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a b s t r a c t

In this paper we present a hybrid reactive/deliberative approach to the multi-robot integrated
exploration problem. In contrast to other works, the design of the reactive and deliberative processes is
exclusively oriented to the exploration having both the same importance level. The approach is based
on the concepts of expected safe zone and gateway cell. The reactive exploration of the expected safe zone
of the robot by means of basic behaviours avoids the presence of local minima. Simultaneously, a
planner builds up a decision tree in order to decide between exploring the current expected safe zone or
changing to other zone by means of travelling to a gateway cell. Furthermore, the model takes into
account the degree of localization of the robots to return to previously explored areas when it is
necessary to recover the certainty in the position of the robots. Several simulations demonstrate the
validity of the approach.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Exploration is the task of covering an unknown area by a
mobile robot or a group of robots. Usually, they build a model of
the environment at the same time. Some applications of
exploration are automated surveillance, search and rescue
services or map building of unknown environments as, for
example, in planetary missions. Compared to the case of a single
robot, the utilization of a team of cooperative mobile robots is an
advantage (Cao et al., 1997; Farinelli et al., 2004): the exploration
time is reduced and the precision of the maps is improved
because of the redundancy of measurements (Rekleitis et al.,
1997, 2001).

As stated by other authors (Stachniss et al., 2005b; Makarenko
et al., 2002), the exploration problem is related to the mapping
and localization tasks. Fig. 1 shows this relation and the
algorithms that resolve these different problems:

! Simultaneous localization and mapping (SLAM) algorithms are
used to create a map of the environment and to simulta-
neously localize the robots in it.

! Classic exploration algorithms decide the best movements to
guide the robot to quickly create a map of the environment.

! Active localization algorithms guide the robots to the best
positions to achieve a good localization.

! Integrated exploration algorithms decide the movements of the
robots in order to create a map while minimizing the error in
the trajectories and the obtained map.

Generally, SLAM techniques are employed simultaneously with
classic exploration algorithms (Simmons et al., 2000). However,
the result obtained by the SLAM algorithm strongly depends on
the trajectories performed by the robots (Stachniss et al., 2005b;
Makarenko et al., 2002). Classic exploration algorithms do not
take localization uncertainty into account and direct the explora-
tion in order to minimize the distance travelled while maximizing
the information gained. When the robots travel through unknown
environments, the uncertainty over their position increases
and the construction of the map becomes difficult. Consequently,
the result could be a useless and inaccurate map. Returning to
previously explored areas or closing loops reduces the uncertainty
over the pose of the robots and improves the SLAM process. This
idea is commonly denoted as integrated exploration or SPLAM
(simultaneous planning localization and mapping). With this
technique the robots explore the environment efficiently and also
consider the requisites of the SLAM algorithm.

The goal of this paper is to develop an integrated exploration
algorithm. We will have to come to an agreement between the
speed of exploration and the quality of the generated maps. At
the same time, the algorithm must work in real time and it must
be robust, thus we need a decentralized approach. One of the
problems in exploration and map building is the dependence of
the computational time of the exploration algorithm on the
dimension of the map. For this cause, the objective of real-time
processing can be difficult to achieve if we are working with large
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maps. In this sense, the algorithms should be independent of the
dimensions of the map. For this cause, the algorithm we propose
in this paper allows a robust integrated exploration because of
the decentralization and the use of local maps that reduces the
processing time.

Therefore, in this paper we present a hybrid solution to the
multi-robot integrated exploration problem. Section 2 presents
the state of the art in the field of exploration. Section 3 defines
the main ideas of the approach and explains the advantages of the
developed model. In Section 4 the proposed approach is explained
in detail. Section 5 presents the experiments that were carried out
to test the method and their results. In Section 6 our technique is
compared with other integrated exploration techniques. Finally,
the main conclusions are exposed in Section 7.

2. Related work

Typically, exploration techniques work basically using the
frontier concept introduced by Yamauchi (1997). In a regular grid
map that represents the occupation probability, as introduced by
Moravec and Elfes (1985), cells can be classified as free, occupied
or unknown. This information can be obtained by any kind of
range sensor. Using this sort of map, Yamauchi defined the
frontier cells as free cells that lie next to an unknown cell. We can
see an example of occupancy grid map in Fig. 2, where the frontier
cells are emphasized. Most of the exploration techniques use an
occupation probability map and the frontier concept. However,
there are other approaches that use other forms of identifying the
regions of interest for the exploration. For instance, Wullschleger
et al. (1999) and Newman et al. (2003) perform the exploration by
means of directing the robots to open segments or features of the
map, Murphy and Newman (2008) use a gap navigation directing
the robots to the occluded zones of the sensor, and Santosh et al.
(2008) lead the robots to the limits of the floor detected in images
using only visual information.

Focusing on the exploration planning, we can distinguish two
types of approaches to the exploration problem: deliberative and
reactive.

The group of deliberative exploration methods usually em-
ploys path planning techniques (Fernandez et al., 1999) in order
to direct the robots to the frontier cells. They differ in the
coordination strategies used to assign a destination to each robot.
A basic strategy is that the robots go to the nearest frontier as in

the work of Yamauchi (1998). A cost-utility model has been also
used to decide good destinations in single-robot exploration
(Gonzalez-Baños and Latombe, 2002; Amigoni, 2008). In this
sense, some authors have extended this kind of model to
coordinate the robots (Simmons et al., 2000; Stachniss et al.,
2006; Burgard et al., 2005). Normally, the cost is the length of the
path to a frontier cell, whereas utility can be understood in
different ways: Simmons et al. (2000) consider the utility as
the expected visible area behind the frontier, Stachniss et al.
(2006) use semantic information to increase the utility of the
candidate destinations situated in corridors. With a higher level of
coordination, Burgard et al. (2005) consider in the utility function
the proximity to frontiers that were previously assigned to other
robots. This way, the exploration speeds up since the robots
choose different frontiers that are far from each other. Some
authors include other types of representations of the environment
in their approaches. For instance, Franchi et al. (2007) make the
planning over a sensor-based random tree (SRT). The tree is
expanded as new candidate destinations near the frontiers of the
sensor coverage are selected, and it is used to navigate back to
past nodes with frontiers when no frontiers are present in the
current sensor coverage. In a similar way, Rocha et al. (2008)
selects the best frontier from the current sensor coverage and uses
also a topological map when there are no visible frontiers. Other
approaches focus on the structure of the environment. The doors
that divide the environment in corridors and rooms can be
identified and represented in a topological map. Wurm et al.
(2008) take advantage of this information for assigning optimally
a different unexplored room to each robot using the Hungarian
method. Other authors approach this issue as the travelling
salesman problem by means of optimizing a complete route for
the robots having each robot an ordered sequence of frontiers to
visit. In this sense, Zlot et al. (2002) suggest using a market
economy where the robots optimize their routes by means of
negotiating their destinations.

The other group of exploration techniques is reactive and
commonly they are behavioural approaches (Arkin and Diaz,
2002; Lau, 2003; Juliá et al., 2008; Schmidt et al., 2006). The
combination of a set of behavioural forces points out the advance
direction. Arkin and Diaz (2002) combine an avoid obstacles

Fig. 2. The figure shows an occupancy grid map. The grey level of each cell
indicates the occupation probability. The frontier cells, defined as the free cells
next to an unknown cell, are emphasized in the graphic.

Fig. 1. The figure shows the algorithms that implement the mapping, localization
and motion control task in the exploration problem. Integrated exploration
algorithms decide the movements that quickly create a map while minimizing the
error in the trajectories and the obtained map.
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behaviour with an avoid past behaviour, that generates a
force directed away from previously visited areas, and a Probe
behaviour, that directs the robots to free space. At the same time,
to preserve communication, they include behaviours to maintain
a free line of sight between the robots. Lau (2003) employs a move
to frontier, an avoid obstacles, and an avoid robots behaviours. This
leads to the avoidance of collisions and also improves the
exploration by dispersing the robots. As stated by many authors,
the main drawback of this technique is the occurrence of local
minima in the potential field, which may trap the robot and block
the exploration process. In this sense, a technique to detect these
situations, by means of analysing the potential field generated by
the combination of behavioural forces in the proximities of the
robot, is shown in Juliá et al. (2008). Once the local minimum is
detected, a technique to force the robot to escape from this point
is necessary. A solution can be to plan a path to a frontier cell (Lau,
2003; Juliá et al., 2008). A more reactive but less efficient solution
is using a wall-following strategy (Xiaoping and Ko-Cheng, 1997).
Harmonic functions are also used to preform a control free of
local minima (Prestes et al., 2002), however, this technique is
computationally expensive as it needs to evaluate a global
potential field. Garrido et al. (2008) use a similar technique based
on the Voronoi Fast Marching method. Schmidt et al. (2006)
use a different set of behaviours: hold distance to obstacle, local
door driving, narrow driving, random cruise and pre evasion.
This behavioural system is combined with the information of a
topological map to decide the current behaviour.

These previously cited classic exploration algorithms do not
take localization uncertainty into account and direct the explora-
tion in order to minimize the distance travelled while maximizing
the information gained. If we do not consider the uncertainty in
the position of the robot, the construction of the map could be
difficult and the result could be an useless and inaccurate map.
When we take the localization uncertainty into account in the
exploration algorithm we talk about integrated exploration algo-
rithms. The main idea is that we have to consider other possible
destinations besides frontiers. Going to previously explored zones
or closing loops in the environment are useful actions to reduce
the uncertainty. At the same time, not all the frontiers will be
reachable with the same uncertainty in the position of the robots.
From the point of view of localization, it is desirable to travel to
frontiers that are situated close to precise landmarks of the
environment. Some algorithms of this type has been previously
developed by other authors (Makarenko et al., 2002; Stachniss
et al., 2005a; Freda et al., 2006; Juliá et al., 2008; Tovar et al.,
2006). Makarenko et al. (2002) include the uncertainty in the
localization as part of the utility function in the assignment of
destinations to robots in a cost-utility path planning approach. In
this way, the frontiers that are near to landmarks has a higher
utility. Stachniss et al. (2005a) consider three types of possible
destinations: frontiers, past poses, and points that close a loop
(Stachniss et al., 2005b). These destinations are evaluated
considering the expected information gain when travelling to
that point. This information gain may come from the incorpora-
tion of new zones to the map or from reducing the uncertainty of
the map. Freda et al. (2006) use a sensor-based random tree (SRT)
in which the candidate destinations to expand the tree are
analysed considering the reliability of the expected observable
features from that points. In Juliá et al. (2008), using a behavioural
approach, a Go to precise landmarks behaviour is used to send the
robots back to previously explored areas. Tovar et al. (2006)
considers in a utility function the number of landmarks that are
observable in a path to potential targets near the frontiers. These
potential targets are evaluated in a decision tree considering the
utility of being reached from the different robots of the team in
first term or after visiting other destinations.

Despite the fact that the typical architectures used are
commonly hybrid deliberative/reactive approaches (Posadas
et al., 2008), the exploration is mainly carried out by one of these
processes using one of the approaches previously cited. In this
sense, we talk about a deliberative exploration technique when
the exploration is planned by the deliberative process while a low
level reactive process commands the robot safely. And we talk
about a reactive exploration technique when the exploration is
carried out by means of including simple reactive exploration
behaviours as, for instance, go to frontiers. However, reactive
exploration architectures have usually a very simple high level
process that triggers some configurations for the behaviours,
sometimes combining the exploration with other tasks.

In contrast to other related works, in our hybrid approach the
deliberative and the reactive processes are exclusively designed to
explore, having both the same importance level. In our architec-
ture, the reactive process is able to carry out a short term
exploration while the deliberative process plans a long term
exploration. Moreover, both processes include multi-robot co-
ordination mechanisms. This way, our algorithm has the main
advantages of both techniques. Furthermore, our technique
includes mechanisms for returning to previously explored zones
performing an integrated exploration. In this pure hybrid sense
only the exploration approach exposed in Schmidt et al. (2006)
has been developed, however, it does not perform an integrated
exploration and it is a mono-robot approach that does not provide
coordination for several robots. In Lau (2003) and Juliá et al.
(2008) we can also see a reactive exploration technique that uses
some deliberation in the auxiliary path planner embedded to
scape from the local minima, but this deliberation is used as an
auxiliary state to solve the local minima problem.

3. Reactivity and deliberation: the hybrid approach

As we said, the main drawback of the reactive methods is the
appearance of local minima. The origin of these points, where the
robots get blocked, is mainly the presence of points of attraction
behind the obstacles. Fig. 3 shows three common situations that
present a local minimum when using an avoid obstacles repulsive
behaviour. Usually, the solution to this problem consists in
planning a path to a frontier cell when a local minimum is
detected near the robot. Being able to detect and escape from
these situations avoids that the robots get blocked by the local
minima and thus the exploration process can be finished. This
type of reactive system has been proved as a valid approach to
multi-robot exploration (Lau, 2003; Juliá et al., 2008). However,
local minima have a negative effect in the performance of the
exploration algorithm because of the waste of time in the process

Fig. 3. The figure shows three different local minimum situations: (a) long planar
obstacle with a frontier behind, (b) concave obstacle and (c) narrow way.
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of travelling to the local minimum, detecting it and planning a
new route to escape from that point.

We can see that this sort of reactive approach performs well
only in the proximities of the robots when no local minima are
present. However, in order to travel a long way to a far frontier
when local minima are likely to appear and having some
information of that zone in the map, a deliberative method is
better. These facts lead us to a hybrid reactive/deliberative
architecture. In contrast to other related works, in our approach
the reactive and deliberative processes are exclusively designed to
explore and they perform a local minima free exploration.

The first step to consider is how to avoid local minima in the
reactive process. An option is using a tangential force in the avoid
obstacles behaviour that makes the robot follow the walls
(Xiaoping and Ko-Cheng, 1997). But, without analysing delibera-
tively which is the best direction to continue with the exploration,
we cannot decide properly in which direction the robot must go
round the obstacle. If we select a random direction, we would
avoid minima but at the cost of loosing efficiency.

For this cause, we have designed a better solution that consists
in not considering the cells behind the obstacles. In this sense,
only the cells in a free of obstacles view from the robot affect the
reactive process. Thus, the reactive process is blind to the cells
behind the obstacles, letting the deliberative process to consider
them. This way, we introduce a sense of spatial connectivity in the
model. In order to understand how the whole hybrid model works
we have to make some definitions:

! Expected safe zone of a robot is the set of free or unknown cells
that can be joined with the position of the robot with a straight
line without intersecting any detected obstacle until a
maximum distance ðdeszÞ.

! Gateway cell is any free cell within the expected safe zone of a
robot next to a free cell not belonging to this zone.

These two concepts are shown graphically in Fig. 4. The
expected safe zone covers, like a virtual sensor over the map,
the surroundings of the robot until the distance desz or founding

an obstacle. As we can see, the distance desz is greater than the
sensor range ds and has no relation with the real sensor. The real
sensor could be directional and cover only a limited angular arc
but the expected safe zone covers the 3603.

Basically, our new approach consists in the reactive explora-
tion of the expected safe zone in the proximities of the robots. In
this way, we avoid the appearance of local minima as the cells
behind the obstacles are not considered. Simultaneously, a
planner evaluates when to travel to other zones navigating to a
gateway cell.

The concept of safe zone has been previously used in
exploration algorithms (Gonzalez-Baños and Latombe, 2002;
Franchi et al., 2007), but it is used in connection with the range
of the sensor. We have use the expression expected safe zone
because the zone that we have defined covers a larger area than
the sensor, therefore it includes unexplored areas.

The movements of the robots will be evaluated using a two
layers system. The reactive layer is the combination of several
basic behaviours that include common behaviours as go to
frontier, avoid obstacles or go to gateway. This layer operates only
with cells within the expected safe zone. The deliberative layer
controls the reactive layer enabling and disabling behaviours and
setting the gateways. Thus, the deliberative layer is able to switch
between several states or combination of behaviours. We work
with these three states that are explained in the next section:

1. explore current expected safe zone;
2. change zone;
3. active localization.

The main task of the deliberative layer is to decide the current
state. These three states are designed for integrated exploration,
taking into account the uncertainty over the position of the
robots. In this sense, the active localization state leads the robot to
past positions to recover the localization. The deliberative layer
makes the decision between exploring the current expected safe
zone, travelling to past poses using the active localization state or
travelling to a gateway (change zone). This decision is made by
considering the uncertainty in the pose of the robots and the
analysis of an exploration decision tree that will be explained in
the next section. In this tree, the root node represents the current
expected safe zone and the branches represent the gateways to
other zones. The tree generated is similar to the SRT method
(Franchi et al., 2007), but they differ in the use of the expected safe
zone instead of the sensor safe zone and in the fact that our
exploration tree is built exclusively to plan instead of being a
register of past states. Furthermore, the leaves of the tree are
situated over the frontiers incorporating the expected information
gain from each frontier (as in Simmons et al., 2000).

The approach explained in this paper presents some advan-
tages. First, the avoidance of the local minima reduces the
exploration time. Second, the reactive process runs in a delimited
period of time because of the delimitation of the map considered
to the expected safe zone. In this way, the process time of the
exploration algorithm (at least the reactive critic task) does not
depend strongly on the size of the map and thus we are satisfying
the objective of real-time processing. Finally, this delimitation of
the map considered to the local surroundings of the robot
presents an advantage in the robustness of the algorithm. This
is because it is relatively easy to work with this approach in a
distributed manner. Avoiding a centralized approach the algo-
rithm becomes more robust, and this is possible if the reactive
system is able to run with a local map only.

We are now using a centralized SLAM technique, but it can be
separated using each robot his own map. The reactive layer only

Fig. 4. Expected safe zone and gateway concepts. The expected safe zone covers
the surroundings of the robot in 3601 until the distance desz or finding an obstacle.
The gateways cells within the expected safe zone limit with free cells not
belonging to the expected safe zone.
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Please cite this article as: Juliá, M., et al., A hybrid solution to the multi-robot integrated exploration problem. Engineering
Applications of Artificial Intelligence (2010), doi:10.1016/j.engappai.2009.12.005

file://localhost/Users/arturogil/Downloads/dx.doi.org/10.1016/j.engappai.2009.12.005


ARTICLE IN PRESS

uses the local expected safe zonemap, and there is no need for each
robot to know and manage the global map. However, the
deliberative layer needs information of the global map. It would
be necessary to know the alignment between the maps (Ballesta
et al., 2008b) and to provide certain mechanisms of coordination
between the robots using a communication channel. The use
of this sort of totally distributed system is desirable because there
is no need for knowing the initial positions (Fox et al., 2006;
Chao-xia et al., 2008) and thus the robots can begin the
exploration in a dispersed way that is more efficient in relation
to the exploration time. In this paper, we focus on the hybrid
architecture of the system and the distribution of the SLAM
algorithm is postponed to future works.

4. Architecture

We can distinguish three parts in the designed architecture: a
centralized SLAM, which builds the maps and obtains the
localization, a deliberative layer, and a reactive layer. Fig. 5
shows this model. It consists of the centralized SLAM process
and two processes per each robot running concurrently: one
deliberative and one reactive. All these processes run
concurrently as independent threads, that is, a thread for the
common SLAM and two threads per each robot. Reactive and
deliberative processes have access to the maps created by the

SLAM process. The deliberative layer in each robot controls the
reactive layer, enabling and disabling states or combinations of
behaviours and setting the gateways. Next we explain these three
parts.

4.1. SLAM

In typical environments we can find a set of highly distinctive
elements that can be easily extracted with the sensors of a robot.
These elements are typically called landmarks. In our application,
we assume that the robots are able to detect a set of distinctive 3D
visual landmarks and they are able to obtain relative measure-
ments to them using stereo cameras. These landmarks can be
extracted as interest points found in the images of the environ-
ment (Ballesta et al., 2008a). The robot team is able to build a map
with a vision-based technique (Gil et al., 2010) consisting in a
particle filter approach to the SLAM problem which is known as
FastSLAM (Montemerlo and Thrun, 2003).

However, landmark based maps do not represent the free or
occupied areas in the environment. For this reason, we use an
auxiliary low resolution grid map to represent the free, occupied
or unknown state of the space using the information of a sonar
(Moravec and Elfes, 1985). In that map we can identify frontier
cells as free cells that lie next to an unexplored cell. It is also
possible to run the SLAM directly over the occupancy grid map
using a more precise range sensor as a laser, but this seems a
more expensive solution. Anyway, both implementations of SLAM
can be used with our integrated exploration algorithm.

Thus, we have a set of M pairs of maps (visual landmarks and
occupancy grid map), one pair per each particle in the filter. These
maps are associated to a determined path performed by the
robots. One of the particles will be the most probable, and thus, its
associated couple of maps will be the most probable.

An example of occupancy grid map was shown in Fig. 2. Fig. 6
shows an example of visual landmarks map. Each map is
composed by the set of detected landmarks until that moment.
For each landmark, it is saved its 3D position, its variance and a
visual descriptor for correspondence.

The uncertainty in the localization of the robots can be
estimated using the dispersion in the positions of the robots
between the different particles of the filter. This dispersion is
compared with two thresholds in a hysteresis loop in order
to consider the robots as well or poorly localized. When the
dispersion is higher than the high threshold, we consider
the robot as bad localized. Although the dispersion was reduced,

SLAM

Deliberative Layer

Reactive Layer

Robot 1

.

.

.

Deliberative Layer

Reactive Layer

Robot 2

Deliberative Layer

Reactive Layer

Robot n

Fig. 5. The figure shows the architecture of the hybrid multi-robot exploration
system. It consists of a centralized SLAM process and two processes per each robot
running concurrently: a deliberative process and a reactive process. Reactive and
deliberative processes have access to the maps generated by the SLAM process,
besides, the deliberative process is able to configure the reactive process.

Fig. 6. The figure shows an example of visual landmarks map and the positions of
three robots. Each landmark is marked in its 3D position with an ellipsoid with
proportional dimensions to its variance.
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we will not consider the robot as well localized until the
dispersion is below the low threshold. This hysteresis avoids a
constant change between going to unexplored zones and return-
ing to past poses.

In order to reduce uncertainty, we need to save the past poses
of the robots when they are well localized. To register these poses
we use a binary grid map to mark all positions where the
dispersion had a value below the given low threshold for good
localization. In this sense, when the dispersion is below that low
threshold, we mark the cell in which the robot is situated for the
most probable particle. This is a simple way to save good places
where the robots may recover the localization certainty.

4.2. Reactive layer

The reactive layer is controlled by the deliberative layer.
The deliberative layer sets the active combination of behaviours
that runs in the reactive layer. The combination of the active
behaviours determines the direction of the robot movement. The
behaviours work only with the cells in the expected safe zone.
Next, we explain the behavioural model used in the reactive layer
and how to obtain the expected safe zone.

4.2.1. Behavioural model
Our approach to the problem of multi-robot exploration

consists of six basic behaviours whose composition results in
the trajectory of each robot in the environment:

Go to unexplored areas: Each unexplored cell attracts the robot.
Go to frontier: This behaviour attracts the robots to frontier

cells since these are the cells that give way to areas of interest.
Avoid other robots: This behaviour results in a repulsive force

between robots that normally allows to spread the robots around
the environment.

Avoid obstacle: Each cell within a specific range that is
identified as belonging to an obstacle applies a repulsive effort
over the robot. This range allows to easily adjust the system.

Go to gateway: This behaviour attracts the robot to a gateway
cell in order to access to other zones.

Go to precise poses: This behaviour attracts the robot to cells
marked as having low dispersion in the map.

Table 1 shows how the forces are calculated for each
behaviour. Only the cells within the expected safe zone of the
robots are used in the determination of each force. Fig. 7 shows
the whole composition of the reactive model. As we can see, the
composition of these basic behaviours is carried out taking
into account a set of weights ki whose value is experimentally
deduced. Table 2 shows the weights selected for each behaviour.
Besides, every behaviour can be enabled or disabled by the
planner. The resulting force of the combination of these basic
behaviours on each robot constitutes a vector that indicates the
trajectory of the robot. In order to filter the movements over the
discontinuities generated by the active range of the avoid obstacles
behaviour we use the technique explained in Juliá et al. (2008).
The final control command given to the motors in terms of linear
and angular speed is calculated with a set of regulators that limit
the linear and angular speed to suitable values for the SLAM
algorithm.

4.2.2. Obtaining the expected safe zone
Obtaining the expected safe zone is essential in this approach.

As we defined, only those cells inside the desz ratio that can be
joined with a straight line with the robot position without
intersecting any obstacle belong to the expected safe zone. That
avoids all the local minima caused because of points of attraction
behind the obstacles as in Fig. 3(a) or (b). Another sort of local
minimum can appear when the point of attraction is visible but
the robot must go across a too narrow way as in Fig. 3(c). To avoid
this case, we have to process the expected safe zone to remove
these zones behind a narrow way.

Table 1
Forces defined for each behaviour.

Go to unexplored areas: ~F
1

k ¼
1
MU

PMU

i ¼ 1

~si%~pk

r3i;k
Go to frontier: ~F

2

k ¼
1
MF

PMF

i ¼ 1

~si%~pk

r3i;k
Avoid other robots: ~F

3

k ¼
1
X

PX
j ¼ 1 %

~pj%~pk

r3j;k
Avoid obstacle: ~F

4

k ¼
1
MO

PMO

i ¼ 1 %
~si%~pk

r3i;k
Go to gateway:

~F
5

k ¼
~qg%~pk

r3g;k
Go to precise poses: ~F

6

k ¼
1
MP

PMP

i ¼ 1

~si%~pk

r3i;k
MU: Number of unexplored cells
MF : Number of frontier cells
MO: Number of obstacle cells in the range
MP: Number of precise pose cells
X: Number of robots
~si: Position vector of the i-th cell
~qg: Position vector of the gateway g

~pj: Position vector of the j-th robot

~pk: Position vector of the k-th robot

ri;k: Distance from i-th cell to robot k

rj;k: Distance from robot j-th to robot k

rg;k: Distance from gateway g to robot k

Go To Unexplored Areas

Go To Frontier

Avoid Other Robots

Avoid Obstacles

Go To Gateway

Go To Precise Poses

Deliberative Layer

F k
6

F k
5

F k
4

F k
3

F k
2

F k
1Enable

Enable

Enable

Enable

Enable

Enable Control
Action 

K2

K1

K3

K4

K5

K6

Fig. 7. The figure shows the reactive layer structure. It is composed by several
basic behaviours that are enabled by the planner. The forces defined for each
behaviour are linearly combined with a set of weights. The resultant force
indicates the direction for the robot movement.

Table 2
Weights assigned to each behaviour.

k1 k2 k3 k4 k5 k6

5 15 0.25 100 1 0.5
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The process is shown in Fig. 8. These are the steps necessary to
obtain the expected safe zone:

1. Select the cells up to a desz distance in a free of obstacles view
from the robot.

2. Make an erosion over the obtained zone. The depth of the
erosion must be related to the obstacle avoidance behaviour
active range, which establishes the minimum distance to an
obstacle.

3. If some region is separated with the erosion we take it off from
the expected safe zone.

4. Expected safe zone is restored by means of dilating the
remaining zone.

Only those cells in the resultant expected safe zone are
considered by the reactive process. Obviously, in the avoid
obstacles behaviour we consider only those obstacle cells next to
the expected safe zone. In consequence, our reactive model is free
from local minima.

4.3. Deliberative layer

The planner in the deliberative layer decides the state in which
the reactive layer has to operate. This is made by means of
enabling or disabling behaviours. The planner can also configure
the gateway position for the go to gateway behaviour. We work
with a very simple set of general states so that the solution is
general enough. This way, we have a great independence of the
considered environment.

Table 3 shows the three states and the behaviours that are
enabled for each one. The first state consists in the reactive
exploration of the current expected safe zone. The second state
leads the robot to other zones, directing the robot to a gateway

cell. The last state, active localization, attracts the robots to past
poses recorded as having a good localization. The evaluation of an
exploration tree decides the transition between these states.

The deliberative layer runs concurrently on each robot with its
reactive layer in independent threads but it has less loop
frequency than the reactive layer. In each iteration the planner
generates a new exploration tree from the new position of the
robot and decides the next state.

4.3.1. Creating the exploration tree
The first step in order to decide the next state is the creation of

the exploration tree. The tree begins in the position of the robot.
Each node has a spatial position with an associated zone and a
cost. We can add two types of nodes to the tree: branches and
leaves. We add a branch for each gateway we found. The leaves
represent the objective of the exploration. In this sense, they are
related with frontiers and precise cells. We would add a leaf for
each frontier found or, if we have high position uncertainty, we
would add a leaf for each group of precise cells. Algorithm 1
details the process of creation of the exploration tree.

Algorithm 1. Exploration tree creation algorithm

1: Add root node to the tree in the position of the robot
2: Associate the expected safe zone to the root node
3: Look for gateways in safe zone-add branches
4: if robot is well localized then
5: Look for frontiers in safe zone-add leaves
6: else
7: Look for precise cells in safe zone-add leaves
8: end if
9: Add expected safe zone to processed zone
10: repeat
11: Select next low cost branch
12: New zone¼ expected safe zone from branch
13: Take the processed zone away from new zone
14: Associate new zone to branch
15: Look for gateways in new zone-branches
16: if robot is well localized then
17: Look for frontiers in new zone-leaves
18: else
19: Look for precise cells in new zone-leaves
20: end if
21: Count robots in the new zone
22: Add new zone to processed zone
23: until no remaining branches
24: for all leaf in tree do
25: new zone¼ expected safe zone from the leaf

Fig. 8. The figure shows how to process the expected safe zone to avoid local minima in narrow ways: (a) incorporate the cells in the surroundings of the robot until a
distance desz or finding an obstacle. (b) Erosion with depth relative to the avoid obstacle behaviour active range. (c) The separated regions are removed. (d) Dilatation of the
remaining zone.

Table 3
Possible states for the reactive layer.

State Behaviours

1. Explore current Go to unexplored areas
Expected safe zone Go to frontier

Avoid other robots
Avoid obstacle

2. Change zone Go to gateway
Avoid obstacle

3. Active localization Avoid obstacle
Go to precise poses
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Please cite this article as: Juliá, M., et al., A hybrid solution to the multi-robot integrated exploration problem. Engineering
Applications of Artificial Intelligence (2010), doi:10.1016/j.engappai.2009.12.005

file://localhost/Users/arturogil/Downloads/dx.doi.org/10.1016/j.engappai.2009.12.005


ARTICLE IN PRESS

26: if robot is well localized then
27: Count unexplored cells in new zone
28: else
29: Count precise cells in new zone
30: end if
31: end for

Fig. 9 shows an example of how to create the exploration tree
during an exploration with four robots. Next, we explain the
algorithm with that example.

First we add the root node to the tree with the current position
of the robot. We have to determine the expected safe zone in this
position. Next, we look for the gateway cells present in the
expected safe zone. These gateway cells are grouped by proximity
and a branch is added to the tree for each clustered gateway
found. Then we proceed with the frontiers (or precise cells if bad
localization) in the same way, but adding leaves. We can see in
Fig. 9(a) how the tree begins in the position of the robot. The
expected safe zone has been obtained and the doors and the
frontiers have been localized in it. A branch, represented by a
circle, has been added for each door and a leaf, represented by a
square, has been added for each frontier.

Next, the branch with low cost in terms of distance travelled is
selected and the operation explained above is repeated. It is
important that the previously processed zone is subtracted from
the new expected safe zone, which is evaluated from the position of
the considered node, in order to expand the tree. Fig. 9(b) shows
how the tree has been expanded, choosing the closer branch. The
zone associated to this branch is the obtained as the expected safe
zone from this point taking the previously processed zone away

from it. A new frontier is found in this zone and a new leaf is
added consequently.

This process continues with the next low cost remaining
branch until no new gateways are found. The costs are
accumulated from a branch to the derived nodes. Every time we
get a new zone, we have to check if there is any robot in it and
save the number of robots for the evaluation. In Fig. 9(c) we can
see the full developed tree. As shown, there are robots in some
zones.

Finally, for each leaf node, we have to count the number of
interest cells in the expected safe zone that are viewed from the
leaf position. Thus, we incorporate the expected information
gain from each frontier as in Simmons et al. (2000). When
the localization is good, the interest cells considered are the
unexplored cells. When the localization is poor the interest cells
considered are those marked as having low uncertainty. Fig. 9(d)
shows how the expected unexplored cells from each leaf node has
been added to the tree.

4.3.2. Evaluating the exploration tree
In order to evaluate the tree, we are going to give a value to

each leaf node. These values are propagated back until the root
node. We take into account the current degree of localization of
the robot in the creation of the tree (following the hysteresis loop
as explained in Section 4.1). In this sense, the tree can be
constructed looking for frontiers or looking for past precise poses.
This way, the interest cells counted for each leaf can be
unexplored cells or past precise cells.

The value given to each leaf is directly proportional to the
number of interest cells and inversely proportional to the cost of
arriving to the position of the node. Thus, the value for each leaf

Fig. 9. The figure shows an example of creation of exploration tree. (a) The root node is added to the tree as well as the gateways (branches) and frontiers (leaves) found in
the expected safe zone. (b) The closer branch is selected, a new associated zone is calculated and the new child nodes are added to the tree. (c) The process continue until no
gateways are found. (d) The expected number of unexplored cells for each leaf node is counted.
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node is

VðnLÞ ¼
InL

C2
nL

; ð1Þ

where VðnLÞ is the value of the leaf node nL, InL is the number of
interest cells in the node, and CnL is the cost to arrive to this node.

The back-propagation of the values for the tree is carried out by
choosing the maximum between the values of the child nodes in
each branch divided by the number of robots in the associated zone
plus one. This way, the branches where other robots are present
reduce their values. This is an advantage for a good coordination
between the robots. Thus, the value for each branch node is

VðnBÞ ¼
maxiVðni

BÞ
BnB þ1

; ð2Þ

being VðnBÞ the value of the branch node nB, ni
B the set of child nodes

of nB, and BnB the number of robots in the zone associated to the node.
The decision of the current state is made comparing the value

for the first level nodes. Notice that these values are not affected
when there are other robots in the current expected safe zone. This
way, if two robots have very close positions, possibly they will have
a similar tree with similar first level values. To achieve a better
coordination we use a corrected value for the first level nodes:

Vcðni
RÞ ¼ Vðni

RÞ
Y

j

d2ni
R
;rj ; ð3Þ

being Vcðni
RÞ the corrected value for the set of child nodes of the

root node ni
R, Vðn

i
RÞ the normal value for the node ni

R, and dni
R
;rj the

distance between node ni
R and robot rj, where rj is the set of robots

in the current expected safe zone. Thus, the nodes that are far away
from other robots increase their values.

Now, to make the final decision of the next state, we have to
analyse the corrected value of the set of child nodes ni

R of the root
node (first level of the tree) and the current degree of localization
of the robot. These are the three possible cases:

! Explore current expected safe zone: When localization is good
and the node of maximum corrected value of ni

R is a leaf.
! Change zone: When the node of maximum corrected value of

ni
R is a branch. We have to set the gateway of go to gateway

behaviour to that node position.
! Active localization: When localization is poor and the node of

maximum corrected value of ni
R is a leaf.

Notice that the change zone state operates independently of the
degree of localization. If the localization is good, the gateway
selected leads the robot to frontiers, but when the localization is
poor, the gateway selected leads the robot to past precise poses.

5. Experiments and results

5.1. Test bench

The method was tested in simulation in different scenarios
whose appearance is shown in Fig. 10. Scenarios that represent
hypothetical real places like Scenario 1 or Scenario 2 were chosen,
whereas other scenarios such as, for example Scenario 3 or
Scenario 4 are artificial. As shown, each scenario presents a
different number of frontiers during the exploration because of its
structure. For example, Scenario 3 is more prone to present a
greater number of frontiers than Scenario 2 as it has more
bifurcations. Furthermore, Scenario 4 presents narrow ways as the
case explained in Section 4.2.2. In order to use the visual SLAM, a
set of landmarks are situated randomly over the walls of each
scenario. All the scenarios have fixed dimensions of 20' 25m.

The test is made with a varying set of robots (changing from
one to a group of eight robots). As each particle in the filter has to
represent a possible path for all the robots at a time, the number
of particles is increased proportionally to the number of robots.
We start with 50 particles for one robot, we follow with 100
particles for two robots, until 400 particles for eight robots.
To measure the degree of localization of each robot we make use
of the standard deviation of the position of the robot sr:

sr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM

i ¼ 1

ðxri%xrÞ2þðyri%yrÞ2

vuut ; ð4Þ

where M is the number of particles, ðxri ; y
r
i Þ is the position of the

robot r in particle i, and ðxr ; yrÞ is the mean position of the robot
with all the particles. This value sr is compared with the high and
low thresholds. We have choose experimentally thresholds of
Tlow ¼ 0:1 and Thigh ¼ 0:2.

The occupancy grid map is obtained with a resolution of 15 cm.
The emulated sonar consists of a set of eight sensors with a
maximum range of 5m that cover the front of the robot. These
sensors are situated in fixed intervals (with regard to the advance
direction) from %p=2 to p=2 rad.

We assume that we are able to run the SLAM algorithm with a
fixed time period of 3 s. We use this period as time unit. The
reactive threads run synchronously with the SLAM. However, we
increase the period for the deliberative threads in 5 time units.
The exploration finishes when the final value of the exploration
tree, evaluated by one of the robots, is zero. The linear speed of
the robots is limited to 0.05m/s and the angular speed is limited
to 0.03 rad/s.

All the results for each scenario are given as the mean of
several simulations changing the initial position of the robots.
Next we explain the results regarding the speed of exploration,
the map error and the state of the planner.

5.2. Speed results

The time of exploration is measured as the number of time
units needed to complete the exploration. We can see these
results in Fig. 11(a). As we can see, each scenario presents a
different difficulty level and that is reflected in the exploration

Fig. 10. The figure shows the four scenarios used to test the algorithm in
simulation.
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time. As it was expected, the exploration time decreases gradually
when the number of robots grows.

We can compare the time spent for the different number of
robots with the time spent for a single robot. This way we can
obtain the exploration speed gain that is introduced by the
addition of robots. This gain is shown in Fig. 11(b). We can
observe how the exploration speed gain is increased as the
number of robots grows. With a number of 7 or 8 robots the gain
begins to saturate. We can see that, regarding to the exploration
speed gain, the different scenarios perform in different ways.
The second scenario, which needs the robots to travel a long
path, has very poor gain with the addition of robots. The other
scenarios, which have more bifurcations, can exploit the robot
coordination and they obtain a notable gain with the addition of
robots.

5.3. Error results

The error is evaluated over the visual landmarks map. This is
carried out by comparing the position of each landmark in the
visual landmark map associated to the most probable particle
with their real positions. The resulting error will be expressed as
the root mean square. The error results of the simulation are
shown in Fig. 12.

The error in the visual landmark map obtained is small in
relation with the dimensions of the explored zone. The error tends
to decrease as the number of robots increases. However, there is
not a clear dependence. The map error depends on a lot of factors.
On the one hand, as the number of robots grows, more
observations are added to the system and the robot has to cover
a minor area travelling a shorter path. Thus, the results should be
better. On the other hand, despite the increasing number of
particles in the filter proportionally to the number of robots, each
particle is a worst representation of the state of the robot because
they have to represent the position for all the robots in the
system. Furthermore, the error depends on the path performed by
the robots, but the system includes the active localization state in
order to return to previously explored zones when the uncer-
tainty in the position of the robots is high. As a result, we cannot
observe a clear dependence of the error with the number of
robots, only we can see a small tendency to go down.

5.4. State of the planner results

In order to check the functionality of the planner, we will
analyse the states selected. The results of the simulation are shown
in Fig. 13. This figure shows the percentage of time that the robots
are working in each state. We have divided the change zone state in

Fig. 11. Speed results. (a) Exploration time for the different scenarios and changing the number of robots. (b) Exploration speed gain because of the addition of robots to
the group in relation to the exploration speed for a single robot.
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two cases depending on whether the selected gateway is leading
the robot to frontiers or to past precise poses for localization.

As we can see, the two exploring states, explore current
expected safe zone and change zone, are the main states and both
have the same importance level. As we said, reactivity and
deliberation work together. We can observe that as the number of
robots increases the percentage of time in the change zone state
increases. This is because of the fact that as the number of robots
grows, more coordination is needed.

The two localization states, active localization and change zone
when the gateway leads to past poses, require an small time. We can
observe that this time decreases when the number of robot grows.

Fig. 14 shows the average number of state transitions per robot.
It is reduced as the number of robots grow. Notice that, as the
number of robots grow, the paths performed by each robot are
shorter and the localization is better. These facts produce this
reduction in the number of transitions for a large number of robots.

5.5. Performance comparison with classic methods

Fig. 15 shows a comparison of the performance of our
technique in relation to a classic path planning exploration
where each robot navigates always towards its nearest frontier
(Yamauchi, 1998). The values of Fig. 15 correspond to

Fig. 12. The figure shows the root mean square error committed in the map of visual landmarks for the different scenarios and changing the number of robots.

Fig. 13. The figure shows the mean percentage of time that the robots are running in each state for the different scenarios and changing the number of robots.
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experiments in Scenario 1. As we can see, the error is always
higher using the classic path planning to the nearest frontier.
The exploration time is higher with out technique when having a
small team of robots since they use some time returning to

previously explored zones. However, when there are enough
robots, as our technique have a better coordination, the
exploration time is reduced below the time used by the path
planning approach to the nearest frontier.

Fig. 14. The figure shows the average number of state transitions for the different scenarios and changing the number of robots.

Fig. 15. Performance comparison between the hybrid method and the nearest frontier path planning technique.
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6. Comparison with other integrated exploration techniques

6.1. Juliá et al.’s approach

Juliá et al. (2008) use an approach consisting of several
compositions of basic behaviours that are sequenced with a finite
state automata. These macro-behaviours are exploration, active
localization, and escape from local minima. This technique is
limited by the way the local minima affects the speed of the
exploration. The low level behaviours are similar to the exposed
in this paper since this is an evolution of that approach solving the
problem of local minima in a more efficient way. Furthermore, the
coordination is improved. The Juliá et al. (2008) approach only
have the coordination due to the avoid obstacles behaviour. In this
sense, the coordination was poor in some scenarios. However,
in this paper the introduction of the expected safe zone and the
consideration of the topology of the environment using the
exploration tree in the deliberative layer improves the coordina-
tion notably. The behaviour used to return to previously explored
zones was an attraction to precise landmarks, however, in our
new approach this is carried out by means of navigation to past
poses where the robot was well localized. In this way our method
does not require a landmark-based SLAM.

6.2. Makarenko et al.’s approach

Makarenko et al. (2002) use a cost-utility path planning
approach. Their utility function considers the information gain
of the occupation grid map at the target point as well as the
localizability of the robot at this point. In this way, the frontiers
that are near to landmarks have a higher utility. They consider
only the frontiers as possible targets, however, they suggest using
locations where the chances of relocalizating are high when the
covariance of the pose of the robots is too large. In this sense, we
have implemented a solution that is similar to the one that they
suggest by means of leading the robots to past poses. However,
we do not distinguish between frontiers in function of the
localizability. Including this kind of distinction in our behaviour
based system is a future line of work. In contrast with our method,
Makarenko et al. (2002) is a mono-robot approach that does not
provide coordination for several robots.

6.3. Stachniss et al.’s approach

Stachniss et al. (2005a) is one of the most relevant integrated
exploration techniques. It is also based on the information gain,
which may come from the incorporation of new zones to the
map or from reducing the uncertainty of the map. Following
this objective of information gain, it analyses three types of
possible destinations: frontiers, past poses, and loop closing
points. The loop closing points are obtained from a topological
map (Stachniss et al., 2005b). The expected information gain is
integrated for the full planned path until reaching each possible
target. This information gain is analysed in connection to the Rao
Blackwellized Particle Fixlter with occupancy grid maps and laser
scan matching that it uses for SLAM. Stachniss et al. (2005a) does
not consider a multi-robot approach.

6.4. Freda et al.’s approach

Freda et al. (2006) use a sensor-based random tree (SRT). The
tree is expanded as new candidate destinations near the frontiers
of the sensor coverage are selected. These candidate destinations
are evaluated considering the reliability of the expected obser-
vable features from that points. The tree is used to navigate back

to past nodes with frontiers when no frontiers are present in the
current sensor coverage. Furthermore, this method includes a
homing operation in order to close the loop at the end of the
exploration. However, it does not consider intermediate loop
closing or returns to past positions to improve the localization.
The authors explain in other paper how to coordinate several
robots using SRT (Franchi et al., 2007).

6.5. Tovar et al.’s approach

Tovar et al. (2006) considers only random points near the
frontiers as potential targets. A utility function evaluates that
points considering the utility for exploration and localization of
the full path until reaching that point. A potential target with a
high number of landmarks observable while navigating to that
point obtains a high utility. The order of navigation between
potential targets is evaluated with a decision tree that considers
the different utilities. This technique incorporates also multi-
robot coordination by means of introducing the possible routes
for each robot in the decision tree. From the point of view of
coordination this is a good option but computationally expensive,
highly centralized and poorly scalable. Moreover, it does not
consider explicitly returning to past poses.

7. Conclusions and future works

A hybrid reactive/deliberative approach to the multi-robot
integrated exploration problem has been developed. The design of
the reactive and deliberative processes is fully oriented to the
exploration, having both the same importance level. The reactive
system is based on the potential field generated by several basic
behaviours. As stated by many authors, potential field based
methods present the disadvantage of local minima. However,
restricting the model to the expected safe zone of the robot, as
introduced in this paper, avoids the presence of local minima.
Simultaneously, a planner builds up a decision tree in order to
decide between exploring the current expected safe zone or
travelling to another zone by means of navigating to a gateway
cell, that has been also defined in this paper. The algorithm that
the planner uses to create and evaluate the exploration decision
tree has been explained. Besides, this algorithm considers also the
uncertainty in the location of the robots in order to return to
previously explored places when the uncertainty becomes
significant. This fact improves the quality of the resulting map.
Several simulations have been presented that demonstrate the
validity of the approach.

As future works, we consider the extension of the approach in
real dynamic environments, adding some techniques to learn
automatically the multiple settings of the system. We will
develop a full distributed system by separating the SLAM process
between the robots. Inter-robot communication and mechanisms
for meeting the robots to align their maps will be added. Semi-
operated models that integrate the commands expressed by a
human operator in the exploration task will also be studied.
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M. Juliá et al. / Engineering Applications of Artificial Intelligence ] (]]]]) ]]]–]]]14
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