ing expression for the velocity profile in the hydrodynamically
developed region

uðx P Lhy; yÞ ¼ 1
m

dP
dx

� �1=n n
nþ 1

� �
ðb� � y�Þ ð5aÞ

The velocity profile is symmetrical with respect to the plane
y ¼ 0 where it reaches its maximum value. Finally by applying
the integral form of mass conservation between x ¼ 0 and x ¼ Lhy
we obtain the following two relations:

uðx P Lhy; yÞ
Umax

¼ 1� y
b

� ��
ð5bÞ

Umax

U0
¼ 2nþ 1

nþ 1
ð5cÞ

These relations are identical to those obtained by Yau & Tien [6].
For a Newtonian fluid (n ¼ 1) they reduce to the well known
results for plane Poiseuille flow.

3.2. Hydrodynamically developing region

Following previous studies [6,15] it is assumed that in the
developing region (Lhy P x P 0) the flow field consists of a bound-
ary layer of thickness dðxÞ and a core of thickness D ¼ b� d.
Extending the approach adopted by Campbell & Slattery [15]
who restricted their analysis to Newtonian fluids we assume that
the velocity is

uðx; yÞ ¼ UðxÞ; for D P y P 0 ð6aÞ
and

uðx; yÞ
UðxÞ ¼ 1� y� D

b� D

� ��

; for b P y P D ð6bÞ

These expressions satisfy the matching condition at y ¼ D.
In order to evaluate the core velocity UðxÞ and the boundary

layer thickness dðxÞ, or its complement DðxÞ, we apply the integral
forms of the continuity and momentum equations between the
duct inlet (x ¼ 0) and an arbitrary position in the entrance region
(0 < x 6 Lhy) and thus obtain the following two relations:

UðxÞ
U0

1� n
2nþ 1

1� D
b

� �� �
¼ 1 ð7Þ

P0 � PðxÞ
1
2qU

2
0

� nþ 1
n

� �n 2m½UðxÞ�n�2

bnqð1� D
bÞ

n
UðxÞ
U0

� �2 x
b

¼ 2
D
b

UðxÞ
U0

� �2

þ 4ðnþ 1Þ2
ð3nþ 2Þð2nþ 1Þ 1� D

b

� �
UðxÞ
U0

� �2

� 2 ð8Þ

At the duct inlet (x ¼ 0) where D ¼ b (or, equivalently, d ¼ 0) Eq.
(7) reduces to UðxÞ ¼ U0 and thus satisfies the inlet condition. Fur-
thermore, at x ¼ Lhy where D ¼ 0 (or, equivalently, d ¼ b) it gives
UðxÞ ¼ ð2nþ 1Þ=ðnþ 1Þ ¼ Umax and Eq. (6b) becomes identical to
Eq. (5b) for all values of the flow behavior index. Thus the assumed
profile is more appropriate than the 4th order polynomial used by
Yau & Tien [6] which reduces to the exact analytical profile at
x ¼ Lhy only for three particular values of the flow behavior index
(n ¼ 1;1=2 and 1=3).

Eqs. (7) and (8) relate the two unknown functions UðxÞ and DðxÞ
but also include the non-dimensional pressure drop between the
two sections under consideration. A third equation is therefore
required to close the system and this is obtained by applying the
differential equation of motion in the x-direction at the symmetry
axis (y ¼ 0). Because of symmetry the transversal velocity compo-
nent at y ¼ 0 is zero. Furthermore in the core the velocity is inde-
pendent of y. Therefore at y ¼ 0 the stress tensor is identically zero.
Integration of this simplified form of the equation of motion
between the two sections under consideration leads to the Ber-
noulli relation for frictionless flow. When Eqs. (6a), (6b) for the
velocity profile are replaced in the Bernoulli relation we obtain
the following:

P0 � PðxÞ
1
2qU

2
0

¼ UðxÞ
U0

� �2

� 1 ð9Þ

It should be noted that as reported by Campbell & Slattery [15]
the Bernoulli equation was similarly used by Schiller who studied
the entry hydrodynamic problem for Newtonian fluids.

By combining Eqs. (7)–(9) we obtain the following explicit rela-
tion between the non-dimensional axial position and the non-
dimensional boundary layer thickness:

x� ¼ 2�2n�3 n
ðnþ 1Þ
� �n

znþ1 1� n
2nþ 1

z
� �n�2

� 2nðnþ 1Þ
ð3nþ 2Þð2nþ 1Þ þ

n
2nþ 1

� �2

z

" #
ð10Þ

For any given value of the flow behavior index it is therefore
possible to choose a value of the non-dimensional boundary layer
thickness and to calculate the corresponding axial position from
Eq. (10), the corresponding core velocity from Eq. (7) and the cor-
responding pressure loss from Eq. (9). In particular, by setting z ¼ 1
(i.e. d ¼ b) we obtain the following expression for the non-
dimensional hydrodynamic development length:

L�hy ¼
nnþ1ð7n2 þ 8nþ 2Þ

22nþ3ðnþ 1Þ2ð3nþ 2Þð2nþ 1Þn
ð11Þ

Furthermore, since the velocity profile in both the developing
and hydrodynamically developed regions is known (see Eqs. (5b)
and (5c), and Eqs. (6a) and (6b) respectively) it is possible to calcu-
late the corresponding wall shear stress and the skin friction coef-
ficient from
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Cf Re ¼ 2rw

qU2
0

 !
Re ¼ 2Dh

njdu=dyjn
Un

0
ð12aÞ

Thus, in the hydrodynamically developed region

Cf Re ¼ 2
2nþ 1

n

� �n Dh

b

� �n

ð12bÞ

and in the developing region

Cf Re ¼ nþ 1
n

� �n 22nþ1

ðd=bÞn 1� n
2nþ1 ðd=bÞ

h in ð12cÞ
Fig. 3. Evolution of the axial velocity component for Newtonian fluid at three
transversal positions.
3.3. Results for the hydrodynamic field

Figs. 2 and 3 compare the predictions of the present approxi-
mate analytical solution for n ¼ 1 (Newtonian fluid) with the
numerical results by Bodoia & Osterle [1] which are the most pre-
cise according to Shah & Bhati [4]. Fig. 2 shows the velocity profiles
at three axial positions while Fig. 3 shows the axial evolution of the
velocity for three transversal positions. In all cases the agreement
between the present and previous results is very good (the differ-
ences for all x� are smaller than 4% at y ¼ 0 and less than 10% at
y=b ¼ 0:9) and improves as the distance from the inlet increases
(at x� ¼ 0:125 the differences for all y are less than 1%). The skin
friction coefficient for n ¼ 1 at x� ¼ L�hy can be calculated from Eq.
(12b) or (12c) (by setting d ¼ b) and is

Cf Re ¼ 24 ð13Þ
This value is identical to the exact analytical result. These prelimi-
nary comparisons indicate that the present model gives satisfactory
results for the hydrodynamic field of Newtonian fluids.

For non-Newtonian fluids the present expression for the fully
developed velocity profile (Eqs. (5b) and (5c)) is identical to that
given elsewhere [6,13,16]. Comparisons of other important predic-
tions of the present solution for n – 1 with the corresponding
results calculated by Yau & Tien [6] and by Magno et al. [10] are
presented and discussed in the following paragraphs.

Fig. 4 shows the effect of the flow behavior index on the non-
dimensional hydrodynamic development length and compares
the present results from Eq. (11) with other published data. Qual-
itatively the present predictions agree with those by Yau & Tien [6].
Fig. 2. Velocity profiles for Newtonian fluid at different axial positions.



Fig. 4. Hydrodynamic entrance length versus the flow behavior index.

Fig. 5. Evolution of the centerline axial velocity component.

Fig. 6. Evolution of the non-dimensional hydrodynamic boundary layer thickness.
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They both indicate that Lhy is maximum for n ¼ 0:4. However, the
values predicted by these two models differ considerably. Since
the present result for Newtonian fluids is closer to the value calcu-
lated by Bodoia & Osterle [1] the present model is deemed to be
more accurate than the one by Yau & Tien [6]. It should be noted
that the values of Lhy calculated by Magno et al. [10] are much
higher than those presented in Fig. 4. Thus, for example, their value
for n ¼ 0:75 is approximately 23 times higher than the correspond-
ing one by Yau & Tien [6].

Fig. 5 presents the evolution of the axial velocity component at
the symmetry axis (y ¼ 0) for three values of the flow behavior
index and compares the present results with corresponding pub-
lished data. Qualitatively the agreement is always good. It is noted
however that the predictions by Yau & Tien [6] as well as those by
Magno et al. [10] are always higher than those of the present
model. For Newtonian fluids (n ¼ 1) the values predicted by Magno
et al. [10] are in better agreement with those calculated by Bodoia
& Osterle [1]. However the present predictions are always within
4:1% of those by Bodoia & Osterle [1].

Fig. 6 shows the evolution of the non-dimensional boundary
layer thickness for three values of the flow behavior index. The pre-
sent results for n ¼ 0:5 are quite similar to those obtained by Yau &
Tien [6] although their results indicate a thicker boundary layer
and a shorter hydrodynamic development length (see also Fig. 4).
It is interesting to note that the boundary layer thickness at any
given axial position does not vary monotonically with the flow
behavior index. It is thinnest for n ¼ 0:5 and thickest for n ¼ 3.

Finally, Fig. 7 shows the evolution of the dimensionless pressure
drop for three values of the flow behavior index. Qualitatively the
predictions of the present model agree with previously published
results and confirm the fact that the pressure drop increases with
the flow behavior index [6]. However the present results for n ¼ 1
(Newtonian fluid) underestimate the numerical predictions of Bod-
oia & Osterle [1] by almost 20%. This is due to the simplifications
associated with the application of the Bernoulli equation (see dis-
cussion by Campbell & Slattery [15]) who used an integral form of
the energy equation instead of the Bernoulli equation in their study
of isothermal flow of a Newtonian fluid in the entrance region of a
circular duct; in the present case the integral form of the energy
equation is used for the calculation of the thermal field, see Sec-
tion 4b). Despite this problem we believe that the explicit analyt-
ical expressions of the present model constitute a valid tool for
preliminary calculations of non-Newtonian flow characteristics.
4. Solution of the thermal field

As in previous studies [1,5,6,11,13] it is assumed that longitudi-
nal conduction of heat and the effects of viscous dissipation are



Fig. 7. Evolution of the non-dimensional pressure drop.

Fig. 9. Temperature profiles at three axial positions (x̂1 ¼ 0:938� 10�3;

x̂2 ¼ 3:151� 10�3; x̂3 ¼ 7:526� 10�3) in the thermally developing region for slug
flow.

Fig. 10. Evolution of the Nusselt number for slug flow.
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negligible. Hence, the energy equation in the fully developed
region is

k
@2T
@y2

¼ qufdcpA ð14aÞ

where, for the H condition

A ¼ @T
@x

���� ����
fd

¼ dTw

dx

���� ����
fd

¼ dTb

dx

���� ����
fd

ð14bÞ

and

dTb

dx
¼ 2€qw

_mcp
¼ €qw

qcpU0b
ð14cÞ

Therefore the energy equation in the fully developed region
becomes

k
@2T
@y2

¼ ufd€qw

bU0
ð14dÞ

Integration of Eq. (14c) and application of the condition at the
inlet where Tb ¼ T0 gives the following expression for the bulk
temperature

Tb ¼ T0 þ
€qwx

qcpU0b
ð15aÞ
Fig. 8. Evolution of the thermal boundary thickness for slug flow.
or in non-dimensional form

hb ¼ 16x̂ ð15bÞ
In the thermally developing region we assume, analogously to

the treatment in Section 3, that the temperature depends on the
distance from the centerline within the boundary layer but is uni-
form in the core region (jyj 6 Dth). In fact, in order to ensure that
this profile matches the imposed value of the inlet temperature,
the fluid temperature within the thermal core region is everywhere
equal to T0. At the centerline in particular the fluid temperature
remains equal to T0 up to x ¼ Lth and then increases linearly as
indicated by the combination of Eqs. (14b) and (14c).

In the following three subsections the solution of Eq. (14d) as
well as the temperature distribution in the thermally developing
region is presented for the following three particular cases since
we were not able to obtain a general solution:

� slug flow for which ufd ¼ U0 (i.e. Lhy � Lth),
� hydrodynamically developed flow for which ufd is given by Eq.
(5) (i.e. Lhy � Lth) and



Fig. 11. Evolution of the wall temperature in the thermal entrance region for
hydrodynamically developed flow of a Newtonian fluid.

Fig. 12. Evolution of the Nusselt number in the thermal entrance region for
hydrodynamically developed flow of a Newtonian fluid.

Fig. 13. Evolution of the boundary layer thickness for hydrodynamically developed
flow.
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� flows with identical hydrodynamic and thermal boundary layer
thicknesses (d ¼ dth).

It should be noted that not all the results presented in the pre-
vious section on the hydrodynamic problem are used in the solu-
tion of these thermal problems due to the simplifying
assumptions inherent in each of these cases.

As mentioned before, the thermal entrance problem for flow
between parallel plates with the H condition has not been treated
in the literature. Therefore comparisons of the proposed solutions
with previously published results are only given for the case of
Newtonian fluids (n ¼ 1) and for the case of hydrodynamically
developed flow for which such results are available.
4.1. Slug flow

As pointed out by Shah & Bhatti [4] when the Prandtl number is
smaller than unity the temperature profile develops faster than the
velocity profile. In the limiting case with Pr ¼ 0 the velocity
profile remains constant (slug flow) while the temperature profile
develops. In this case none of the results of Section 3 regarding the
hydrodynamic field are used since ufd ¼ U0. With this condition the
energy equation in the developed region (Eq. (14d)) becomes

k
@2T
@y2

 !
¼ €qw

b
ð16aÞ

This can be readily integrated and by applying the boundary condi-
tion at y ¼ b where kð@T=@yÞ ¼ €qw as well as the expression for @T=x
resulting from the combination of Eqs. (14b) and (14c) we obtain

kTðx P Lth; yÞ ¼
€qwb
2

y
b

� �2
þ k€qw

qcpu0b
xþ C ð16bÞ

The value of C is obtained by applying Eq. (16b) at (x ¼ Lth; y ¼ 0)
where, according to the argument in the paragraph following Eq.
(14d), the fluid temperature is equal to T0. Thus

Tðx P Lth; yÞ ¼ T0 þ
€qwb
2k

� �
y
b

� �2
þ €qwðx� LthÞ

qcpU0b
ð16cÞ

or in non-dimensional form

hðx̂; yÞ ¼ 1
2

y
b

� �2
þ 16ðx̂� bLthÞ ð16dÞ

In order to obtain the expression for the temperature distribu-
tion in the developing region we assume, analogously to the treat-
ment of the hydrodynamic problem, that in the y-direction its
distribution in the thermal boundary layer is similar to that in
the developed region. Thus, the expression for the fluid tempera-
ture in the developing region is

Tðx; yÞ ¼ T0 or; equivalently; hðx̂; yÞ ¼ 0 for 0 6 y 6 Dth ð17aÞ

hðx̂; yÞ ¼ 1
2

y� Dth

b� Dth

� �2

1� Dth

b

� �
for Dth 6 y 6 b ð17bÞ

This formulation satisfies all the conditions at (0 6 x 6 Lth; y ¼ Dth)
and becomes identical to the corresponding expression for the
developed region (Eq. (16d)) at x ¼ Lth where Dth ¼ 0.

The thermal entrance length can be obtained by applying the
integral form of the energy equation between x ¼ 0 and x ¼ Lth

2Lth€qw ¼ 2qcp
Z b

0
u½Tðx ¼ Lth; yÞT0�dy ð18aÞ
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When the expression for the temperature, Eq. (16c), is replaced and
the integral is evaluated we obtain the following result for the case
under consideration

Lth
Dh

¼ RePr
96

	 0:0104RePr ð18bÞ

This result differs by less than 10% from the corresponding one for
thermally developing flow of Newtonian fluids [4].

Finally, in order to obtain a relation between the thermal
boundary layer thickness and the axial position we apply the inte-
gral form of the energy equation between x ¼ 0 and x < Lth

2x€qw ¼ 2qcp
Z b

0
u½Tðx; yÞT0�dy ð19aÞ

When the expression for the temperature, Eq. (17), is replaced and
the integral is evaluated we obtain the following result for the case
under consideration

x̂ ¼ ðdth=bÞ2
96

ð19bÞ

This expression for the axial variation of the thermal boundary layer
is compatible with Eq. (15b) (since Eq. (19a) is the same as Eq.
(14c)) and with Eq. (18b) (since dth ¼ b at x ¼ Lth).
Fig. 14. Non-dimensional temperature profiles at four a
It is interesting to note that with this standard non-dimensional
formulation the temperature profile as well as the thermal
entrance length and the boundary layer thickness are all indepen-
dent of the flow behavior index for the case of slug flow. Fig. 8
shows the relation between dth=b and x̂, Fig. 9 shows the non-
dimensional temperature profile at different axial positions and
Fig. 10 shows the axial evolution of the Nusselt number for the par-
ticular case under consideration. The latter was obtained from the
following relation

Nu ¼ €qwDh

kðTwTbÞ ¼
4

hw � hb
ð20Þ

where the wall temperature is obtained by setting y ¼ b in Eq. (17b)
and the bulk temperature is given by Eq. (15). Figs. 9 and 10 show
that the present predictions are in good agreement with corre-
sponding results quoted by Shah & Bhatti [4, section 3.3.4] for a
Newtonian fluid with Pr ¼ 0. In particular, according to the present
solution for slug flow the value of the Nusselt number in the ther-
mally developed region is 12, i.e. identical to the corresponding
value in the literature [4, p. 3–44]. On the other hand, the thermal
entrance length predicted by Eq. (18b) is only 65% of the corre-
sponding value for a Newtonian fluid with Pr ¼ 0.
xial positions for hydrodynamically developed flow.



Fig. 15. Evolution of the Nusselt number for hydrodynamically developed flow.
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4.2. Hydrodynamically developed flow

As pointed out by Shah & Bhatti [4] this assumption is reason-
able for fluids with high Prandtl numbers for which the velocity
profile develops much more rapidly than the temperature profile.
In the limiting case with Pr ¼ 1 it is then acceptable to consider
that the velocity profile throughout the flow field is given by Eq.
(5). Therefore the energy equation in the thermally developed
region (Eq. (14d)) becomes

k
@2T
@y2

¼ 2nþ 1
nþ 1

1� y
b

� �nþ1
n

� �
q00
w

b
ð21aÞ

This is integrated and after applying the boundary condition at
y ¼ b where kð@T=@yÞ ¼ €qw as well as the condition resulting from
Eq. (14b) we obtain the following expression

kTðx P Lth; yÞ ¼ €qwb
2nþ 1
2ðnþ 1Þ

y
b

� �2
� €qwb

n2

ðnþ 1Þð3nþ 1Þ
y
b

� �3nþ1
n

þ k€qw

qcpU0b
xþ C ð21bÞ

The value of the constant C is evaluated by noting that Tðx ¼ Lth;0Þ
is equal to T0. Therefore

Tðx P Lth; yÞ ¼ T0 þ
€qwbð2nþ 1Þ
2kðnþ 1Þ

y
b

� �2
� €qwbn

2

kðnþ 1Þð3nþ 1Þ
y
b

� �3nþ1
n

þ €qwðx� LthÞ
qcpU0b

ð21cÞ

The corresponding non-dimensional expression is

hðx̂ P bLth; yÞ
¼ 2nþ 1

2ðnþ 1Þ
y
b

� �2
� n2

ðnþ 1Þð3nþ 1Þ
y
b

� �3nþ1
n þ 16ðx̂� bLthÞ ð21dÞ

The corresponding temperature profile in the thermally devel-
oping region is again obtained by assuming that in the y-
direction its distribution in the thermal boundary layer is similar
to that in the developed region. Thus, the expression for the fluid
temperature in the developing region is

Tðx; yÞ ¼ T0 or; equivalently; hðx̂; yÞ ¼ 0 for 0 6 y 6 Dth ð22aÞ

hðx̂; yÞ ¼ 1� Dth

b

� �
1

nþ 1

� 2nþ 1
2

y� Dth

b� Dth

� �2

� n2

ð3nþ 1Þ
y� Dth

b� Dth

� �3nþ1
n

" #
ð22bÞ

The thermal entrance length is again obtained by applying the
integral form of the energy equation between x ¼ 0 and x ¼ Lth
(Eq. (18a)). The integral on the right hand side of this equation is
in this case more complicated since both the velocity and temper-
ature depend on the y-coordinate. The result of the lengthy opera-
tions which are not presented here is

bLth ¼ ð2nþ 1Þð24n2 þ 13nþ 2Þ
96ð3nþ 1Þð4nþ 1Þð5nþ 2Þ ð23Þ

As before, in order to obtain the relation between the thickness
of the thermal boundary layer and the axial position we apply the
energy equation between x ¼ 0 and x < Lth (Eq. (19a)). The result of
the corresponding lengthy operations is

x̂ ¼ 2nþ 1
16ðnþ 1Þ

dth
b

� �
I0 ¼ 2nþ 1

16ðnþ 1Þ
dth
b

� �
I0A � ðI0B1 þ I0B2Þ
	 
 ð24Þ
where

I0A ¼
Z b

0

2nþ 1
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� �2

dy�
Z b

0

� n2
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� �3nþ1
n

dy

¼ 1� Dth

b

� �
2nþ 1
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ð25aÞ
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Fig. 16. Evolution of the thermal boundary thickness for d ¼ dth .

Fig. 17. Non-dimensional temperature profiles at four axial positions for d ¼ dth.

Fig. 18. Evolution of the Nusselt number for d ¼ dth .
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Fig. 19. Evolution of the boundary layer thickness for the three cases under study.
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This last integral can be integrated analytically only if
n ¼ 1;0:5; 0:333;0:25, . . ., 1=N where N is an integer. The corre-
sponding expression is

I0B2 ¼ � n2

ðnþ 1Þð3nþ 1Þ I
�
1 ð25dÞ

The value of I�1 is calculated by applying the following recurrent
expression for j ¼ N þ 2 to j ¼ 1 and noting that I�Nþ3 ¼ 0

I�j ¼
n

1þ ð3þ jÞn 1� Dth

b

� � j

� 1þ ð2� jÞn
1þ ð3þ jÞn I

�
jþ1 ð25eÞ

For other values of n the integral I0B2 must be evaluated
numerically.

This general solution for the thermally developing flow is
applied to the special case with n ¼ 1 in order to compare its pre-
dictions with the corresponding results for Newtonian fluids
obtained by Sparrow et al. [3]. Their expression for the non-
dimensional temperature distribution (after adjustment to account
for the difference in its definition from the present one) is

hðx̂; yÞ ¼ 3
4

y
b

� �2
� 1
8

y
b

� �4
þ 16 x̂� 39

4480

� �
þ Hðx̂; y=bÞ ð26aÞ

where

Hðx̂; y=bÞ ¼
X1
1

CNYN
y
b

� �
expð�ð32=3Þx̂b2

NÞ ð26bÞ

It must be noted that values of the eigenfunctions YN are only avail-
able for y ¼ b [4]. Therefore this expression can only be used to
obtain the wall temperature and the Nusselt number (since the bulk
temperature is again given by Eq. (20)).

It is interesting to note that the constant 39=4480 is the value of
the non-dimensional thermal entrance length predicted by Eq. (23)
for n ¼ 1. However, this does not prove that it is also the value ofbLth according to the solution by Sparrow et al. [3]. For this to be
true the value of Hðx̂ ¼ 39=4480; yÞ must be zero and the temper-
ature at x̂ ¼ 39=4480 calculated by Eq. (26) must be identical to
that predicted by the exact analytical expression (Eq. (21d)). How-
ever, Hðx̂ ¼ 39=4480; y ¼ 1Þ is not zero (it is �0:040) and the non-
dimensional wall temperature predicted by Eq. (26) is approxi-
mately 6:5% lower than the corresponding one predicted by Eq.
(21d). These observations suggest that according to the solution
by Sparrow et al. [3] the non-dimensional thermal entrance length
is slightly higher than 39=4480 (	 0:0087). Indeed, the value of this
parameter given in [4] is 0:0115439.

Further comparisons of the present solution with that by Spar-
row et al. [3] are presented in Figs. 11 and 12. Fig. 11 shows that
the present estimates of the wall temperature are everywhere
somewhat higher than the corresponding predictions from [3].
The biggest difference occurs at x̂ ¼ 0:008705 where our value is
6:9% higher. The asymptote shown in Fig. 11 corresponds to the
constant temperature gradient in the developed region (see Eq.
(14b)). Fig. 12 shows that the present estimates of the Nusselt
number are always somewhat lower. The biggest difference occurs
at x̂ ¼ 0:008705 where our value is 8:3% lower. As a conclusion of
these comparisons it can be said that the differences between
the predictions of the two models are not significant and do not
invalidate the proposed approximate solution which has the
advantage of being more general.

Figs. 13–15(b) illustrate some of the results for the hydrody-
namically developed flow. Contrary to the case of slug flow these
results depend on the flow behavior index. Thus Fig. 13 shows that
the thermal boundary thickness increases with n. Fig. 14 shows the
non-dimensional temperature profiles at four axial positions and
indicates that at any given position this temperature increases
with n. Fig. 15a compares the axial evolution of the Nusselt num-
ber predicted by the present model with corresponding results
by Cotta & Özis�ik [14] and provides further proof of their validity
and precision. Finally, Fig. 15(b) shows the evolution of the Nusselt
number (evaluated as explained at the end of Section 4.1) which
decreases as n increases. The value of the Nusselt number in the
developed region is 9:70;8:76;8:38;7:90 and 7:59 for a flow behav-
ior index of 0:2;0:5;0:8;2 and 10 respectively.
4.3. Simultaneously developing flow with dðxÞ ¼ dthðxÞ

As indicated by Shah & Bhatti [4] this equality is approached for
fluids for which the Prandtl number is close to unity. It should be
noted that the assumed equality between the hydrodynamic and
thermal boundary layer thicknesses implies that Lhy ¼ Lth.

In this case the velocity profile is given by Eqs. (5b), (5c) in the
developed region and by Eqs. (6a), (6b), (7) in the developing
region. The integral form of the momentum equation (Eq. (8)) as
well as the expressions of the skin friction coefficient, Eqs. (12b)
and (12c), are also valid. On the other hand, the Bernoulli equation
(Eq. (9)) whose application has been questioned by Campbell &
Slattery [15] is not used. Therefore Eqs. (10) and (11) which give
the axial variation of the hydrodynamic boundary layer thickness
and the hydrodynamic entrance length do not apply in this case.

Under these conditions the energy equation in the developed
region, Eq. (14d), is identical to the corresponding expression for
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the case of hydrodynamically developed flow (Eq. (21a)). Therefore
the temperature distribution in the developed region is again given
by Eq. (21d) and as a consequence the corresponding temperature
distribution in the developing region is again given by Eq. (22a) in
the core and by Eq. (22b) in the boundary layer. Hence the expres-
sion for Lhy ¼ Lth, obtained by applying the energy equation
between x ¼ 0 and x ¼ Lhy ¼ Lth (Eq. (18a)), is again given by Eq.
(23).

The only difference in the thermal fields between the present
case and the one treated in Section 4.2 is the relation between
the boundary layer thickness and the axial position which is
obtained as before by applying the integral form of the energy
equation between x ¼ 0 and x < Lth (Eq. (19a)). It is due to the dif-
ference between the corresponding velocity distributions which in
the present case depends on both space coordinates while in the
previous one it is independent of the axial position. The result of
the integration of Eq. (19a) for the present case is

x̂ ¼ ðd=bÞ2
1� n

2nþ1 ðd=bÞ
� ðnþ 1Þð24n2 þ 13nþ 2Þ
96ð3nþ 1Þð4nþ 1Þð5nþ 2Þ ð27Þ
Fig. 20. Comparison of temperature profi
Figs. 16–18 illustrate some of the results for the present case. As
in the case of hydrodynamically developed flow and contrary to
the case of slug flow the results for the present case depend on
the flow behavior index. Fig. 16 shows that the boundary layer
develops faster as this index increases. Therefore for a given value
of x̂ the boundary layer thickness increases with n while the
entrance length decreases as n increases. The values of Lhy ¼ Lth
are 0:009385;0:008951;0:008775;0:008543 and 0:008380 for
n ¼ 0:2;0:5;0:8;2 and 10 respectively. Fig. 17 shows the non-
dimensional temperature profiles at four axial positions in the
developing region. It indicates the transition between the core
region where Tðx; yÞ ¼ T0, or equivalently h ¼ 0, and the boundary
layer. It also illustrates the fact that at any given position within
the boundary layer the non-dimensional temperature increases
with the flow behavior index. Finally, Fig. 18 shows the evolution
of the Nusselt number for different values of the flow behavior
index. As usual Nu decreases rapidly as x̂ increases. As the flow
behavior index increases the value of Nu decreases. Its values in
the developed region are 9:70;8:76;8:38;7:90 and 7:59 (the same
as in the hydrodynamically developed case) for n ¼ 0:2;0:5;0:8;2
and 10 respectively.
les for the three cases under study.
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5. Comparisons between the different thermal cases

Fig. 19 compares the evolution of the thermal boundary layer
thickness predicted by the three cases presented in Section 4 for
two values of the flow behavior index. It shows that at a given axial
position its value is smallest in the case of slug flow. As a result the
corresponding thermal entrance length is the longest. On the other
hand the thermal boundary layer grows faster for hydrodynami-
cally developed flow than for flow with dth ¼ d even though these
two cases have the same thermal entrance length. These observa-
tions are valid for both values of the flow behavior index. The rea-
son why dth is smallest in the case of slug flow is due to the fact that
in this case the velocity near the walls is highest; therefore a
greater fraction of the heat added from the walls is in this case con-
vected downstream and the fraction contributing to the local tem-
perature increase is the smallest. On the other hand, in the case of
hydrodynamically developed flow the hydrodynamic boundary
layer in the thermal entrance region is thicker than in the case with
dth ¼ d; therefore in the case of hydrodynamically developed flow
the fraction of the heat added from the walls which is convected
downstream is smaller and as a result the fraction contributing
to the local temperature increase is greatest.

Fig. 20 compares the corresponding temperature profiles at two
axial positions for two values of the flow behavior index and con-
firms the arguments presented in the previous paragraph. It shows
that for both values of n and at both axial positions the tempera-
ture of the fluid is lowest in the case of slug flow and highest in
the case of hydrodynamically developed flow (the latter is more
obvious at x̂ ¼ 2:1� 10�3, i.e. close to the inlet, but is also true at
x̂ ¼ 6:7� 10�3). These observations confirm the arguments regard-
ing the fraction of the heat added from the walls which contributes
to the increase of the local fluid temperature.

6. Conclusion

The proposed approximate analytical solution of the flow of
power-law fluids in the entrance region of parallel-plates ducts
provides relatively simple algebraic expressions for the velocity
distribution, for the boundary layer thickness, for the hydrody-
namic entrance length, for the pressure loss and for the skin fric-
tion coefficient in terms of the flow behavior index and the space
coordinates. It gives good estimates of the velocity and hydrody-
namic entrance length in the special case of a flow behavior index
equal to unity (Newtonian fluid).

The thermal problem in the same geometry with the H condi-
tion has been solved for three special cases: slug flow, hydrody-
namically developed flow and flow with equal boundary layer
thicknesses for the hydrodynamic and thermal fields. It provides
relatively simple algebraic expressions for the temperature distri-
bution, for the boundary layer thickness and for the Nusselt num-
ber in terms of the flow behavior index and the space coordinates.
It gives good estimates of the Nusselt number and the thermal
entrance length in the special case of a flow behavior index equal
to unity (Newtonian fluid).
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