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Omnidirectional Localization in vSLAM
with Uncertainty Propagation and Bayesian

Regression

David Valiente(B), Óscar Reinoso, Arturo Gil, Luis Payá,
and Mónica Ballesta

Systems Engineering and Automation Department,
Miguel Hernández University, Alicante, 03202 Elche, Spain

{dvaliente,o.reinoso,arturo.gil,lpaya,mballesta}@umh.es

Abstract. This article presents a visual localization technique based
solely on the use of omnidirectional images, within the framework of
mobile robotics. The proposal makes use of the epipolar constraint,
adapted to the omnidirectional reference, in order to deal with matching
point detection, which ultimately determines a motion transformation for
localizing the robot. The principal contributions lay on the propagation
of the current uncertainty to the matching. Besides, a Bayesian regression
technique is also implemented, in order te reinforce the robustness. As a
result, we provide a reliable adaptive matching, which proves its stabil-
ity and consistency against non-linear and dynamic effects affecting the
image frame, and consequently the final application. In particular, the
search for matching points is highly reduced, thus aiding in the search
and avoiding false correspondes. The final outcome is reflected by real
data experiments, which confirm the benefit of these contributions, and
also test the suitability of the localization when it is embedded on a
vSLAM application.

Keywords: Omnidirectional images · Visual SLAM · Feature match-
ing · Visual localization

1 Introduction

On mobile robotics, Simultaneous Localization and Mapping (SLAM) represents
a crucial aspect. Such paradigm implies a simultaneous estimation of the map
and the localization of the robot. This fact entails a real challenge when it comes
to complexity, due to the incremental nature of the procedure, which is normally
affected by non-linear inputs and noise, that gravely compromise the convergence
of a sensitive system.

Under such circumstances, different research has been conducted. It is worth
highlighting the evolution on the use of different kind of acquisition sensors.
Initially, laser [14] and sonar [13] were widely acknowledged. However, more
recently, there have been an incipient use of visual sensors like digital cameras,
c© Springer International Publishing AG 2017
J. Blanc-Talon et al. (Eds.): ACIVS 2017, LNCS 10617, pp. 263–274, 2017.
https://doi.org/10.1007/978-3-319-70353-4_23



264 D. Valiente et al.

which have emerged as one of the most reliable tools for gathering information of
the environment. Comparing to former sensors, they become a promising alter-
native due to their low cost, lightness, low consumption, precision and efficiency
to process visual data. Amongst others, omnidirectional cameras are remarkable
for their capability to acquire large scenes on an only image, thanks to their
large field of view. Different approaches have concentrated on computer vision
techniques by using single cameras with visual encoding of 3D landmarks [11];
stereo-structure [6]; and omnidirectional cameras [4,16]. Specially, many contri-
butions support matching systems relying on the image side [20], but also on the
mapping side [2].

In this paper we also rely on the potentials of the matching in order to map
visual information along different scenes during navigation tasks. Nonetheless, in
contrast to general matching, we emphasize on the target application feedback.
Dealing with a vSLAM approach implies that huge efforts have to be addressed to
the management of the uncertainty and convergence [10,21]. That is the main
reason why we intend to assess these variables, and use them as feedback to
refine the standard matching, and thus the final estimation. Our approach seeks
a more robust model which dynamically adapts to the current deviations in the
system in terms of uncertainty. Therefore, we propose a robot localization model,
which is solely based on omnidirectional images. In particular, we reinforce the
matching process by means of the propagation of the current uncertainty of the
system. We also introduce a Bayesian regression technique [17] so as to obtain a
sensor data distribution [7], that allows to predict the probability of appearance
of matching points. Synthesizing, the system operates as follows:

– Image acquisition at each SLAM iteration.
– Movement prediction (SLAM) and uncertainty propagation to the current

image.
– Omnidirectional epipolarity determination on the second image frame.
– Global Bayesian inference for weighting and refining the final robust and

reliable matching.

The remainder is: Sect. 2 presents the general characteristics of the omnidirec-
tional system and the implemented epipolarity adaption to the omnidirectional
geometry. Section 3 comprises the implementation of the omnidirectional visual
localization. The propagation of uncertainty and regression inference are also
highlighted within the contribution of the adaptive matching. Section 4 provides
an overview to the view-based SLAM approach, with the omnidirectional local-
ization embedded; Sect. 5 presents the real data results which assess the validity
of the approach and the benefits of the research contributions; Sect. 6 exposes
the main conclusions extracted from this work.

2 Omnidirectional Vision System

The vision system consists of a catadioptric set, conformed by an hyperbolic
mirror jointly assembled with a CCD camera, as shown in Fig. 1, where the real
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Fig. 1. Real equipment: (a) Pioneer P3-AT mounted with omnidirectional camera,
internal odometer and laser range finder; (b) CCD FireWire DMK21BF04; (c) Eizho
Wide 70 Mirror.

Fig. 2. (a) Mapping of a scene point to the image plane; (b) epipolar constraint adap-
tion to the omnidirectional geometry.

robotic system is also presented. The image generation is reproduced in Fig. 2.
Note that the center of projection coincides with the focus of the hyperboloid.
This coincidence represents the basis for the camera to focalize the 3D scene on
the image frame.

Figure 2(a) shows how a scene point X directs p′′ = (x′′T , z′′) in the same
direction as q, which is projected to u′′ on the image plane, being collinear to x′′.
Notice that the central sphere unifies the notation of the projection vectors for
normalization purposes, as per calibration, regardless the characteristics of the
mirror and its non-linearities. Thus the mapping of a 3D point onto the image
plane is depicted, and analytically expressed as follows [9]:

λp′′ = λ

[
u′′

a0 + a2||u′′||2 + . . . + an||u′′||n
]

= PX (1)

where P ∈ R
3x4 is the projection matrix, denoted as P = [R|T ], with R a

rotation matrix ∈ R
3x3 and T a translation ∈ R

3 between camera and global
reference system. The Taylor expansion refers to the particular projection model
for each mirror, which is experimentally estimated by a calibration toolbox [18].
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2.1 Epipolarity Definitions

The epipolar constraint [9] becomes a fundamental tool in order get motion
recovery and therefore, for the computation of visual localization. The nature of
our omnidirectional system forced us to redesign the planar epipolar constraint
to the geometry of our camera system. This allows us to propose advanced
techniques in terms of feature detection between two omnidirectional images,
and likewise between two poses of the robot so as to localize it. To that purpose
it is necessary to introduce the essential matrix, E3x3 [15], and its relation with
two matched points between images, x and x′. By means of a given calibration,
the corresponding points can be normalized to x̂ and x̂′:

x̂′T Ex̂ = 0 (2)

Finally, the elements in E entail a decomposition: R3x3 and T = [tx, ty, tz],
as a general rotation and translation, through the skew symmetric [T ]x [9]. In
consequence, a 2D movement ∈ XY, and angular movement (β, φ), between two
poses of the robot, can be recovered up to scale factor, from:

E = [T ]xR =

⎡
⎣ 0 0 sin(φ)

0 0 − cos(φ)
sin(β − φ) cos(β − φ) 0

⎤
⎦ (3)

Such adaption to the omnidirectional geometry is expressed in Fig. 2(b). The
projection of X on two image references, x and x′, is determined by the epipolar
plane, π, and both camera centers C and C ′. An essential aspect is associated
to l and l′, as the epipolar lines which define the geometric place for matching
points to lay on. This is crucial for us to design an advanced visual matching,
which ultimately returns potential data for a robust localization.

Contrarily to traditional stereo-planar applications [3,19], here epipolar lines
transform into ellipses as a result of the intersection of π with the hyperbolic
mirror of the camera. In this sense, different contributions will be presented
in the following sections, so as to come up with a robust visual localization,
sustained by uncertainty propagation and bayesian techniques, with their basis
relying on this epipolar adaption.

3 Omnidirectional Visual Localization

Our visual localization approach is sustained by the epipolar adaption presented
above. As shown in (3), two poses of the robot can be solely related by match-
ing points in two omnidirectional images acquired at such poses. That is, a
motion transformation defined by an angular movement. Figure 3 synthesizes
such image-to-pose equivalence in terms of movement. Therefore, a clear infer-
ence from (2) can be noted. Then, the localization between poses, Fig. 3(a), is
transferred to a visual problem in Fig. 3(b).

On the analytical side, (2) can be posed as a linear system:

Diei =
[
x0z1 y0z1 z0x1 z0y1

] [
e1, e2, e3, e4

]T
,∀i ∈ [1, . . . , N ] (4)
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Fig. 3. Omnidirectional visual localization between poses A and B. (a) Robot reference
system; (b) camera reference system. Projections, pA(u, v) and pB(u, v), are indicated.

where x̂ = (x0, y0, z0) and x̂′ = (x1, y1, z1) represent two matched points between
image poses, and ei the estimation terms in E, which encode the localization
measures (β, φ). It is worth noting the low number of matching points needed,
Nmin = 4, for retrieving a motion estimation, since DNx4.

Finally [9] states the fundamentals for a Single Value Decomposition (SVD)
of (3), which produces a quaternion set of solutions (β, φ), as two rotations and
translations:

φ = atan
−e1
e2

; β = atan
e3
e4

+ atan
−e1
e2

(5)

tx1 = [cos φ, sin φ, 0]; tx2 = tx1 + π; R1 =

⎡
⎣cos β − sin β 0

sin β cos β 0
0 0 1

⎤
⎦ ; R2 = RπR1

(6)

3.1 Uncertainty Propagation

Once the fundamentals for the omnidirectional localization have been described,
now it necessary to detail the uncertainty propagation implementation. The
aim is to enhance the matching by providing this process with the capability
to adapt dynamically to the current noise of the system, and therefore to the
associated uncertainty, at t. The final output, as a main contribution, is the
reduction of the search area for matchings on the pixel side. To that end, the
epipolar constraint, is again invoked (2). Particularly, current inconsistencies in
the system, represented by uncertainty, are propagated through such constraint,
which now accepts a dynamic threshold, δ(ẑt):

x′T Êx < δ(ẑt) (7)
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Fig. 4. Adaptive matching. p1 establishes the multi-scaled distribution, λip1. qi

projects onto the second image by means of R∼N(β̂, σβ), and T∼N(φ̂, σφ), (8). The
result is a reduced search area (green). Epipolar curve transforms into an elliptic area
(blue) due to the uncertainty propagation on (7). (Color figure online)

Note that this threshold depends on a predicted observation movement, ẑt =
(β̂, φ̂), as provided by a general vSLAM approach, which is implicitly related to
the corresponding uncertainty of the system.

The innovation measured between consecutive states of the vSLAM system,
St, represents a powerful tool to establish σ values for ẑt by means of a predicted
rotation, R, and translation, T :

St =
[

σ2
φ σφβ

σβφ σ2
β

]
; R ∼ N(β̂, σβ); T ∼ N(φ̂, σφ) (8)

This fact means that a predicted matching can be determined on the second
image frame, even though when no feature detector has been used on the second
frame. A gaussian multi-scale distribution, λip1, is generated on the first image
frame, and then propagated on the second, qi, by considering the uncertainty, (7),
and the predicted movement (8). Figure 4 depicts the entire procedure for this
adaptive matching, which eventually produces a reduced area where candidate
matching points are found, rather than a global search over the entire image.
The topology of the new search area corresponds to the reshaping of the epipolar
constraint, which now transforms into a surface due to the effects of δ(ẑt). The
ultimate stage involves a visual descriptor comparison, being di(x) and d′

j(x
′)

the visual descriptors of two points in the first and second image respectively.
Finally, a Mahalanobis metric (χ) is computed over them, so as to get an accepted
visual distance in order to assume two feature points as a valid pair of matching
points:

||di(x) − d′
j(x

′)|| ≤ χ[dim(zt)] (9)



Omnidirectional Localization in vSLAM with Uncertainty Propagation 269

3.2 Bayesian Regression

Having described the enhanced matching with uncertainty propagation, here we
include a Bayesian regression technique such as Gaussian Processes (GP) [17]
in order to obtain a sensor data distribution for the matching on the omnidi-
rectional frame. GP is an advantageous regression technique since they do not
need to extract conventional relations between inputs and outputs, contrarily to
traditional inference. A GP produces a matching data distribution, which can
be mapped onto a global reference system. This information is very useful in
order to refine the search area for matching points. A GP, denoted as f(x), is
constituted by its mean, m(x), covariance k(x, x′), and training and test input
vectors, x and x′ respectively.

f(x) ∼ GP[m(x), k(x, x′)] (10)

Assuming that the GP output provides the probability distribution of our
matching, now we can fuse this probability with an information metric into the
entire process, so as to reinforce the procedure and to reduce even more the
matching detection area. This provides a reliable refinement feedback. In terms
of the selected metric, we chose an information-based one [12], Kullback-Leibler
divergence (KL):

KL(F1 ‖ F2) =
k∑

i=1

F1(i) log
F1(i)
F2(i)

(11)

We pursue the assessment of the fluctuation in the position of the match-
ing points on the global system. Under this situation, KL can measure such
variations between matching points detected on a previous pair of images, F1,
and the new matching points on the next pair F2. The value of KL encodes
relevant variations on the position of the matching points along the navigation
of the vehicle. The higher KL value, the newer visual information detected by
the robot. Therefore, the candidate matchings, can also be weighted by such
metric, which determines the probability areas were a corresponding point is
more likely to be found. The graphical result for this probability distribution is
presented in Fig. 5, where two consecutive pair of images are compared by being
passed through the adaptive matching process, already described in the previous
section, and now fused with the GP regression.

Fig. 5. Sensor data information distribution. Probability of matching point position,
detected between two images, (a) and (b), corresponding to two poses of the robot.
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3.3 System Operation

The overall system operation, comprising all the presented contributions is
depicted in Fig. 6, where the work flow is: (i) image acquisition; (ii) multi-
scaled distribution (scaling factor); (iii) predicted movement and uncertainty
propagation; (iv) Bayesian inference to weight the final matched points.

Fig. 6. System operation sustained by the proposed contributions.

4 Omnidirectional Localization on vSLAM

This section briefly introduces the final application where the omnidirectional
localization is embedded. It consists of a view-based SLAM approach, which it is
synthesized in Fig. 7. The key aspect lays on a dual 2D-3D map composed by a
reduced set of omnidirectional views acquired at different poses, xn = (x, y, θ)T

n ,
along the path of the robot. Each n view compresses the visual information of
an area of the environment by means of a set of SURF feature points [1]. The

Fig. 7. Dual 2D-3D. Information is encoded on the 2D image plane by feature points
on each view, xn. The re-estimation of xn implies the whole re-estimation of the map.
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current pose of the robot at t is expressed as xr = (xt, yt, θt)T . Therefore, the
state vector comprises xr and xn, with the following 2D structure:

xv(t) =
[
xr x1 · · · xn · · · xN

]T (12)

with each view n ∈ [1, . . . , N ]. Then the state vector encodes a map constituted
by a total number of N views.

The information is compressed on the 2D image frame by feature points. How-
ever, they express the same information that 3D landmark-based approaches [5,
8]. Now it is not necessary to re-estimate the 3D pose of every landmark in the
environment. Here, the single re-estimation of a view, as part of xv(t), already
implies the whole re-estimation of the map, being now much simpler. It is worth
noticing that each xn accounts for the visual encoding of a specific area of the
environment, so that the robot can always localize itself. Finally, this vSLAM
approach is subdivided into three main stages: (i) initialization of views in the
map; (ii) observation model measurement; (iii) data association. Dealing with
localization makes us only focus on (ii), since it provides the localization of the
robot within the current estimated map.

4.1 Observation Model

Similarly to Sect. 2, the observation measurements expresses the motion trans-
formation between two images (β,φ), and so does between two poses of the robot.
Transferring this localization relation into the robot reference system, leads to
the following structure, where is worth noting the zt,n corresponds to the appli-
cation of the presented contributions for omnidirectional localization in Sect. 3.

zt,n =
(

φ
β

)
=

(
arctan

(
yn−yt

xn−xt

)
− θt

θn − θt

)
(13)

5 Results

This section provides a further insight into the contributions presented in this
work. Here, real data experiments have been conducted in order to show the
benefits of this proposal for omnidirectional localization. Besides, the perfor-
mance of a vSLAM has been also analyzed, when the omnidirectional local-
ization is embedded. The equipment was presented in Sect. 2 and Fig. 1 (2 ×
1.7 Ghz/2 Gb RAM). The real dataset comprises indoor office and laboratory-
like spaces [16] (1238 images/123.8m path).

5.1 Omndirectional Localization Results

Firstly, we present results solely based on the proposed omnidirectional local-
ization aiming at validation. Figure 8 presents performance results comparing
a standard omnidirectional localization and the proposed in this work (average
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Fig. 8. Omnidirectional localization results. (a) % matched points and time consump-
tion with total number of matched points. (b) Localization error.

values over 100 times execution). Figure 8(a) compares the % matched points
out of the total feature points in two images (Y-left-axis), time consumed (Y-
right-axis), and the total number of matched points (X-axis). Note the reduction
(∼9%) with the proposed approach, which corresponds to a great false positive
reduction, since the delimited search area on the image. Obviously, this comes
at a cost of computation. Nonetheless, the consumption proves to be stable and
acceptable for real time, regardless the number of matchings. Secondly, Fig. 8(b)
shows a comparison of accuracy, in terms of angular error. The presented app-
roach proves to outperform standard omnidirectional localization (∼10% aver-
age). These measurements shows the average error on the estimated localization
(β,φ), (13). Note that 10% of angular improvement implies higher accuracy on
the XY-coordinates, due to the parallax effect. Therefore, subtle improvements
on the angular localization may be enough to ensure convergence on a generic
vSLAM application.

5.2 vSLAM Results

Then it is necessary to test the approach when operating in vSLAM. Conse-
quently, we conducted a real experiment in a sub-environment within [16]. The
observation measurement zt,n (13), now embeds the proposed omnidirectional
localization. Figure 9 shows real data results obtained in a 20 × 20m scenario.
Figure 9(a) demonstrates that the proposed vSLAM approach, outperforms a
standard one in terms of accuracy. This is a reliable proof to confirm that subtle
variations on the accuracy of the localization may cause the final estimation to
diverge. Besides, Fig. 9(b) presents average error results (RMSE), when the num-
ber of matching is varied. These results confirm that a tradeoff setup with low
number of matching points may produce a well-balanced and feasible estimation.
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Fig. 9. Real data vSLAM results. (a) Estimation with the proposed approach (blue),
standard (red), and ground truth (dark). (b) RMSE (m) with the number of matchings.
(Color figure online)

6 Conclusions

This article proposes a robust visual localization, based on omnidirectional
images, for mobile robotics. The main contribution consists of an advantageous
matching which dynamically adapts to the changing uncertainty circumstances
in the system. Besides, GPs have been introduced to infer a sensor data dis-
tribution. In particular, we have produced a probability distribution for the
location of matching points. Overall, we have devised a reliable approach which
reduces considerably the search area for matching points. Moreover, an adaption
of the epipolar constraint has been designed in order to fulfill the omnidirectional
geometry. All contributions have been jointly implemented so as test the validity
and feasibility of the omnidirectional localization over real data experiments, in
vSLAM. A certain computation effort is needed, however the benefits reveal a
valuable false positive avoidance (∼9%) and a reinforcement of the localization
accuracy (∼10%). These values are referred to angular localization, fact that
makes XY-localization more precise, due to the parallax effect. In vSLAM, such
% of improvement implies a great step forward in order to ensure convergence
on the estimation at each t.
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