
Object Trajectory Prediction

Application to Visual Servoing

C. Pérez, N. Garcı́a, O. Reinoso, J.M. Sabater and J.M. Azorı́n

Abstract— Visual Servoing is an important issue in robotic
vision. Considering tracking as a particular case of visual
servoing, motion estimation algorithms are used to predict
the location of target and generate a feasible control input
to keep the target in the center of the image. Several well
known algorithms can be used for trajectory prediction such
as Kalman filter, αβ/αβγ filters, circular prediction algorithms
and so on, but in this paper, we present a new filter based on
existing filters that improves the prediction made by any one of
them. This new filter is based on parameter optimization of a
fuzzy system, therefore, we have named it: Off-Line Optimized
Fuzzy FILTER (OLOF FILTER). The robustness and feasibility
of the proposed algorithm is validated by a great number of
experiments and is compared with other robust methods.

I. INTRODUCTION

V ISUAL servoing is a well known solution to control

the position and motion of an industrial manipulator

envolved in unstructured environment [1][2]. This is achieved

by processing the visual feedback and minimizing an appro-

priate error function. Based on the visual information, visual

servoing systems can be classified in different groups [3]:

position based (3D), image-based (2D) or hybrid (2 1

2
D, ...)

visual servoing. In image based visual servoing, 2D visual

information is extracted from the image and used directly

in the control law to generate the control signal. The visual

servoing process depends on features extraction, matching,

tracking and motion estimation algorithms. In this paper, we

propose the use of a new object/feature prediction when it

is out of the image during one or several iterations of the

visual servoing algorithm.

The tracking issue depends on the object motion knowl-

edge and it is crucial to achieve this purpose. With a

good knowledge of the object motion, one can improve the

performance of tracking and thus increase the accuracy of

motion predictors. The problem arises when we don’t know

what the motion is. The proposed algorithm works in two

different steps: first estimates the type of motion (constant

velocity, constant acceleration increasing, ...) and second

step, application of Sugeno [12] type fuzzy algorithm for

position/trajectory estimation.

Some research work about the motion estimation is pre-

sented in [13] and [14]. Further, some motion understanding

This work is supported by the Plan Nacional de I+D+I 2004-2007,
DPI2005-08203-C02-02 of the Spanish Government (Técnicas Avanzadas de

Teleoperación y Realimentación Sensorial Aplicadas a la Cirugı́a Asistida

por Robots)
C. Pérez, N. Garcı́a, O. Reinoso, J.M. Sabater and J.M. Azorı́n

are research staff of the Industrial Systems Department, Miguel
Hernández University, Avda. de la Universidad S/N, 03202 Elche (Spain)
carlos.perez@umh.es

and trajectory planning based on the Frenet-Serret formula

is described in [15], [16] and [17]. Using the knowledge

of the motion and the structure, identification of the target

dynamics may be accomplished.

The filter proposed is based on well known filters like (Lin-

ear Interpolation (LI), Kalman filter (with different dynamic

models), αβ filter and αβγ filter), so, analyzing the cases in

which each one of them works better, we can establish rules

by adapted coefficients.

The new filter design, parameter optimization and analysis

of the results are made using a well known benchmark: the

decreasing bounce of a ball on the ground. We have chosen

this system because it has changes of acceleration and speed.

This paper is focused in object position prediction and is

structured as follows: in section II-A we present the different

dynamics that can be considered for the object, because

knowing the object’s dynamics we can estimate the trajectory

better. In section II-B we have presented four different filters.

In section II-C, we can find the trust region optimization

algorithm [18] used in this work. Section II-D presents the

Sugeno type fuzzy algorithm [12] and the filter proposed in

this paper is presented in section III. In section IV we can see

the results with simulated data, in V the computational load

analysis for all algorithms and finally in VI the conclusions.

II. THEORETICAL BACKGROUND

A. The Dynamics of a Moving Object

The objective of this paper is to follow a moving object,

to do it it is necessary to know what type or types of

movement it would have [5], in other words, what the motion

model is like. The more we know about the object move-

ment, the better the estimation/prediction will be, therefore,

the results will be better. In several papers, we can find

information about these dynamics. In this paper we show

time expressions (see from (1) to (5)) and space state

representation (see from (7) to (10)) of the jerk model

(jerk = d
dt

(acceleration)) [6].

a − ai

t − ti
=

∆a

∆t
= J0 (1)

x(t) = xi + vi(t − ti) +
1

2
ai(t − ti)

2 +
1

6
Ji(t − ti)

3 (2)

v(t) = vi + ai(t − ti) +
1

2
J0(t − ti)

2 (3)

a(t) = ai + J0(t − ti) (4)

J(t) = J0 (5)

Proceedings of the European Control Conference 2007
Kos, Greece, July 2-5, 2007

TuD07.1

ISBN: 978-960-89028-5-5 2105

where, x is the position, v is the velocity, a is the acceleration

and J is the jerk. So the relation between them is:

x(t) = f(t); ẋ(t) = v(t); ẍ(t) = a(t); ȧ(t) = J(t) (6)

The matrix form of these expressions is:

x(k + 1) = F · x(k) + M · m(k) (7)

z(k) = H · x(k) + N · n(k) (8)



xk+1

vk+1

ak+1

Jk+1


 =




1 T T 2/2 T 3/6
0 1 T T 2/2
0 0 1 T
0 0 0 1


 ·




xk

vk

ak

Jk


 +

+




T 4/24
T 3/6
T 2/2

T


 (9)

(
zk

)
=

(
0 0 0 1

)
·




xk

vk

ak

Jk


 +




1
0
0
0


 · nk (10)

Where the vector x(k) is the space estate vector, and z(k) is

the output vector. F and H are the system matrices. m(k)
and n(k) represents the system noise and the measurement

noise respectively.

B. Trajectory prediction filters

1) Linear Interpolation (LI): The simplest analyzed filter

is the Linear Interpolation. This filter is based on prediction

calculus of the next position aligned with two immediately

previous positions. For these data, the position prediction is

calculated by the following expression:

x(tn+1) =
x(tn) − x(tn−1)

tn − tn−1

· tn+1+

+

(
x(tn+1) −

x(tn) − x(tn−1)

tn − tn−1

· tn−1

)
(11)

Thus, the next position will be on the line defined by two

previous positions. All trajectories can be considered as a

line for small values of ∆T.

2) The Kalman filter: This filter is recommended for sys-

tems affected by noise disturbance that cannot be modelled.

It makes a Bayesian prediction of the state where the system

model includes two random variables (Gaussian variables)

with null average and a well known covariance (white noise),

these variables corresponds to: the system error v(k) and

the measure error w(k). The Kalman filter is based on a

recursive expression of prediction and correction: it considers

the current state from the prediction and adds a term of

proportional correction to the prediction error, so this predic-

tion error is minimized (optimal estimation). The algorithm

can be divided in two differentiated phases: propagation and

update, detailed in the following expressions:

The system model is:

xk+1 = Fkxk + Gkuk + vk (12)

zk = Hkxk + wk (13)

with Q and R covariance matrices of v(k) and w(k)
respectively, we obtain:

Initial estimations:

x̂k|k and Pk|k

1) Propagation step:

State prediction:

x̂k|k and Pk|k

Measure prediction:

ẑk+1|k = Hk+1x̂k+a|k (14)

Prediction covariance:

Pk+1|k = FkPk|kFT
k + Qk (15)

2) Actualization step:

Innk+1 = zk+1 − ẑk+1|k (16)

Sk+1 = Hk+1Pk+1|kHT
k+1 + Rk+1 (17)

Wk+1 = Pk+1|kHT
k+1S

−1

k+1
(18)

x̂k+1|k+1 = x̂k+1|k + Wk+1Innk+1 (19)

P̂k+1|k+1 =
(
I − Wk+1Hk+1

)
Pk+1|k (20)

We can see that all the information that this filter needs,

is stored in two variables, the actual estimation and the esti-

mated covariance. The Kalman filter can be divided in three

different types of filters depending on the system dynamics

considered: Kalman filter for constant velocity objects (Kv),

Kalman filter for constant acceleration objects (Ka), and

Kalman filter for constant jerk objects (Kj). The difference

between these three filters are: the dynamics considered for

the object movement and the computational load needed

(matrix dimensions are 2, 3 and 4 for velocity, acceleration

and jerk model, see section II-A). This filter is widely used

in visual servoing and tracking applications [4].

3) αβ filter: The alpha-beta (αβ) filter is a particular

case of the Kalman filter for a constant velocity system

model. In this case, the filter gain is considered constant,

so it is not calculated for each iteration. Also, it is not

necessary to calculate the prediction of covariance estimation

and innovation prediction simplifying the algorithm and

decreasing the computational load.

The optimal values of α and β parameters depends of the

relationship between the standard noise deviation and the

standard noise average (relationship represented by λ):

α = −λ2 + 8λ − (λ + 4)
√

λ2 + 8λ

8
(21)

β =
λ2 + 4λ − λ

√
λ2 + 8λ

4
(22)

TuD07.1

2106

Fig. 1. Trust region algorithms evolution

Next we can see the expressions of this filter:

Initial estimation: x̂(k | k)

W =

(
α

β/T

)
(23)

Filter gain:

Recursive loop:

Stateprediction :

x̂k+1|k = Fk · x̂k|k + Gk · uk (24)

Average prediction :

ẑk+1|k = Hk+1 · x̂k+1|k (25)

Innovation :

Innk+1 = zk+1 − ẑk+1|k (26)

Optimal estimation :

x̂k+1|k+1 = x̂k+1|k + W · Innk+1 (27)

4) αβγ filter: The alpha-beta-gamma (αβγ) filter is again

a particular case of the Kalman filter, but in this case, it is

a filter based on a constant acceleration model system. As it

has been commented before, the difference between them is

the dimension of the vectors and matrices used to compute

the predictions. Thus, the new gain matrix for the filter is

(3x1 matrix):

W =




α
β/T
γ/T 2


 (28)

and the value of gamma is calculated using the expression:

γ = β2/α

C. Trust region optimization algorithm

In this section we present the optimization method used

explaining it by an example figure (figure number 1). For

more information about trust region algorithm, see [18].

We have used an algorithm which makes the least possible

number of function evaluations. Of course, to build a figure

like 1, we evaluate the objective function a huge number

of times. If you can construct figure 1, it means that your

objective function is very cheap to evaluate and you might

consider using an other type of algorithm like Rosenbrock

[10]. We construct a local approximation Q(x) of f(x)
around xk, where f(x) is the filter function for each segment.

Q(x) is represented in the figure 1 with bold lines. We will

define a Trust Region around the current point xk. The trust

region is a disc of radius ∆k centered at xk. We will search

for the minimum of Q(x) inside the Trust Region. This

minimum xk+1 is the black cross in figure 1.

We obtain f(xk+1) < f(xk) (this is a success, see figure

1a), Q(x) is a good local approximation of f(x) and has

given us good advice. We will move the current position

to xk and iterate (k := k + 1). Since Q(x) is so good we

will also increase the trust region radius ∆k. We will re-

contruct a new quadratic interpolation Q(x) around the new

xk. This re-construction can induce many evaluations of the

objective function. In fact, in most optimization algorithms,

this is where the greatest number of function evaluations are

used. In the algorithm presented by [19], the author use a

special heuristic method to reduce the re-construction cost.

This heuristic method is based on Multivariate Lagrange

Interpolation Polynomials. There are also other possibilities

to construct Q(x) like the BFGS method. See figure 1a for

a graphical explanation of the second step of the algorithm.

xk+1 (the black cross) is once again the minimum of Q
inside the Trust Region.

Evolution of the algorithm presented in figure 1: We

obtain, once again, a success (see 1b): f(xk+1) < f(xk). We

move to the new position. We Reconstruct Q(x). We Increase

∆k. This will be a failure (see 1c): f(xk+1) > f(xk). Q(x)
is not anymore a correct approximation of f(x). We thus

reduce ∆k. The current position xk is not changed.

This is a partial success (see 1d): f(xk+1) < f(xk) but

the reduction is not as large as predicted by Q(x), so we do

not change ∆k. The current position xk is moved.

The next iterations do not present anything new (see

figures 1e and 1f). Note that the trust region radius ∆k is

becoming very large at the end of the search. We stop when

the step size (=‖ xk+1 − xk ‖) is becoming too small.

D. Sugeno-type fuzzy interface

The most common fuzzy inference process used is known

as Mamdani’s fuzzy inference method. For this work, we

have used the so-called Sugeno, or Takagi-Sugeno-Kang,

method of fuzzy inference. Introduced in 1985 [12], it is

similar to the Mamdani method in many respects. The first

two parts of the fuzzy inference process, fuzzifying the inputs

and applying the fuzzy operator, are exactly the same. The

main difference between Mamdani and Sugeno is that the

Sugeno output membership functions are either linear or

constant.

A typical rule in a Sugeno fuzzy model has the form: If

Input 1 = x and Input 2 = y and ..., then Output is z =

TuD07.1

2107

Fig. 2. Filter’s operation diagram

ax + by + c.

For a zero-order Sugeno model, the output level z is a

constant (a = b = 0).
The output level zi of each rule is weighted by the firing

strength wi of the rule. For example, for an AND rule with

Input 1 = αβγ,Input 2 = Ka, ... the firing strength is:

wi = AndMethod
(
F1(αβγ), F2(Ka), ...

)

where F1,2,...(.) are the membership functions for Inputs 1,

2, ...

The final output of the system is the weighted average of

all rule outputs, computed as:

FinalOutput =

N∑

i=1

(wizi)

N∑

i=1

(wi)

A Sugeno rule operates as shown in figure 2.

III. OLOF FILTER

We have developed a new filter that has not a constant

model of object movement, the model is estimated depending

on the speed, acceleration and jerk using these simple

expressions:

vk =
xk−1 − xk

T
; ak =

vk−1 − vk

T
;Jk =

ak−1 − ak

T
Depending on these values, we apply an specific combi-

nation of filters presented in section II-B.

We have used the decreasing bounce of a ball with

the ground to design and test the proposed filter. Authors

consider that the bounce of a ball behavior contains a wide

representation of how an object trajectory can be (including

changes of velocity and acceleration).

In figure 3, 4 and 5 we can see the position of the

object (ball) that will allow us to take conclusions of its

behavior (the data of these figures has been obtained with

a set of expressions that models the system behavior, these

expressions are not included in this paper).

In figure 3 we can see the prediction of filters presented in

section II-B. We can see in figures 4 and 5 that for different

20 25 30 35 40 45 50

0

5

10

15

20

25

30

Real Position
Prediction LI
Prediction Ab
Prediction Abg
Prediction Kv
Prediction Ka
Prediction Kj

Zoom1

Zoom2

Fig. 3. Bounce of the ball on the ground

20 22 24 26 28 30 32

0

5

10

15

20

25

30

35

40

Fig. 4. Zoom 1

32 34 36 38 40 42 44

5

10

15

20

25

Fig. 5. Zoom 2

TuD07.1

2108

TABLE I

SCHEMATIC CLASSIFICATION OF THE SYSTEM BEHAVIOR WEIGH

Intermediate zone

Places with high acceleration values

Acceleration increasing Acceleration decreasing

case1 case2

Places with low acceleration values

Starting (first samples) Ending (other samples)

case3 case4

Initial zone Final zone

case5 case6

case1 = 0.25 · LI + 0.25 · Kv + 0.25 · Ka + 0.25 · Kj
case2 = 0.3 · LI + 0.7 · Kv
case3 = 0.3 · LI + 0.7 · Kv
case4 = 0.2 · LI + 0.6 · αβγ + 0.2 · Kv
case5 = 0.2 · LI + 0.6 · αβγ + 0.2 · Kv
case6 = 0.2 · LI + 0.6 · αβγ + 0.2 · Kv

conditions (velocity and acceleration) of the object’s trajec-

tory one filter works better than the others, in other words,

for specific values of velocity and acceleration we must

apply an specific filter or filters and not others depending on

dispersion values for each case. For example, for big values

of acceleration, the best estimation is given by Ka filter but

for small values αβγ filter works better.

Based experiments done, we can distinguish the system

behavior in three different zones (places or conditions):

(I) Initial place: it is approximately the 5 first iterations,

where all filters err a lot (not initialized), and where the best

result corresponds with the filters that more quickly decreases

the error. These requirements are acceptably obtained from

filters Kv, αβ and LI.

(II) Intermediate place: it is divided into two different

places, acceleration picks and places between acceleration

picks. For the first one, we distinguish two more cases, the

increasing zone and the decreasing acceleration zone. For

the increasing zone, the filters with a better behavior are Kv,

αβ, Kj and Ka; for the decreasing zone, Kv and LI works

better. For zones located between acceleration picks (small

values of acceleration), we distinguish the initial values, that

includes a maximum of 4 samples (time of filter update)

or until the speed becomes negative (what has happened

before), in this zone we consider the same than in decreasing

zone (we considered the same behavior of the system). When

this happens, error is stabilized in a value next to the average

and the filters with better behavior in this case are αβγ, LI

and Kv.

(III) Final zone: the characteristics of this zone are a

very small speed and a very small acceleration. It will be

considered that the object is shaking if its speed is less than

1m/s and the filters with better behavior are LI, αβ and Kv.

Using this information, we can ”mix” some filters to obtain

the desired filter (for example, we can see in figure 5 that

αβγ works very good, but in figure 4, this filters is bad near

t=22. Using this empirical method and using figures 3, 4 and

5 we obtain coefficients shown in table I.

18 18.5 19 19.5 20 20.5 21 21.5
0

2

4

6

8

10

12

14

16

18

20

P
o

s
it
io

n
 (

p
ix

e
ls

)

t (miliseconds)

Real Position
Prediction LI
Prediction Ab
Prediction Abg
Prediction Kv
Prediction Ka
Prediction Kj
Prediction OLOF

P
k+1

1

P
k+1

3

P
k+1

6

P
k+1

5

P
k+1

2

P
k+1

4 P
k+1

7

P
k+1

r

P
k

r

P
k−1

r

P
k−2

r

∼

∼

∼

∼

∼

∼

∼

Fig. 6. Real position vs prediction

Constants presented in table I are empirically obtained, but

we can use these values to initialize an optimization method

to find the values that minimize the dispersion. So, we use a

trust region algorithm (presented in section II-C) to find the

local minimum closest to the values empirically obtained.

Once we have optimized all parameters [9], [10] and [11],

we can establish the Sugeno type rules [7], [8] and [12] as

we can see below (next we have the constants obtained after

optimization process, which, are close to values shown in

table I):

case1: IF i ≥ 5 AND acceleration IS high AND acceler-

ation > 0 THEN OLOF = 0.22 · LI + 0.23 · Kv + 0.26 ·
Ka + 0.29 · Kj.

case2: IF i ≥ 5 AND acceleration IS high AND acceler-

ation < 0 THEN OLOF = 0.26 · LI + 0.74 · Kv.

case3: IF i ≥ 5 AND j < 4 AND acceleration IS low

THEN OLOF = 0.33 · LI + 0.67 · Kv.

case4: IF i ≥ 5 AND j ≥ 4 AND acceleration IS low

THEN OLOF = 0.21 · LI + 0.56 · αβγ + 0.23 · Kv.

case5: IF i < 5 THEN OLOF = 0.29 ·LI +0.62 ·αβγ +
0.09 · Kv.

case6: IF i ≥ 5 AND velocity IS low THEN OLOF =
0.18 · LI + 0.55 · αβγ + 0.27 · Kv.

where i is the iteration number of the visual control

algorithm and j is the number of successive times that

the acceleration is positive. This rules are based on the

experience and knowledge of the filters behavior.

Once these rules are established, we have the new filter

called Off-Line Optimized Fuzzy FILTER (OLOF FILTER),

see figure 2.

IV. RESULTS WITH SIMULATED DATA

We show the effectiveness of the proposed method by the

following simulation study. In this section we can find the

most important results of these simulations. In figure 6 we

can see positions P r
k (actual object position), P r

k−1
(object

position in k − 1) and P r
k−2

(object position in k − 2). Next

real position of the object will be P r
k+1

and points from P̃ 1
k−2

TuD07.1

2109

0 2 4 6 8 10 12 14 16
−10

0

10

20

30

40

50

P
o

s
it
io

n
 (

p
ix

e
ls

)

t (miliseconds)

Real Position
Prediction LI
Prediction Ab
Prediction Abg
Prediction Kv
Prediction Ka
Prediction Kj
Prediction OLOF

Fig. 7. Trajectory prediction

0 20 40 60 80 100 120 140 160
−5

0

5

10

15

20

25

30

35

40

P
o

s
it
io

n
 (

p
ix

e
ls

)

t (miliseconds)

Real Position
Prediction LI
Prediction Ab
Prediction Abg
Prediction Kv
Prediction Ka
Prediction Kj
Prediction OLOF

Fig. 8. Bounce of the ball with the ground

to P̃ 7
k−2

represents the prediction obtained for all filters. The

best prediction is given by OLOF filter.

But really we require the trajectory prediction, not the

prediction of the next position. In figure 7 we can see the real

trajectory and the trajectory predicted by considered filters.

For this experiment the best result is obtained by OLOF filter

too.

We can consider the full trajectory of the ball (see figure

8) to compare the dispersion between filters. In table II, we

can find the average dispersion for each filter. Again the best

is the OLOF filter.

V. COMPUTATIONAL LOAD ANALYSIS

Obviously, the computational cost of any algorithm de-

pends of the CPU power that is executing it and the used

language (compiler effectiveness). For this reason, we have

not made comparatives between them in seconds or millisec-

onds. We have made comparatives using one of them as a

reference (the most used filter is the Kalman filter, so it is

our reference filter. Time execution of Kalman filter with

velocity model is the 100% of the reference time).

TABLE II

NUMERICAL COMPARATIVE FOR DISPERSION VALUE OF ALL FILTERS

IMPLEMENTED

Init. pos. LI αβ αβγ Kv Ka Kj OLOF

40 0.417 0.619 0.559 0.410 0.721 0.877 0.353
40(bis) 0.422 0.547 0.633 0.426 0.774 0.822 0.340

50 0.438 0.588 0.663 0.439 0.809 0.914 0.381
70 0.453 0.619 0.650 0.428 0.700 0.821 0.365
90 0.466 0.630 0.661 0.458 0.818 0.857 0.343

150 0.462 0.646 0.682 0.477 0.848 0.879 0.347

TABLE III

COMPARISON OF COMPUTATIONAL LOAD USING AS REFERENCE THE

Kalman FILTER WITH CONSTANT VELOCITY MODEL

LI αβ αβγ Kv Ka Kj OLOF

22% 51% 65% 100% 133% 156% 188%

Filters αβ, αβγ and LI are faster than Kalman filter with

constant velocity model, so their time execution are less than

100%. On the other hand, Ka, Kj and OLOF are slower

algorithms, so their time execution is more than 100%.

We have explained in section III that the proposed fil-

ter (OLOF filter) is a linear combination of the others,

so is the computational load of OLOF the sumatoria of

LI(22%) + αβ(51%) + αβγ(65%) + Kv(100%) + Ka(133%)

+ Kj(156%)? (see table III). Using efficient programming

techniques we have obtained 188% of computational cost for

the proposed filter. This computational cost is smaller than

the sum of the others because the filters have a great amount

of common code and it was possible to take advantage of

many calculations.

The slower filter is the proposed in this paper (OLOF

filter) but only OLOF and Kj can predict trajectories with

constant jerk and in figure 3 we can see that only OLOF

works good.

VI. CONCLUSIONS

In previous sections we can see the accuracy of the

estimation of the new filter and the computational cost to

obtain this estimation. Obviously the improvement supposes

a greater computational load than the others, but compared

with Kj it is not more than 17%, the reason being for

relatively complex movements of the object, it would not

suppose too much computational cost. Obviously, if the

behavior of the object to follow is constant speed, the use

of the proposed filter would not be recommended (the Kv

and αβ filters would work similar and its computational

cost would be lower). The authors belive that the use of

the proposed filter is to be recommended if the behavior of

the object is unknown a priori and probably the object would

have speed, acceleration and jerk changes. In this case, LI,

αβ, αβγ, Kv and Ka can’t work properly and only Kj and

OLOF filters can be used. If the target has a combination of

several dynamics (general case) as we can see in the example

used in this work (beam of a ball) the OLOF filter works

much better than Kj.

TuD07.1

2110

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contribution of

National Research Program of the Spanish Government and

reviewers’ comments.

REFERENCES

[1] Hutchinson, S., Hager, G. y Corke,P. ”A tutorial on visual servo
control”. IEEE Trans. on Robotics and Automation, Vol. 12, No. 5,
1996, pp. 651-668

[2] Peter I. Corke ”Visual Control of Robots: High Performance Visual
Servoing”, Research Studies Press, 1996. ISBN: 0 86380 207 9 - 353
pages

[3] E. Malis, F. Chaumette and S. Boudet. ”2 1

2
D visual servoing”. IEEE

Trans. on Robotics and Automation, Vol. 15, 1999, pp. 234-246
[4] Mikhel E. Hawkins, ”High Speed Target Tracking Using Kalman Filter

and Partial Window Imaging”, Thesis Presented to The Academic
Faculty. George Woodruff School of Mechanical Engineering. Georgia
Institute of Technology. April 2002

[5] X. Li and V. Jilkov, ”A survey of maneuvering target tracking:
Dynamic models,” in SPIE: Signal and Data Processing of Small
Targets 2000.

[6] Mehrotra, Kishore and Mahapatra, Pravas R (1997) ”A Jerk Model
for Tracking Highly Maneuvering Targets”. IEEE Transactions on
Aerospace and Electronic Systems 33(4):pp. 1094-1105.

[7] Wang, Li-Xin, ”Course in Fuzzy Systems and Control Theory”,
Imprint: Pearson US Imports & PHIPEs. Publisher: Pearson Higher
Education. Date Published: 4/06/1997

[8] Wang, Li-Xin, ”Course In Fuzzy Systems and Control, A”, ISBN:
0-13-540882-2. Publisher: Prentice Hall Copyright: 1997

[9] Gill, P. E.; W. Murray, W y Wright, M. H.: ”Practical optimizacion”
Academic Press. 1981.

[10] Rosenbrock, H. H., Comp. J.,”An automatic methodfor finding the
greatestor least value of a function” (1960).

[11] A. R. Conn, K. Scheinberg, and Ph. L. Toint. ”A derivative free
optimization algorithm in practice”. In Proceedings of the AIAA St
Louis Conference, 1998.

[12] Sugeno, M., ”Industrial applications of fuzzy control”, Elsevier Sci-
ence Publications Company, 1985.

[13] S. Soatto, R. Frezza and P. Perona,”Motion Estimation Via Dynamic
Vision”, IEEE Trans. Automatic Control, vol. 41, no.3, pp.393-413,
Mar 1997.

[14] Z. Duric, J. A. Fayman and E. Rivlin, ”Function From Motion”,
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 18, no.6,
pp.579-591, June 1996.

[15] J. Angeles, A. Rojas and C. S. Lopez-Cajun, ”Trajectory Planning
in Robotics Continuous-Path Applications”, IEEE J. Robotics and
Automation, vol. 4, no.4, pp.380-385, Aug 1988

[16] Z. Duric, E. Rivlin and A. Rosenfeld, ”Understanding the Motions”,
Image and Computing, vol. 16, no.6, pp.785-797, 1998.

[17] Z. Duric, E. Rivlin and L. Davis, ”Egomotion Analysis Based on the
Frenet-Serret Motion Model”, Proc. IEEE 4th Int. Conf. Computer
Vision, pp.703-712, April 1993.

[18] Frank Vanden Berghen, ”CONDOR: a constrained, non-linear,
derivative-free parallel optimizer for continuous, high computing load,
noisy objective functions”, Ph. D. in the University of Brussels (ULB
- Universit Libre de Bruxelles), Belgium. 2004.

[19] M.J.D. Powell, ”UOBYQA: Unconsrained Optimization BY Quadratic
Optimization”, DAMTP 2000/NA14. Math. Program. 92B, 555582.

TuD07.1

2111

