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Summary. A teleoperation tool that allows to interact with the remote environment
in a more comfortable and flexible way is presented in this chapter. Working over a clas-
sical teleoperation environment, the goal is to reach a higher level of abstraction in the
user commands. The tool allows the operator to interact with the remote environment
through natural language recognition. This system is able to interpret and execute the
commands formulated by the operator in natural language, according to the elements
present in the remote environment. An error feedback module has been designed in
order to take into account the on-line correcting information expressed by the operator
during the execution of a task in the remote environment. The proposed voice assis-
tance tool has been designed as a module in a novel teleoperation architecture, which
allows to integrate multiple assistance tools.

7.1 Introduction

Teleoperation involves cooperation between the operations made by the user in
a local environment and the actions exerted by the physical components in the
remote environment. In a robotic teleoperated system the operator acts over a
robot and the elements in the remote environment to perform the appropriate
task [1]. Usually, teleoperation has been used in dangerous or inaccessible envi-
ronments for the operator such as nuclear industry, reactor maintenance, spatial
activities or dismantling tasks [1, 2]. However, the number of teleoperated sys-
tems has been significantly increased in the last years due to the possibilities
offered by the World Wide Web [3] and the new tools that offer new possibilities
to manage the remote environment.

In occasions, the environment is poorly known, and the conditions of percep-
tion are difficult. The operation reliability depends thus on all the data sensed
around the work area and the way they are reproduced for the operator [2].
Classical telerobotic systems are usually composed of a vision system and a force
sensor in the remote environment and a master arm in the local environment in
such a way that the operator can manage the robot based on the information
reported by these sensors.

However, some of the tasks made by the operator in a teleoperated way require
a need of intelligent automation. In teleoperation, this intelligent automation
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means that the tasks are carried out automatically with a supervisory control
by human operators. In this way it is extremely important the assistance to
operator’s decision. In this chapter, a voice assistance tool that allows to interact
with the remote environment in a more comfortable and flexible way is presented.

Natural language programming offers a great possibility to the operator to
easily control and manage the remote environment [4, 5, 6]. Voice processing
allows to establish a natural dialogue between a human and the robot in the
remote environment in such a way that a not-qualified user of the system can
manage the robot through a semantics that represents the environment and its
relationship with the robot. The tool described in this chapter allows the operator
to interact with the remote environment through natural language recognition.

We should mention that, of course, natural language interfaces are not ade-
quate for all types of robotic commands. There are languages or human-friendly
interfaces which are not natural but which are better for particular applications.
Specifically, in the applications tested using the tool presented in this chapter,
it is shown that natural language input can be an efficient technique for high
level commands (HLC) and that for low level commands (LLC) [1] other input
interfaces less natural are more appropriate.

7.2 Natural Language Interface

One of the simplest, most natural and highly user acceptable interfaces between
human and teleoperated robots is surely one where the human operator speaks
to the robot. This is the main motivation of the review and work presented in
this chapter. One of the main advantages of voice recognition is that a single
word or a simple sentence can communicate a complete procedure or a complex
data structure. This motivation is confirmed with the fact that in recent years
a growing interest exists in robots that are designed specifically to interact with
operators who are not roboticists, such that they can respond to commands with
voice. In order to be really useful in domestic and industrial environments, the
robot should be able to interact in an appropriate way with its environment and
with its human operators.

This section describes generalities about a module of natural language process-
ing to teleoperate a robot, and section 7.3 presents a feedback processing and
error correction in a real-time robotic teleoperated system. The overall robot
control system consists of the following modules: speech recognition module, bi-
lateral control module, vision module, learning module, and the robot controller
and interface. The speech recognition module includes a natural processing sys-
tem that permits understanding of high level natural language commands, and
provides a low level program, directly executable by the robot.

Human-robot voice interaction is different from human-computer interaction
mainly due to the manipulative power of the robot in a physical environment.
The robot has a physical configuration and can operate in the environment
during dialogue or as a result of a voice command. However, research on human-
computer dialogue management is a good foundation for human-robot dialogue
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management [7]. In the translation process of a command expressed in natural
language to an executable program for the robot, the following characteristics
have to be taken into consideration:

• There is no a target language universally-accepted for the high level tasks
usually performed by a robot. This means that an appropriate intermediate
language should be designed [4].

• The robot should have access to static geometric information about its work-
ing environment, as well as dynamic information, especially in interfaces for
real-time systems.

• The necessary information to process the commands is not as structured
as the information needed for other speech interfaces. Therefore, a general
knowledge representation mechanism should be devised, including all the nec-
essary aspects (information about the context, geometry, the robot’s activi-
ties, sensor readings, etc.). At the same time, this general mechanism should
be adaptive to specific robotic systems.

• The expressions that an operator can speak by using an interface to a robot
are very heterogeneous. The translation process is, therefore, more complex
since it needs more semantic information.

7.2.1 Related Works

This section describes some works directly related to the topic presented in this
chapter. For a more general review (speech recognition details, speech genera-
tion) see [8].

Automatic speech recognition and natural language processing have been used
as a powerful tool for human-computer communication [9,10]. Some researchers
have developed and demonstrated robots with a natural spoken language-based
interface in a limited and technically restricted framework. The first complete
system was SAM (Speech Activated Manipulator), where the authors imple-
mented a discrete speech recognition system to control a robotic arm [6]. Cran-
gle and Suppes [5,11] devised a theoretical-oriented system to program a mobile
robot and a robotic arm. Nevertheless, this system was not linked to a specific
speech recognition module. They also gave a first adaptation technique applied
to distinguish the different executions of the same verb to different execution
circumstances or to different operators, focusing on the specific application of
control devices for the disabled.

In the work described in [12] a formal model was designed in order to represent
computationally the intentions of the user in dialogue systems. In [13] the authors
incorporate a discrete speech recognition system (with some natural language
capabilities) to a teleoperated robot which was applied to electrical maintenance
tasks. In [14], the author describes new language-processing methods suitable
for human-robot interfaces. These methods enable a robot to learn linguistic
knowledge from scratch in unsupervised ways, at a low level (speech) processing
through statistical optimization. In [15] the author describes a successful natural
language interface to a mobile robot working in an office environment.
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More recently, in works as [16,17], integration of natural language and gesture
understanding was made in order to obtain a more natural interface in space
and medical robotic applications. One of the most sophisticated and integrated
systems can be found in [18]. It is a communicative humanoid robot with a
hand and graphic face, which appears on a small monitor in front of the user.
It is capable to perform face-to-face dialog, in real time, with a human user
with various hand gestures, facial expressions, body language and meaningful
utterances, which can be used to guide the humanoid-like robot.

7.2.2 Language Analysis and Understanding

In order to process natural language, we need to combine our understanding
of small textual units to understand larger ones. The main objective of natural
language processing theory is to show how these larger units of meaning arise
out of the combination of the smaller ones, which is modeled by means of a
grammar. It is traditional to divide the processing task into syntax and seman-
tics, where syntax describes how the different formal elements of a sentence can
be combined and semantics describes how the interpretation is computed. The
grammar can be thought as the encoded linguistic knowledge, which is ‘static’
and separated from the processing components (the analysis algorithms). Basi-
cally, the grammar consists of a lexicon (a database of words or groups of words)
and rules that syntactically and semantically combine words and phrases into
larger phrases and sentences.

More specifically, in natural language processing we can distinguish several
processing phases which coincide with the distinct steps in the process of un-
derstanding a natural-language command. These phases are the following. (1)
Phonological and morphological processing; (2) Syntactic analysis; (3) Semantic
analysis; and (4) Pragmatic analysis. Very briefly, each one of these phases is
understood as follows.

The phonological and morphological processing is the processing of phonemes
into basic units called morphemes, and then the processing of these morphemes
into words. The syntactic analysis is the analysis of the order in which words
are combined to form commands and, as said before, the syntactic knowledge is
represented using formal grammars. The semantic analysis is the phase in which
the system obtains the meaning of the individual words and how the whole
meaning of a command is built up from the meanings of the words used in it. In
the analysis of a verbal command to a teleoperated robot the meanings of the
words are all the information we need to make the robot execute the command
(including the parameters and the translation into the robot programming lan-
guage). Pragmatic analysis is the phase in which the system process everything
else that affects the use and interpretation of the natural language command
in a specific context or situation. In a robotic application, the system uses the
pragmatic analysis to find the values of some parameters or to make processing
decisions that could not be made just using syntactic or semantic information.



7 User Voice Assistance Tool for Teleoperation 111

As said before, a grammar describes the sentences that make up a language.
It contains a finite number of rules that specify which sentences belong to the
language and, at the same time, what is their syntactic structure. This way, we
can obtain the underlying structure of the commands to the robot and extract
its translation into the robot language. In the tool presented in this chapter we
use an extended form of the classical phrase-structure grammar, which is defined
as a tuple G = (V, VT , VNT , P, C), where:

• VT is the finite set of terminal symbols which correspond with the words or
symbols that can appear in a command.

• VNT is the finite set of nonterminal symbols which correspond to grammatical
categories in which the language has been structured.

• V = VT ∪ VNT is the set of all the symbols in the grammar.
• P is the set of production rules of the form p : a → b, which can be read as:

from a we may derive b, where a is a combination of nonterminal symbols
and b is a combination of nonterminal and/or terminal symbols.

For example, the production ‘p : V → drop’ may be read as: the nonter-
minal symbol V (for verb) may derive or can be rewritten as the terminal
symbol ‘drop’ (a verb), and the production ‘p : NP → Det N ’ may be inter-
preted as: the nonterminal symbol NP (for noun phrase) can be rewritten as
the nonterminal Det (determinant) followed by the nonterminal N (noun).

• C ∈ VNT is the start symbol to produce a sentence or command. It is a non-
terminal symbol and all the sentences produced by the grammar are derived
from C (note that the grammar needs an initial symbol to begin with).

The phrase-structured grammars can be augmented to represent additional
information that is important to understand natural-language commands. This
information can be incorporated in a grammar by assigning to each symbol (ter-
minal or nonterminal) in the language not just a syntactic category such as verb
or adjective but attributes that take values. This way, we have the so called aug-
mented phrase-structured grammars. So for example, the word ‘drop’ could have
the following two basic attributes: category, with the value verb; and number,
with the value singular. To obtain the translation of a command into the exe-
cutable instructions to the robot, the word may have additional attributes. For
example, for the word ‘drop’ we can define the attribute command with the value
open gripper(x,y) where x and y are the coordinates of the point where the oper-
ator wants the robot to ‘drop’ an object. These coordinates depend on the values
of the object attributes which appears in the command (for example in the com-
mand ‘drop the box in the middle of the table’, the coordinates x and y are the
values of the corresponding attributes of the object ‘the middle of the table’).

These attribute-value pairs can be represented in matrix form in which the
first column contains the attributes and the second one contains the correspond-
ing values. This way, during the parse of a sentence these matrix structures are
combined or unified using syntactic and semantic analysis algorithms obtaining
the command that the robot has to execute.
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For more details in grammars, parsing and semantic analysis the reader is
referred to texts that deal specifically with these topics (for example, [19, 20]).

7.2.3 The Natural Language Tool

The basic objective of the designed natural language interface is to allow an
untrained human operator to teleoperate a robotic arm through a semantics that
reflects the complex kinematics and dynamics involved in the tasks performed
by the robot.

In order to program a robotic arm using natural language, an intermediate
language should be defined, including all the actions that the robot can execute.
This intermediate language is equivalent to the target languages in database ap-
plications. In fact, this intermediate language is the language to which the system
will translate the input command, so it can be considered the “target” language
for the natural language subsystem. In our architecture, the instructions have
been divided in three categories, depending on the type of action to execute.
These categories are: (1) Movement instructions; (2) Database access instruc-
tions; and (3) Control structures. In the design of the intermediate language,
the main objective is to achieve generality. We can consider the intermediate
language as a model for the teleoperated robot using natural language.

Once the system has obtained the transcription of the voice command in an
ASCII text, the natural language understanding module interprets the sentence
and translates it into the intermediate control language. The method consists of
programming a grammar or specific transition network [19] for the application
and to perform the four analysis phases outlined in section 7.2.2:
• Lexical analysis: the identification of the minimum units from the input

command;
• Syntactic analysis: the identification of the syntactic structure of the

sentence, obtaining a syntactic tree; and
• Semantic and pragmatic analysis: to obtain the interpretation and final trans-

lation of the command.

7.3 Real-Time Control: Error Feedback Using Natural
Language

This section presents methods for error feedback processing using natural lan-
guage. Two different methods have been used such that it is possible to process
the feedback from errors produced by a teleoperated robot, using a voice in-
terface with natural language processing capabilities. The solutions proposed in
this chapter are motivated by the following questions: (1) How can the feedback
be processed during the execution of a teleoperated command, expressed using a
voice interface, and (2) how can the system use the information provided by the
feedback process so that the robot behaves in the way desired by the operator
in successive executions of the task.
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We do not consider the automatic recovery from errors [21]. The feedback
subsystem using natural language described in this section has two main effects:

(i) The correction in real time of the robot’s current action; and
(ii) learning of derived information obtained from the correction such that this

information can be used in later executions.

In this section it will be assumed that the system has already a set of tasks that
the robot has learned how to execute, or that in some way it has a list of sequential
actions associated to each one of the tasks of this set. It is also assumed that most
of these tasks depend on a set of parameters, that is, their execution depends on an
n-dimensional vector p of m parameters, p = {p1, p2, . . . , pm}. These parameters
can be positions at each step of the execution of the task, speeds, forces, etc.

The value of these parameters is what will be adapted or learned through the
feedback. The tool considered in our system can process two types of feedback:

(i) Position feedback, which corresponds to commands to the robot in cases
in which some position (final or partial) has not been completely satisfactory.
Typical commands that fall in this category are: “. . .more to the left . . . ”,
“. . .much more to the left . . . ”, “. . . a little more to the right . . . ”, etc.

(ii) Accuracy feedback, which corresponds with commands that refer to the
value of some magnitude (forces, speed, etc.) and they can be expressed
using natural language commands such as “. . . press with more care . . . ”,
“. . .not so slowly . . . ”, etc.

The automatic adaptation algorithm consists of the following steps:

(i) The operator speaks a command, and then the robot executes this command
using m functions fi (i = 1, 2, . . . , m) to determine the values of the m
parameters (p1, p2, . . . , pm).

(ii) Depending on the execution, the operator speaks feedback commands.
(iii) The robot processes the feedback commands in two steps:

a) The robot executes an immediate action according to the feedback com-
mand in order to correct in real time the position or accuracy parameter.

b) The system adapts the internal representation of the parameter for future
executions of the command.

Depending on the type of functions fi used in this algorithm, two similar
techniques can be distinguished: fuzzy representation techniques and stochastic
representation techniques. The main differences between these two techniques
reside in the knowledge representation (functions fi) and the specific algorithm
to update this representation, but the main idea is very similar. Secs. 7.3.1 and
7.3.2 describe these two techniques.

7.3.1 Fuzzy Representation Techniques

In the previous algorithm, before feedback takes place on the robot’s behavior,
the operator should speak a command. When the robot has to decide the value of
the parameter vector p associated with this command, a sampling algorithm is
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used through the function fi. An interval [xmin, xmax] is defined for the generation
of the values.

Once the robot has chosen the value of the parameter from the current func-
tion that represents the knowledge, the user can speak correcting commands
associated to that parameter. As reply to a correcting command, the robot ex-
ecutes an immediate action and it adapts the internal representation of the
parameter depending on the command. Therefore, the nature of the feedback
command determines the adaptation algorithm of the functions fi. We consider
two types of feedback commands: position and accuracy.

Position Feedback

The position feedback in natural language should have an immediate effect on
the robot’s position, besides modifying the function associated to the position
parameters for that task. For example, after a feedback like “. . . a little more
to the left . . . ”, the robot will move a longitude toward the left and it will also
adjust the coordinates for the next time it executes the task.

The magnitude of the displacement as a consequence of the position feedback
depends on the specific feedback parameters that the operator has spoken. A
simple way of modelling these displacements is to define n different constants
c1, c2, . . . , cn for each position feedback category, such that:

c1 < c2 < . . . < cn

The commands that generate relatively “very small” movements will come
defined with the constant c1, those that generate relatively “small” movements
with the constant c2, those that generate “middle” movements with the constant
c3, “big” movements with the constant c4, “very big” movements with the con-
stant c5, and so on. The decision about the value that should have the variable
n and the concrete values that should have the n constants ci depends on the
nature of the parameter and on the specific task and they are determined by
means of a specific design or in the learning phase of the tasks.

In the fuzzy representation technique, the values of each parameter pi in the
command are represented by a fuzzy membership function in such a way that
the specific value of the robot’s displacement is multiplied by its dispersion.
These membership functions are centered around a real number, with arbitrary
functions to both sides of the center, and they are called Left-Right fuzzy numbers
(L − R), whose membership functions are defined as:

fi(x) = f(x; a, αL, αR)LR =

⎧
⎨

⎩

L
(

a−x
αL

)
, if x ≤ a

R
(

x−a
αR

)
, if x ≥ a

(7.1)

where a is the center of the fuzzy set, αL and αR are positive real numbers
which represent the dispersion of the function, and R and L are two functions
that satisfy the following conditions:

(i) R(0) = L(0) = 1, and
(ii) R and L are non-increasing in the interval [0, ∞[.
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To decide the change in the robot’s position as a consequence of the feedback
with voice, as it has been indicated before, the constant ci is multiplied by
the dispersion corresponding to the membership function, given directly by the
constants αL and αR in the case of L − R fuzzy numbers in (7.1). If triangular
or trapezoidal membership functions are used, then the dispersion is given by
the distance between the center and the extremes of the triangle or trapezium.

Besides causing a change in the robot’s position, this feedback type should
cause a change in the generation of the parameter for future executions of the
same command expressed in natural language (step 3b in the previous algo-
rithm). In order to achieve this objective, the membership functions should be
modified in the following way:

• The center a of the membership function fi is updated as the last value of
the corresponding parameter pi after the feedback.

• The variation of the dispersion (given by the parameters αL and αR) is
computed as follows:

αR(i + 1) =
√

αR(i) (7.2)

αL(i + 1) =
√

αL(i) (7.3)

This correction is made assuming that after several executions and correc-
tions by the user, the dispersion of the function should tend to decrease, since
the more corrections carried out, the bigger “reinforcement” of the learning
of the parameter. A way of getting this is making the new αL and αR values
equal to the square root of the previous values. In this way it is possible
to decrease the dispersion in the selection of the parameter whose value has
been corrected.

Accuracy Feedback

As it has already been mentioned, an accuracy feedback is the speaking of inter-
action commands in natural language that refer to the value of some magnitude
(forces, speed, etc.). These commands are expressed with commands in natu-
ral language such as “. . . press with more care . . . ”, “. . . not so slowly . . .”,
etc. This feedback doesn’t cause an immediate change in the position and the
robot’s current state, but rather it causes a change in the function that is used to
generate the magnitude to which refers the command. As in the previous case,
the change can be reflected changing the dispersion of the membership function
of the fuzzy number directly. If the command refers to the need of increasing the
value of a magnitude, then the dispersion should be increased (for expressions
like “. . .more quickly . . .”).

On the other hand, if the command refers to the need of decreasing the value
of a magnitude, then the system should decrease the dispersion explicitly (for
example, for expressions like “. . . with less force . . .”. The change that is made
to the dispersion should be proportional to the current values of the dispersion,
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so that the change takes place in a controlled way. A form of getting this is to
increase or to decrease the dispersion according to the absolute value of the first
derivative of the dispersion with respect to one of the parameters of the mem-
bership function (for example, with respect to the center), so that an increase
or decrease following the direction of the gradient takes place.

7.3.2 Stochastic Representation Techniques

Another considered possibility to represent the imprecise information in the
feedback to the robot using the speech interface is the direct use of probability
density functions. For one-dimensional tasks, simple probability distributions
of one variable can be used, f(x), where x is the value of the parameter, and
f is the probability density function. Using these ideas, a stochastic approach
can be designed as an alternative representation of the parameters that may be
adjusted. The robot will use as working parameter values of p that belong to an
interval around the mean of the distribution, with a dispersion that is given by
the variance.

The choice of the function f depends on the robot, the environment and the
specific task. In the work described in this paper a well-known function has been
used, the beta function or distribution whose probability density is given by [11]:

f(x) =
g(α + β)
g(α)g(β)

xα−1(1 − x)β−1, α > 0, β > 0, 0 < x < 1 (7.4)

where g is the gamma distribution, which is defined as g(x) =
∫ ∞
0 e−ttα−1dt.

This function is used in the work presented in this paper to represent prob-
abilistically behaviours of the robot that depend on one or several parameters.
Depending on the values of α and β, the function will represent different be-
haviours. If α = β = 1, then all the values in the interval (0, 1) are equally
probable, representing the idea that the operator doesn’t care too much the
value of the parameter while it belongs to a specific interval. In the case of po-
sition feedback described in the previous sections, this is translated to the fact
that it is not relevant the exact point in which the position of a tool is placed,
in the range of its longitude (that is, in the range of the function f). For the
values α = β = 1 a uniform distribution in the interval (0, 1) is obtained, that
is usually the initial distribution for the task.

7.4 Experimental Results

The work environment of the robotic arm that will be considered in this section
consists of a table, a set of pieces and a shelf in which the pieces can be placed
(see Fig. 7.1). The operator should be able to communicate with the robot to
perform simple assembly tasks. These assembly tasks include simple subtasks
such as moving the pieces, sorting, or storing them, etc. We assumed that the
robot has already learned how to perform these tasks and the corresponding
procedures are stored in a knowledge database.
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Fig. 7.1. Different images corresponding to the robotic arm working in the remote
environment using the natural language interface

The group of techniques described in previous sections has been evaluated
with a teleoperated robot as the one described. In Table 7.1 a sequence of values
of the parameter p is shown. This parameter represents the distance to the origin
of coordinates considered in the environment for a command of placement of a
piece with position feedback, using possibilistic techniques with L − R fuzzy
numbers.

In Table 7.2 results from the same experiment are shown, using the beta
probability distribution.

Table 7.1. Position feedback with possibilistic techniques, using L−R fuzzy numbers

p Position feedback

0.500 more to the right
0.725 much more to the right
0.911 a little more to the left
0.886 a little more
0.780 OK

Table 7.2. Position feedback with stochastic techniques, using the beta distribution

p Position feedback

0.500 more to the right
0.300 a little more to the right
0.401 a little more to the left
0.381 a little more
0.751 OK
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In Fig. 7.2 an example the sequence of membership functions is shown, ob-
tained as a consequence of the feedback to the robot using the vector of feedback
commands (R1, R2, R8, R4), obtained from the following list of commands:

• R1: more to the right
• R2: much more to the right
• R3: a little more to the right
• R4: a little more
• R5: a little less
• R6: more to the left
• R7: much more to the left
• R8: a little more to the left

In the experiments five constants ci have been used for the decision of the
robot’s displacement from its current position, with the following values: c1 =
0.02, c2 = 0.08, c3 = 0.11, c4 = 0.19, c5 = 0.25. These values are quantified de-
pending on the range of the parameter that is the object of the feedback. In the
case of the parameter whose membership functions are shown in Figure 7.2, the
values taken by the parameter are in the interval [0, 1]. The membership functions
can be modeled with the use of fuzzy numbers using identical definitions for the
functions L and R, and they are given by the lineal function L(x) = R(x) = −x+1.

This function has the two conditions of the definition given previously for
the fuzzy numbers (R(0) = L(0) = 1) and both are non increasing. All the
experiments start with the value for the mean a = 0.5. The initial values of
the dispersions have been αL = αR = 2. The initial value of the parameter
for the execution of the command is x = 0.5 and the initial functions for the
representation of the membership functions corresponding to the fuzzy number
associated to the parameter are the following: L

(0.5−x
2

)
= 0.5x + 0.75, and

R
(

x−0.5
2

)
= −0.5x + 1.25.

Fig. 7.2 shows a sequence of probability distribution functions obtained after
the processing of feedback position commands, indicating successive displace-
ments toward the right. It can be observed that, besides moving the mean of the
distribution, the process also decreases the standard deviation to reinforce the
fact that feedback has taken place on the associated parameter, reducing in con-
sequence the effective range in which the sampling algorithm obtains the values.
The default initial parameters for the distribution beta are always α = β = 10
(except for the cases in which explicitly a mean different from 0.5 is indicated).
Later on, as a consequence of each feedback command, new values are calculated
in such a way that the mean of the distribution approaches to the new obtained
value, and such that the standard deviation diminishes approximately according
to the constant 1/k, where k = 2 in the lines of Figure 7.2. Note that since the
values of α and β are integers, the solution to the equation σf (i+1) = (1/k)σf (i)
can only be obtained as an integer approximation to obtain the new standard
deviation and the new mean values after each feedback iteration.

The two techniques described in this paper allow the processing of the feed-
back expressed in natural language following the objectives that have been shown
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Fig. 7.2. Successive displacements toward the right of the mean of the distribution
and decreasing of the standard deviation as a consequence of feedback commands

in this section. However, the fuzzy logic technique presents the advantage of being
more intuitive in the definition and interpretation of the obtained representations
of the parameters, besides being the most appropriate for a real time system,
since the required computational complexity is smaller. The stochastic technique
presents the advantage of allowing a more precise feedback of the parameters.
Only in the cases in which the task carried out by the operator requires more
numeric precision is justified the use of the stochastic technique, keeping in mind
the biggest required computational cost.

7.5 Conclusions

The main conclusion of this section is that both representation methods allow the
implementation of a feedback system that is very natural to a human operator,
specially indicated when programming a robot to perform high-level tasks. It
has been also shown that the feedback and correction using natural language
commands is adequate for the application to a real-time teleoperated system.

The results obtained with the design of the nucleus of the system that has
been shown in this section show that the natural language processing method is
the most appropriate for the natural communication with a robot in real time.
In particular, the definition of the intermediate language facilitates the design
of the syntactic and semantic rules that define the natural language, as well as
the augmented transition networks. The lexicalist paradigm used in the design
of the lexicon has been the most efficient method for processing in real time. The
augmented transition networks are suitable for the initial design of the interface,
and for the design of the simple linguistic structures.

The voice assistance tool presented allows the user to interact with the robot
in a natural way (using natural language or voice commands), and allows also the
adaptation of the system from real-time feedback in natural language. The results
obtained with this tool shows that the natural language processing method is
the most appropriate for the natural communication with a robot in real time.
In particular, the definition of the intermediate language facilitates the design
of the syntactic and semantic rules that define the natural language.
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