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images. In the field of mobile robot applications, SGD techniques have never been evalu-
ated with information gathered by visual sensors. This work proposes a SGD algorithm
within a SLAM system which makes use of the beneficial characteristics of a single
omnidirectional camera. The nature of the sensor has led to a modified version of the

I]&ggﬁz (f'f):botics standard SGD to adapt it to omnidirectional geometry. Besides, the angular unscaled obser-
Visual SLAM vation measurement needs to be considered. This upgraded SGD approach minimizes the
Omnidirectional images non-linear effects which impair and compromise the convergence of traditional estimators.
SGD Moreover, we suggest a strategy to improve the convergence speed of the SLAM solution,

which inputs several constraints in the SGD algorithm simultaneously, in contrast to
former SGD approaches, which process only constraint independently. In particular, we
focus on an efficient map model, established by a reduced set of image views. We present
a series of experiments obtained with both simulated and real data. We validate the
new SGD approach, compare the efficiency versus a standard SGD and demonstrate the
suitability and the reliability of the approach to support real applications.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

In the field of mobile robot applications, the problem of SLAM is a crucial factor, due to the need for a complete repre-
sentation of the environment, especially for navigation purposes. The objective of building a map entails considerable com-
plexity, since the map has to be built incrementally, while, the localization of the robot inside it needs to be calculated
simultaneously. Generating a reliable and coherent map is even more challenging and laborious when sensor data is affected
by noise, and this directly impairs the simultaneous estimation of the map and the path followed by the robot.

To date, SLAM approaches have been differentiated according to several factors, such as the way to estimate the repre-
sentation of the map, the main algorithm for computing a solution and the kind of sensor to extract information from the
environment. For instance, several map representations were obtained thanks to the extensive use of laser data range
and sonar [8]. In this area, maps were principally generated following two representation models [16,11], corresponding,
respectively, to 2D occupancy grid maps based on raw laser and 2D landmark-based maps focused on the extraction of
features, described from laser data measurements.
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More recently, the tendency has turned to the use of visual information by means of digital cameras. Many applications
benefit from the use of these sensors, whose characteristics outperform previous sensors such as lasers in terms of the
amount of usable information from the environment for building the map. For instance, the approaches that use two cali-
brated cameras, known as stereo-pairs, in order to extract a set of 3D visual landmarks determined by a visual description
[5]. Other approaches simply exploit a single camera to estimate 3D visual landmarks [2,10]. They initialize the coordinates
of each 3D landmark relying on the inverse depth parametrization, since there exists a scale uncertainty about the distance
to each landmark which cannot be directly retrieved with a single camera. Omnidirectional cameras have also been used
alone [15], and some others have even arranged two omnidirectional images, in order to take the best advantage of the wider
field of view provided by these cameras.

As important as the kind of sensor and the map representation is the estimation algorithm for a SLAM scheme. It defines
the core of the system, as it is responsible for the ultimate solution. Most extensively used are online methods such as EKF
[4], Rao-Blackwellized particle filters [11] and offline algorithms, such as, Stochastic Gradient Descent [7].

The combination of data sensors, map representation and the core of the algorithm therefore determines the final effec-
tiveness of a SLAM which seeks reliability and suitability for realistic applications. Great efforts have been made in this field.
For example, certain approaches [4,5,3,2,14] have concentrated on estimating of the position of a set of 3D visual landmarks
in a main reference system, while, simultaneously, building the map. The main idea lies in the capability of an EKF filter to
converge the estimation to an appropriate solution for the SLAM problem. In this same line of EKF usage, [18] has recently
proposed a distinctive map representation consisting of a reduced set of image views, determined by their position and ori-
entation in the environment. Such a technique establishes an estimation of a state vector which includes the map and the
current localization of the robot at each timestep k. The estimation of the transition between states at k and k + 1 considers
the wheel’s odometry as initial estimate, but also the observation measurements gathered by sensors.

Generally, EKF methods are troublesome in the presence of non-linear errors as they have difficulties in maintaining the
convergence of the estimation. This situation normally appears in presence of Gaussian errors introduced by the observation
measurement, which usually causes data association problems [12]. A visual observation model, such as the omnidirectional,
is susceptible to introduce non-linearities and is thus responsible for this kind of errors. By contrast, an offline algorithm such
as SGD [ 1] may deal with this issue caused by non-linearity effects. Similarly, in [20,19,17], parallel approaches are presented
to maintain stability in non-linear contexts.

Regarding the basic goals of this study, we present a new visual SLAM approach based on omnidirectional images and
sustained by a SGD solver algorithm which helps overcome the harmful effects caused by errors. To achieve this, and
depending on the nature of the problem, different aspects have to be taken into consideration so that the research is con-
ducted towards the achievement of new contributions and advantages compared to former applications based on the stan-
dard SGD algorithm [13,7,6,1]. Firstly, a map model has to be adapted to the omnidirectional observation. Along the same
line, the standard SGD has to be redesigned to be able to work with the omnidirectional geometry of the images, but also
considering the nature of the measurement, which lacks scale. This implies that the solution to the problem is not a trivial
one. So, the difference between our approach, which uses a different geometrical environment, and all the previous SGD
applications, which consider data range observations in a Cartesian measurement system, should be noted. Next, to improve
the efficiency of the standard method, in terms of the convergence speed, we propose a modification in the estimation pro-
cedure. The traditional models mentioned above, usually process every odometry and observation measurement (denoted as
constraints) independently at each iteration step. By contrast, with the aim of finding a valid solution quickly, we propose a
strategy based on the simultaneous use of a certain set of information provided by our visual observation measurements.
This proposal might appear to be liable to cause an increase in the required computational resources. Nevertheless, we have
concentrated on preventing this by updating several stages of the SGD’s iterative optimization so as to avoid possible harm-
ful bottleneck handicaps. Therefore, the main expected contributions and advantages of this SLAM approach compared to
traditional approaches might be synthesized as it follows:

¢ An efficient map model established by a reduced set of omnidirectional images.

o A modified SGD solver algorithm adapted to the omnidirectional geometry which is the basis of the proposed SLAM’s
observation model. Development of the new differential equations related to the observation measurements.

o Improved efficiency of the estimation thanks to the use of simultaneous constraint processing.

The structure of the paper has been divided as it follows: Section 2 depicts the SLAM problem within this framework.
Then, Section 3 describes the general specifications of a SGD algorithm, concentrating on the standard SGD. Section 4 details
the proposed modification of the standard SGD and the main contributions mentioned above. Next, Section 5 provides both
simulated and real data experimental results to validate the model and test its reliability and expected benefits versus
traditional methods. Finally, Section 6 analyzes the results to draw a general conclusion.

2. SLAM

A visual SLAM technique is expected to retrieve a feasible estimation of the position of the robot within a certain envi-
ronment, which also has to be precisely determined by the estimation. In our approach, the map is composed of a set of
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omnidirectional images obtained from different poses in the environment, denoted as views. These views do not represent
any physical landmarks, as they will consist of an omnidirectional image captured at the pose x; = (X;,y,, 0;) and a set points
of interest extracted from that image. Such an arrangement, allows us to exploit the capability of an omnidirectional image
to gather a large amount of information in a simple image, due to its large field of view. Thus, an important reduction is
achieved in terms of the number of variables for estimating the solution.

The pose of the mobile robot at time t will be denoted as x, = (X,,V,,0,)". Eachviewi € [1,... N] is constituted by its pose
X, = (Xn Y, 6))!, its uncertainty P, and a set of M interest points p; expressed in image coordinates. Each point is associated
with a visual descriptor d;,j =1,...,M.

Thus, the augmented state vector is defined as:

X:[Xy X, X, X[N]T (1)
where x, = (Xy,¥,, 0,,)T is the pose of the moving vehicle and:
Xty = (Xiy, ¥y Ony)

is the pose of the N-view that exists in the map.
2.1. Map building

The map building procedure is described by Fig. 1. The exploration task starts navigating the environment at the origin,
denoted as A. At this time, the robot captures an omnidirectional image I4, stored as a view with pose x;,. While the robot
keeps moving towards the first office room, it is able to find correspondences between I, and the current omnidirectional
image, which makes it able to localize itself. Once the robot enters the office room, the appearance of the images varies
significantly, so no matches are found between the current image and image I,. In this case, the robot will initialize a
new view named Iz at the current robot’s position, which will be used for localization inside the office room. Finally, the
robot completes the exploration of the environment as it traverses the different areas of the environment, while acquiring
the rest of the necessary views I¢, Ip, Ir, to compose the final map. The number of views initiated in the map depends directly
on the kind of environment and its visual appearance. In particular, in Fig. 1 it may be also perceived a synthesis of the
localization procedure carried out by the robot, which translates the depicted comparison between I4 and I¢ into a single-
computation process.

2.2. Observation model

In accordance with the view-based representation recently presented, a new observation model has to be formulated. The
versatility of omnidirectional images enables to apply epipolar constraints [9] to extract an observation measurement, which
defines the motion transformation between two poses, as seen in Fig. 1. Actually, these poses represent the positions where
the robot acquired two specific images. To that effect, only two images, with a set of corresponding points between them, are
required to obtain the transformation. The observation measurement may be expressed as:

Fig. 1. Map building procedure. The robot starts the exploration at A by acquiring a view I,. While the robot moves, correspondences are found between I,
and the current image captured at the current robot’s pose. When no correspondences are found, the current image is stored as a new view of the map, for
instance Iz at B. The procedure ends when the whole environment is represented.
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where the angle ¢ is the bearing at which the view N is observed and j is the relative orientation between the images. The
view N is represented by x;, = (X, V,,, 0, ), whereas the pose of the robot is described as x, = (X,,V,, 0,). Both measurements
(¢, B) are represented in Fig. 1.

3. Standard SGD algorithm
3.1. Specifications

A graph-oriented map is composed by a set of nodes defining the poses traversed by the robot and the landmarks
initialized into the map. The state vector s, encodes this representation through a set of variables which are expressed in
the following manner:

St = [(XO?YOJ’O): (X17y1701) cee (xmym 011)] (3)

where (X,,y,,0,) are the 2D coordinates and the bearing in a general reference system. A complementary subset of edges
represents the relationships between nodes, by means of either distance measurements generated by the odometry or
observations measurements provided by the on-board sensors. Both measurements are commonly known as constraints
and denoted as d;, where j indicates the observed node, seen from node i. The general objective stated by methods based
on standard SGD approaches [13,7] is to minimize the error likelihood, expressed as:

Pji(s) oc 7 exp (*% (fi(s) — o) i (fi(s) — 5;‘:‘)) (4)

being f;i(s) a function dependent on the state s, and both nodes j and i. The difference between f;;(s) and ;; expresses the error
deviation between nodes. Such error term is weighted by the information matrix:

Q= (5)

where Zﬁl is the associated covariance matrix, which considers the uncertainty of the measurements. The assumption of

logarithmic notation in (4) leads to:
Fi(s) o< (fi(s) — 0) Qi (fi(s) — 05) = 1(s) it (s) (6)

being rji(s) the error determined by fj(s) — d;i(s), which shows its condition of residue. Finally, the global problem seeks the
minimization of the objective function which represents the accumulated error:

F(s)= Y Fi(s) =Y 1i(s)' Qri(s) ()
(ji)eG (i)eG

where G = {(j;,i1), (j,,12) ...} defines the subset of particular constraints that define the map, either odometry or observation
measurements.

3.2. Estimation

Once the formulation of the problem has been presented, the Stochastich Gradient Descent algorithm must be detailed.
The basic goal is to compute in an iterative manner a estimation to achieve a valid solution for the SLAM problem. The basis
of a SGD method lies in minimizing Eq. (7) through derivative optimization techniques. The estimated state vector is
obtained as:

Ste1 =S¢ + As (8)

where As expresses a certain update with respect to s;, term which is sequentially generated by means of the constraint
optimization procedure. It is worth noting that, in a general case, this update is calculated independently at each step by
using only a simple constraint, that is to say As, = f(J;;). The general expression for the transition between s; and s;.; has
the following form:

Ste1 =S¢+ 4 Hﬁ]]jTinirji 9)
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e / is a learning factor to re-scale the term H' ]jT,-Qﬁrj,-. Normally, 4 takes decreasing values following the criteria
2 = 1/n, where n is the iteration step. This strategy is intended to reach the final solution quickly using large values
of /. When the solution moves close to the optimum, lower values of 1 are used, thus preventing the estimation to
oscillate around the final solution.

e His the Hessian matrix, calculated as J"QJ, and it represents the shape of the error function through a precondition-
ing matrix to scale the variations of J;. According to [6], H can be computed:

H~> JQ} (10)
(i)

e J;i is the Jacobian of fj(s) with respect to s;,J; = % It converts the error deviation into a spatial variation.
e @ is the information matrix associated to a constraint. Q;; = >t being X the covariance matrix corresponding to

ji
the observation constraints Jj;.

This scheme updates the estimation by computing the rectification introduced by each constraint at each iteration step
respectively. Despite the learning factor to reduce the weight by which each constraint updates the estimation, the
procedure may lead to an inefficient method to reach a stable solution, as undesired oscillations may occur due to the
stochastic nature of the constraint selection. For this reason, we propose an optimization process which takes into account
several constraints in the same iteration. It might be thought that the same drawbacks could arise with the addition of some
other inconveniences such as undesired time overloads, as a consequence of the simultaneous processing of several con-
straints in the same iteration. However, we have modified some calculations at specific stages of the algorithm in order
to maintain the time requirements and even reduce them. As a result, we achieved improved convergence ratios in terms
of speed. Further details will be provided in the next section.

4. Modified SGD

This section has been intended to explain the main advantages and contributions achieved in this study. The first assump-
tion to consider is the redefined state vector s;, which will be treated as a set of incremental variables. The pose incremental
state is defined as:

[ X 7y 76 ]
(X0,Y0,0o) o Yo. 0ol
(%1 —X0,¥1 — Yo, 601 — 6o)
) (dX1,dy1,d01)
sine = . — | (%2—X1,¥; =Yy, 02— 0) (11)

(dXTH dym deﬂ)

_(Xn *xn—lvyn 7Yn—179n - Hn—l)_

where (dx;, dy;, d6;) encode the variation between consecutive poses in coordinates of the global reference system. A global
encoding has the main drawback of not being capable to update more than one node and its adjacent ones per constraint.
Regarding a relative codification of the state, the problem of non-linearities in J; arises. By contrast, an incremental state vec-
tor allows a single constraint to generate a variation at every pose. In this context, As in Eq. (8) affects all poses because the
state vector is differentially encoded.

Note that in this approach we are dealing with a visual observation given by an omnidirectional camera. This makes us to
adapt the equations defined in the previous section to the case of omnidirectional geometry, as the nature of the constraints
are not simply metrical like the odometry constraints. According to (2), given two nodes, the observation measurement
allows us to determine a specific motion transformation between them up to a scale factor. Therefore, the omnidirectional
measurements and the incremental representation require the reformulation of several terms involved in the estimation.
Following this, we detail all the proposed modifications to the terms of the standard SGD, which must be necessarily rede-
fined and recalculated. The complete structure for each derivative is detailed in Appendix A.

e The first modification is referred to f;;(s), differentiating between odometry and visual observation constraints:

de de,] dXi
j(.)ido(s) =|dy [+ | dyy | +-+ | dy (12)
do; do;_ do;

where (dx;, dy;, d0;) has been defined in (11). And for the case of the visual observation constraint:

dyj—dyi\ _ 49,
jzisual(s) _ <¢> _ {arctan (dx,—dx,-) d()':| (13)
B do; — do;
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where  and ¢ are directly computed from the observation measurement [18] model, which expresses the relationship of
transformation between two omnidirectional images and the encoded pose of the robot in Eq. (11). Observing Fig. 1 may also
help understand the definition of Eq. (13).

e The second modification considers the recalculation of J; = % according to the previous reformulation of fj(s). The
importance of considering the indexes of the corresponding nodes, either j > i or j < i must be noted, as the derivatives
considerably change its form. Furthermore, as seen above, the dimensions of fj(s) are different, something which also has
to be taken into consideration, as the rest of the terms involved in the SGD algorithm have to be resized.

]ji _ 6fj.i(5) _ [afjli(¢) iafj;i(p)] (14)
0s gs 1 0s

Finally, we suggest the estimation of the new state s;,; by considering several constraints at the same time. We seek
greater relevance of the weight of the constraints when searching for the optimal minimum estimation. Obviously, com-
puting more than one constraint at each step leads to a certain overload. By contrast, with this approach, we reduce the
expensive estimation of H. In a general case, H is computed whenever a single constraint is introduced, that is to say, as
many times as there are constraints. In our case we compute H only once for each subset of constraints introduced simul-
taneously into the system. Consequently we obtain H in a more efficient manner, thus compensating for possible time
overloads. The following example depicts the practical meaning of this concept.

Require: 6; € CV j,i, where C = [c1,C,...,Cp] and ¢p= {11,012, ...}
Each ¢, represents different subset of constraints d; simultaneously processed by the robot.
t: iteration step
€: threshold for F(s)
while F(s) > € do

t=t+1
for g=1:b do
Extract all d;; in ¢4 randomly
Computing the following terms:
fii(s) = [fp%(s), £ (s)], Jji» H, 25, and 1y
ASq =1 H*1]jT,Qﬂr],
Sq = Sq—1 + Asq
end for
St =Sq+St-1
end while
return s; = [(Xo, Yo, 60), (dX1,dy;,d01), ..., (dXn, dy,,d6n)]

5. Results

We have carried out three different sets of experiments. Firstly, in Section 5.1 we show SLAM results obtained from sim-
ulated data to confirm the validity of the new SLAM approach supported by SGD. We add a comparison of results obtained by
our approach with a standard SGD algorithm, like those used in applications like [13,7,6,1]. Finally, in Section 5.2 we present
SLAM results using real data acquired by the robot, which have also been compared with a traditional SGD estimator. The
equipment consists of a Pioneer P3-AT indoor robot with a firewire 1280 x 960 camera and a hyperbolic mirror. The optical
axis of the camera is installed approximately perpendicular to the ground plane, as described in Fig. 1. Consequently, a rota-
tion of the robot corresponds to a rotation of the image with respect to its central point. In addition, we used a SICK LMS
range finder in order to compute a ground truth using the method presented in [16].

5.1. SLAM results with simulated data

Confirmation of the convergence of an SLAM algorithm is crucial when a new solver proposal, such as SGD, is introduced.
Furthermore, other considerations require evaluation, since the performance of the new method has to deal with a visual
observation model, which is a common source of non-linearities.

5.1.1. Experiment 1

Fig. 2(a) presents a random simulation environment of 20 x 20 m, where the robot traverses approximately 300 m. The
real path followed by the robot is shown with a continuous line, the odometry is represented with a dash-dotted line, and the
estimated solution is shown with a dashed line. A set of views have been placed randomly along the trajectory. The arrange-
ment of these views is controlled by an appearance ratio between images, to assure a realistic placement of each view. A grid
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Fig. 2. (a) presents a map obtained by the proposed approach in an environment of 20 times 20 m. The continuous line shows the real path, the dash-dotted
line the odometry and the dashed line the estimated solution. (b) Shows the accumulated error probability F(s) along the number of iterations.

of circles represents the possible poses where the robot might move to and gather a new view. The number of iterations of
the SGD algorithm is 25. As it can be observed in Fig. 2(a), starting from a noisy odometry estimate, the final estimation has
been rectified following the tendency of the real path. Fig. 2(b) shows the decreasing evolution of the accumulated error
probability P;i(s) in (4), expressed in logarithmic terms, versus the number of iterations. The reliability of this new approach
to work with omnidirectional observations can be confirmed, as it provides a proper solution.

5.1.2. Comparison of results

The following experiments have been conducted in order to compare our approach with the traditional standard SGD in
terms of efficiency. We suggest a strategy to introduce several constraints simultaneously into the SGD algorithm. The main
goal is to improve the speed by which the method iteratively optimizes until a final solution is achieved. In this sense, we
have performed a SLAM experiment, where the robot traverses 50 m through a given environment. Again, the number of
views in the map has been randomly placed, by following the same policy explained above. The same experiment has been
repeated 200 times using the same series of odometry inputs, in order to provide mean values that express consistent results.
The two approaches, ours and the standard SGD algorithm, have been compared. We have modified the number of views N
which the robot is able to observe from each pose. The observation range r of the robot has also been varied. Fig. 3 presents
results for the accumulated error probability, F(s), being the objective function which the SGD algorithm seeks to minimize.
Fig. 3 compares the solution obtained by our approach, drawn with a continuous line, and the solution obtained by the

4000 4000
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1000 | 1000
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. .
0 1 1 1 1 1 1 0 | | 1 |
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(a) (b)

Fig. 3. (a) and (b) Show the accumulated error probability F(s) versus time in a SLAM experiment, when the number of views observed by the robot is N = 2
and N = 8 respectively. The continuous lines show the results provided by the proposed solution, while the dashed lines show results provided by the
standard SGD solution. Different lengths for the observation range are defined: ryin, T'ine, 'max-
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standard SGD algorithm, drawn with a dashed line. Fig. 3(a) and (b) represent F(s) when the robot observes N=2 and N=8
views, respectively. As we are looking for a fair comparison, the x-axis, originally representing iteration steps, has been trans-
formed into a normalized time variable to generate a trustworthy comparison between the two schemes. Please note that the
time spent at each iteration step differs from one method to another due to their different convergence speeds. Therefore, in
terms of efficiency, it can be shown that the solution provided by our approach outperforms the solution given by a standard
SGD in every case, as the decreasing slope of F(s) is clearly steeper. Hence a quicker convergence speed demonstrating a more

- =*Solution

40 |- - odometry
— Ground truth

Y (m)

10 -

X (m)

(a)

4
10 — Proposed solution

- = Vanilla SGD

F(s)

103

1 L L L L L L L L L
0 2 4 6 8 1012 14 16 18 20
Normalized time

(b)

Fig. 4. (a) Shows the SLAM results in an office-like environment of 20 times 50 m. The continuous line shows the real path, the dash-dotted line the
odometry and the dashed line the estimated solution. (b) Compares the accumulated error probability F(s) provided by the approach presented in a
continuous line and the F(s) provided by the standard SGD in a dashed line.
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Fig. 5. (a) Shows SLAM results in a real office environment of 15 times 15 m. The continuous line shows the real path, the dash-dotted line the odometry
and the dashed line the estimated solution. (b) Shows the accumulated error probability F(s) along the number of iterations for our approach and the

standard SGD respectively.
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efficient method. This is the main advantage achieved by means of combining several constraints simultaneously at each
iteration step, instead of using only one as a traditional SGD used to. The relevance of the observation range of the vehicle
r is also notable. As seen in Fig. 3(a) and (b), longer values of r provide a better convergence, compared to shorter r. As the
omnidirectional observation is angular, and lacks scale, views seen by the robot at longer distances in the map allow
the computation of a more feasible localization. In addition, when the robot is able to observe a higher number of views,
the optimum value for F(s) is evidently lower, and is reached quickly, as there are more constraints to compute.

5.1.3. Experiment 2

The purpose of this next experiment is to confirm the favorable results shown in Section 5.1, now dealing with an office-
like environment, since it is desirable to emulate a more realistic situation, with obstructions, obstacles, etc. Fig. 4(a)
describes the environment of 20 x 50 m which the robot moves through. The continuous line represents the real path fol-
lowed by the robot, the dash-dotted line shows the odometry, whereas the estimated solution with our approach is shown
by a dashed line. It may be noticed that in only 15 iterations of the algorithm the robot is able to estimate a quiet reliable
solution, whose topology follows the real path. On the other hand, the odometry error grows out of bounds. Fig. 4(b) shows a

(]
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—Ground truth ( VY
- , )
E
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Fig. 6. (a) and (b) show SLAM results in a real office environment of 20 times 50 m, with N=5 and N = 30 views observed respectively. The continuous line
shows the real path, the dash-dotted line the odometry and the dashed line the estimated solution.
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comparison of the evolution of the accumulated error F(s) along the time for both our SGD approach and the standard SGD.
Once again, the improved capability in quickly reaching a solution is shown, demonstrating better efficiency. In this partic-
ular case, it is worth mentioning that our approach requires a computational cost approximately six times lower than that
for a standard SGD to reach an optimum value.

5.2. SLAM results with real data

Having presented the simulation results validating the proposed approach, we carried out a set of experiments with real
data. We were seeking for confirmation of the suitability and reliability of the approach in a realistic application such as
exploration tasks. Furthermore, we also show comparisons with the standard SGD.

5.2.1. Experiment 3

The first experiment analyzes the behavior of the approach when dealing with one of the most adverse situations, that is
to say, when the robot constantly turns around as shown in Fig. 5(a). The real path is shown with a continuous line, the
odometry with a dash-dotted line and the estimated solution with a dashed line. This case is seen as one of the worst, as
the frequent turns introduce significant noise into the input associated with the odometry. Nevertheless, it should be noted
that the estimation converges to a proper solution, which is practically overlapped with the real path, whereas the odometry
estimation differs considerably. Fig. 5(b) shows the decreasing tendency of the accumulated error probability F(s) along the
number of iterations for both our approach and the standard SGD. Having tested the validity of the main benefits with the
previous experiments, the improved efficiency of our approach can now be confirmed in terms of the speed of convergence
compared to the standard SGD method. Examinating Fig. 5(b), it can be seen that this approach reaches optimum values for
F(s) in less time than the standard SGD. The main advantage in terms of efficiency is therefore shown.

5.2.2. Experiment 4

This last experiment aims to support the beneficial results presented above, which have been compared to traditional
SGD approaches. In this case we conducted an experiment in a large environment. Here, the robot moves through a real office
of 20 x 50 m. Again, there are obstacles and obstructions such as doors, walls and office furniture. As seen in Fig. 6 the robot
explores the whole environment describing a trajectory of approximately 280m. Moreover, maps with different number of
views N have been constructed to study its relevance to the estimation of the solution. Fig. 6(a) and (b) show different results
when the robot observes N = 5 and N = 30 respectively. The real path is drawn with a continuous line, odometry with a dash-
dotted line and the estimated solution with a dashed line. Some real views stored in the map have been indicated. Fig. 7
shows the accumulated error probability F(s) for both experiments, expressing it with continuous line for N =5 views
and with dashed line for N = 30 views. In addition, to demonstrate the improved efficiency of the method, we compare
the values of F(s) provided by this approach, in blue, versus that obtained by a standard SGD, in red. In accordance to the

10% §
Vanilla
SGD
@ 10
[T
\\\\ Proposed
\\\ approach
3 ! ! ! ! - !
0% 1 2 3 4 5 6

Normalized time

Fig. 7. Accumulated error probability F(s) in a real SLAM experiment versus time. Results obtained for the map showed in Fig. 6(a) with N = 5 views, are
compared using continuous lines: the continuous blue line represents the proposed approach while the continuous red line represents the standard SGD.
Results obtained for the map shown in Fig. 6(b) with N = 30 views are compared using dashed lines: the dashed blue line represents the proposed approach
whereas the dashed red line represents the standard SGD.
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specific topology of the environment, it is confirmed that the larger the number of views N, the more accurate the estimation.
Since the robot is able to observe more views, the rectification of the estimation is ensured by a higher number of constraints.
Moreover, our approach still reveals the main favorable features compared to the standard SGD, regardless of the value of N.
Along the same lines as the previous experiment, the faster convergence speed is proved by observing Fig. 7, where lower
optimum values for F(s) are confirmed in considerably less time. This fact shows the greater efficiency of this proposal com-
pared to former SGD techniques.

6. Conclusions

This work has proposed an approach to the visual SLAM problem by introducing a SGD algorithm adapted to omnidirec-
tional observations. The assumption of SGD has been aimed at reducing instabilities and harmful effects which compromise
the convergence of the most extended SLAM algorithms such as EKFs. These erroneous effects are mainly consequences of
the visual nature of the observation, which is non-linear, and particularly intensified on omnidirectional images. We present
a visual SLAM approach which computes a map consisting of a reduced set of omnidirectional views. A single computation of
two views allows us to easily retrieve a motion transformation between the poses where the robot captured the views. The
standard SGD algorithm has been modified to integrate an unscaled observation model. We propose a more efficient SGD
model, which suggests a new strategy designed to exploit the information provided by several constraints simultaneously into
the same SGD iteration. We have presented SLAM results with simulated data which validate the combination of SGD with
omnidirectional images proposed by this new approach. In addition, we have established a comparison between the results
obtained by our approach and those obtained by a standard SGD algorithm. Finally, SLAM results with real data have been pre-
sented so as to demonstrate the suitability of the approach and also its efficiency compared to the traditional SGD algorithm.
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Appendix A. SGD equations adapted to omnidirectional observations
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