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Abstract

In a multi-robot system, in which each of the robots
constructs its own local map, it is necessary to perform
the fusion of these maps into a global one. This task is
normally performed in two different steps: by aligning the
maps and then merging the data. This paper focusses on
the first step: Map Aligmmnent, which consists in obtaining
the transformation between the local maps built indepen-
dently. In this way, these local maps will have a common
reference frame. In this paper, a collection of algorithms
Jor solving the map alignment are analyzed under different
conditions of noise in the data and intersection between
local naps. This study is performed in a visual SLAM con-
text, in which the robots construct landmark-based maps.
The landmarks consist in 3D points captured from the en-
vironment and characterized by a visual descriptor.

1. Introduction

Building maps is one of the fundamental requirements
for autonomous robots, since they can perform higher
level tasks by using a map of the environment. Odometry
measures can be suitable for short distances, However, the
error is accumulated progressively, thus leading to high er-
rors in odometry and in the estimate of the robot’s pose.
Also, other techniques such as GPS can be employed, but
this approach is not suitable for indoor environments. It is
evident that a real autonomous robot must have the abil-
ity to explore an environment and build a map of it. That
concept is known as Simultaneous Localization and Map
Building (SLAM), which has received great attention. The
purpose of the SLAM problem is to build a map of the en-
vironment while, simultaneously, the robot is localized in
it,

The solutions for the SLAM problem can be classified
according to the following aspects:

e The nature of the map.
¢ The sensors employed to observe the environment.

¢ The SLAM algorithm used to solve the problem.

1-4244-1506-3/08/$25.00 ©2008 IEEE

Regarding to the first aspect, two fundamental kinds of
maps have been built so far. On the one hand, occu-
pancy maps represent the environment in a 2D plane di-
vided in cells [7]. Each cell represents the probability of
the space to be occupied. However, the environment is
usually three-dimensional, so occupancy maps might not
be accurate enough. On the other hand, landmark-based
maps represent the localization of a set of points from the
environment with regard to a global reference frame. The
main advantage of landmark-based maps is the compact-
ness of their representation. By contrast, this kind of maps
requires the existence of structures or objects that are dis-
tinguishable enough.

In relation to the second aspect, typical approaches
use range sensors such as SONAR [31] or LASER in
2D [17,27] and 3D [29]. Nevertheless, there is an increas-
ing interest in using cameras as sensors. The main reason
for this interest stems from the fact that cameras obtain
a higher amount of information and are less expensive
than lasers. Moreover, they can provide 3D information
when stereo cameras are used. This approach is denoted
as visual SLAM [30]. Most visual SLAM approaches are
feature-based. In this case, the map is formed by a set of
visual landmarks that are extracted from images of the en-
vironment. The landmarks define the 3.D position of a set
of distinctive points which have a characteristic visual ap-
pearance. Mainly, two steps must be distinguished in the
selection of visual landmarks. The first step involves the
detection of interest points in the environment. The de-
tection should be as stable as possible, since the points of
the environment are observed from different viewpoints.
Then, at a second step the interest points arc described by
a feature vector which is computed using local image in-
formation. This descriptor is used in the data association
problem, i.e., when the robot has to decide whether the
current observation corresponds to one of the landmarks
in the map or to a new one. Different detectors and de-
scriptors have been used for mapping and localization us-
ing monocular or stereo vision, such as SIFT [18, 10, 30],
the Harris corner detector [S, 13], Harris-Laplace [14] or
SUREF [22]. In a prior work, we performed a compara-
tive study in order to find the most suitable combination
detector-descriptor in the visual SLAM context [19, 2].
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Finally, according to the algorithm that solves the
SLAM problem, we describe the main existent techniques.
So far, most solutions are based on the following ap-
proaches:

o The Extended Kalman Filter (EFK).

o Rao-Blackwellized particle filters (denoted with the
general term FasiSLAM).

The Extended Kalman Filter was initially introduced as
solution to the SLAM problem in [25], but the first real ap-
plications of this algorithm appeared in [17, 21). The EKF
suggests, as solution, the estimate of an augmented state
vector including the robot’s pose estimate and the position
of landmarks in the map. It has been shown in [25] that as
long as the robot is moving in an unknown environment
while obtaining relative observation from the landmarks,
the estimates of the localization of each landmarks are all
correlated among them. This is due to the common er-
ror in the estimate of the robot’s pose. The EKF assumes
that the observation model and the movement model of the
robot can be modeled as gaussian processes. In general,
the EKF works well when having a robust data association
and there is a sparse set of landmarks, which are dispersed
in the environment.

A more recent and also successful approach is
the FastSLAM algorithm, which was introduced in [20].
The most characteristic aspect of this algorithm is the use
of a particle set which represents the uncertainty of the
robot’s pose whereas each particle has its own associated
map. Logically, the SLAM problem is a sum of two fun-
damental aspects: the estimate of the robot’s pose and the
estimate of the map. Although these two aspects are in-
tnnsically related, they can be considered separately. For
instance, if we knew the robot’s path, then the estimation
of the map would be trivial. Analogously, if the map of
the environment is known, it would be easy to implement
an algorithm in order to find the robot’s pose. This is
the main idea of the FastSLAM algorithm, in which the
SLAM problem is divided in a localization problem and
in several individual estimations of the landmarks. The
solution to the SLAM problem is performed by means of
a sampling and particle generation process, in which the
particles whose current observations do not fit with their
associated map, are climinated. The FastSLAM algorithm
has shown to be robust to false data association and it is
able to represent models of non-linear movements in a re-
liable way.

The process of SLAM can be performed by a single ro-
bot, but it will be more efficient if there is a team of robots
that cooperate in the solution of this task. This approach is
denoted as multi-robot SLAM. This is a more challenging
approach, since many key aspects should be solved. For
instance, it is necessary to define an efficient exploration
strategy as well as the way of estimating the map. In the
last case, there are two possible solutions. The first one
is to maintain a unique global map. However, it can be
too expensive computationally. On the contrary, a second

possibility would be that each of the robots maintains its
own local map, until the fusion of the maps is required.

Map Fusion has received attention since relatively few
years. When a map fusion problem is faced, many ques-
tions arise. The first one is the moment in which the maps
should be merged. Some authors propose a rendezvous
strategy [16, 9, 34], in which the robots try to meet cach
other in a location and then merge their maps by means of
the shared data. In [9], the meeting point is estimated with
a particle filter approach. Another aspect is to determine
the transformation, if existent, between the local maps.
This is denoted as Map Alignment. In many approaches
the transformation between maps is performed with the
matching of landmarks [24, 15]. In [6] and [4] the over-
lap between maps is supposed to exist. With relation to
the previous strategies based on the rendezvous case, it is
clear that the alignment between maps is possible and im-
mediate if the robots succeed in finding cach other. This
is due to the fact that in this moment, the robots are shar-
ing the same space in the map. More difficult would be
the approach in which the robots determinate whether any
alighment exists or not without the nced of meeting, just
by sharing the information of their maps. The final stage
of the Map Fusion is merging the local maps. The problem
is to decide how to integrate the information from each
one of the local maps into a unique global map.

In this paper, we focuss on the Map Alignment stage,
which allow us to obtain a global reference frame to all the
landmarks from the independent local maps. In particular,
our aim is to analyze the performance of some methods
applied to compute the transformation between two 3D
landmark-based maps belonging to two different robots.
Visual landmarks have been used in many SLAM perfor-
mances [10, 24]. The methods evaluated here are suitable
for the nature or our maps (landmark-based). We have
selected the RANSAC algorithm, the Singular Value De-
composition (SVD), the Iterated Closest Point (ICP) and
an improved version of the last method that we have de-
noted as ImpICP. Only the RANSAC algorithm has been
already applied to Map Alignment so far [24]. The rest of
methods have never been applied to this purpose. Particu-
larly, the goodness of these methods is evaluated regarding
the number of overlapping points between both maps.

The paper is structured as follows. Section 2 presents
a comparison between the common map vs. individual
local maps strategies. Next, in Section 3, the methods sc-
lected to be analyzed in this paper arc preseated. Then,
Section 4 describes the experiments performed and the re-
sults obtained. Finally, in Section 5 the conclusions of the
study are presented.

2. Multi-robot Visual SLAM

Map building can be managed more efficiently if a
team of robots performs this task instead of a single robot.
In the last case, the robot has to cover the whole space
around it in order to build the map. By contrast, if the
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same robot collaborates with other robots, the space will
be divided and the distances traversed by each robot will
be reduced. Hence the map will be finished in less time
and the odometry errors will be smaller. For that reason, it
is evident that a team of collaborative robots can perform
the same task in a more efficient way.

In a multi-robot system, the robots explore simultanc-
ously the environment and perform observations of the
environment so that a suitable map can be built collabo-
ratively. So far, many solutions to the multi-robot SLAM
problem have emerged (12, 16]. These solutions can be
classified into two different categories:

¢ Solutions in which the estimate of the trajectories and
map building is performed jointly.

e Solutions in which each robot builds its own local
map.

In the first case, there is an unique map which is built
simultaneously with the observations of all the robots.
Some cxamples of this approach can be scen in (8, 27].
In [8] an EKF estimates an state vector containing the
poses of all robots together with a set of two-dimensional
landmarks. A common map is built by means of the EKF
cquations. Thrun [27] also proposes a solution with a
common map, in which a particle filter associated to each
robot is maintained. The advantages of sharing a global
map are the following. Firstly, robots have a global no-
tion of the unexplored frontiers and thus the cooperative
exploration can be improved. Besides, in a feature-based
SLAM, a landmark can be updated by different robots.
For this reason, robots do not need to revisit an area of
the map in order to close the loop and reduce their un-
certainty, since they can be localized with regard to land-
marks which were correctly estimated by other robots.
However, the computational cost of maintaining a global
map can be considerable and the initial pose of the robots
should be known, which is something that may not be pos-
sible in practice.

In the second case, the robots initially build their own
individual maps referenced to a local frame. Then, the
robots can merge their maps into a common one. Many
approaches belong to this second group, such as {26] and
(34). In [26] the robots agree to meet in some point of
the map in order to obtain their relatives positions. Once
the transformation between robots is known, the maps can
be merged. This approach considers the case in which
the initial poses of the robots are unknown. Regarding
to approaches that use vision in a multiple-map approach,
there are only sparse examples. One of them is the case
of {24}, where a vision-based map building approach is
performed. In this case, 3D maps are built using scale-
invariant visual landmarks. Furthermore, a submap align-
ment algorithm for global localization is presented, which
can be applied to multiple 3D submaps alignment. In [11]
the robots use visual appearance in order to detect inter-
sections between their local maps. Each of the multi-
ple robots collects a sequence of images while exploring.

Then, a similarity matrix is constructed with the similarity
measures between images captured by cach robot.

One of the main advantages of using independent lo-
cal maps, as explained in [32], is that the data association
problem is improved. Firstly, new observations should
only be matched with a limited number of landmarks in
the local submaps. Next, when the local submaps are
fused into a global map a more robust association can be
performed between the local submaps. Besides, the com-
putational cost of maintaining those maps is lower. Never-
theless, one of the drawbacks of this approach is dealing
with the uncertainty of the local maps built by different
robots when merging them.

This paper focusses on the study of this last approach,
i.e., a team of robots, in which each robot builds its own
map. These submaps should then be aligned and merged.
This aim of this paper is to study the alignment stage under
different noise and intersection conditions.

3. Map alignment

In a multi-robot system, in which each robot constructs
its own local submap, it is necessary to perform a later
task, which consists in the fusion of those local submaps
into a global one.

The fusion of local maps is performed in two main
steps. The first one consists in computing the alignment,
if existent, between the local maps. Then, once the trans-
formation between maps is known, the second step is to
merge the maps.

This paper is focussed on the first step, i.c., map align-
ment. In order to solve the transformation between local
maps, some approaches try to compute the relative poses
of the robots. As soon as the relative poses are known
the alignment of the maps is immediate. In that sense,
the easiest case can be seen in [27], where the relative
pose of the robots is considered known. A more challeng-
ing approach is presented in [16] and in [34]. In these
cases the robots, being in communication range, agree to
meet in some point. If the meeting succeed, then the ro-
bots share information in order to compute their relative
poses. Otherwise, they continue to build their local maps.
In (9], a particle filter is used to estimate a possible lo-
calization of the other robots, thus arranging a meeting
in that location. Other approaches present feature-based
techniques in order to align maps [24, 28]. The basis of
these techniques is to find matches between the landmarks
of the local maps and then to obtain the transformation be-
tween them. Our paper focusses on the last approach. Asa
consequence, the following feature-based techniques have
been analyzed.

3.1. RANSAC
This technique has been already applied to map align-
ment in [24). The algorithm is performed as follows.

1. The first step is to compute a list of possible corre-
spondences. Each pair of correspondences has the
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minimum Euclidean distance in their descriptors and
it is below a threshold thg. The coordinates m =
(z:, ¥i, 2;) are the landmarks of one of the maps, and
m' = (z},y], 2{) their correspondences in the other
map.

2. In a second step, two pairs of correspondences are
selected at random from the previous list. These pairs
should satisfy the following geometric constraint:

A2+ C?*x B2+ D? )

where A = () %), B = (¥} ~¥}), C = (z:~ ;)
and D = (y; — y;). We have set a threshold th, so
that | (A24-C?)—(B?+D?)| < thy. The two pairs of
correspondences are used to compute the alignment
parameters (¢, ty, #) with the following equations:

ty =x; — zicos@ — ylsind 2)
ty =y — yjcosf + x;sind (&)
BC - AD

@ = arctan AC-I-—BD C))]

3. The third step consists in looking for possible cor-
respondences that support the computed transforma-
tion (., ty, @), sctting the threshold thy. Finally, the
second and third step are repeated M times. The fi-
nal solution will be that one with the highest number
of supports.

In this algorithm, we have defined three different thresh-
olds: thg = 2 for the selection of initial correspondences,
th, = 2 for the geometric constrain of Equation (1) and
ths = 2 for selecting supports. Furthermore, a parameter
min = 20 establishes the minimum number of supports
in order to validate a solution and M = 70 is the number
of times that steps 2 and 3 are repeated. These are con-
sidered as internal parameters of the algorithm and their
values have been experimentally selected.

3.2.8vVD

One of the applications of the Singular Value Decom-
position (SVD) is the registration of 3D point sets [1, 23].
The registration consists in obtaining a common refer-
ence frame by estimating the transformations between the
datasets. In our paper the SVD has been applied for the
computation of the alignment between two maps. Given
a list of possible correspondences, our aim is to minimize
the following expression:

lm'B —m| &)

where m' are the landmarks of one of the maps and m
their correspondences in the other map. On the other hand,
B is the transformation matrix between both coordinate
systems. B is computed as shown in Algorithm 1 of this
section. In order to construct this list of correspondences
{m and m’), we impose two different constraints. The first

one is tested by performing the first step of the RANSAC
algorithm (3.1). Then, the geometric constraint of Equa-
tion 1 is also evaluated.

Data: m and m'

Result: Computation of matrix B

[u, d,v] = svd(m):

z=u'm;

sv = diag(d); .

21 = z(1 : n); #nis the number of eigenvalues (not

equal to Q) in sv.

w=2./sv;

B=vx*uw;
Algorithm 1: Computation of the transformation matrix
with SVD.

33.1CP

The Iterated Closed Point (ICP) technique was intro-
duced in [3, 33] and applied to the task of point registra-
tion. The ICP algorithm iterates two steps:

1. Compute correspondences (m,m’). Given an ini-
tial estimate By, a set of correspondences (m.m')
is computed, so that it supports the initial parameters
Bp. By is the transformation matrix between both
maps.

2. Update transformation B. The previous set of cor-
respondences is used to update the transformation
B. The new By will minimize the expression:
| ~ m’ - By41][, which is analogous to the expres-
sion 5. For this reason, we have solved this step with
the SVD algorithm (Algorithm 1 in Section 3.2).

The algorithm stops when the set of correspondences
does not change in the first step, and therefore Bpy is
equal to B in the second step.

This technique needs a quite good initial estimation of
the transformation parameters so that it converges prop-
erly. For that reason, in order to obtain an appropriate ini-
tial estimate we perform the two first steps in RANSAC
algorithm (3.1).

3.4. ImpICP

The improved ICP (ImpICP) method is a modification
of the previous algorithm of Section 3.3, which has been
performed ad hoc. In the previous subsection the impor-
tance of a good initial estimate was explained. Besides,
our method to compute this initial estimate was described.
However, the accuracy of the results obtained is highly de-
pendent on the goodness of the initial estimate. For that
reason, in this new version of the ICP algorithm, we have
increased the probability of obtaining a desirable result.
Particularly, we obtain three different initial estimates in-
stead of only one. This is performed by selecting three
different pairs of correspondences each case in the second
step of the RANSAC algorithm (Sec. 3.1), leading to three
initial estimates. For each initial estimate, the algorithm
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runs as in Scction 3.3. Finally, the solution selected is the
transformation that is supported by a highest number of
correspondences (supports).

4. Experimental study

The experiments have been performed using two 3D
feature-based maps. We have simulated the coordinates
of the landmarks, as can be appreciated in Fig. 1. In this
way the alignment is evaluated independently of the un-
certainty in the point detection. Then, we use real U-
SURF descriptors computed from real images of our lab-
oratory. This descriptor proved to perform properly un-
der our requirements [2). Fig. 1 shows a 2D view of the
two maps (map; and mapz). map; is represented by 250
points (stars), whereas map, is represented by circles and
its size is variable as it will be explained next. The cir-
cles are those points of mapy which are not contained in
map; (non overlapping points). There is a fixed number
of this kind of points in map, (#mon overlapping points
= 88). Then, the pentagrams are points which belong to
both map, and map, (overlapping points). The num-
ber of these points varies along the experimental perfor-
mance. Furthermore, map, is rotated and translated from
map, in the XY plane (8 = 0.35 rads, t; = 5 m and
t, = 10 m). Initially, points which are common to map,
and map, have the same descriptor in both maps. How-
ever, a Gaussian noise has been added to map, so that
the data are closer to reality. Therefore, map; has noise
with o in the localization of the points (estimate of coor-
dinates) and noise with o in the descriptors. The mag-
nitude of ¢z and ¢p has been chosen as suitable values
after performing some previous experiments. The num-
ber of overlapping points between map; and maps; is var-
ied progressively, thus the size of map, is different in
each case. map; maintains always its original size. In
this way, the goodness of the methods from Section 3 can
be analyzed with respect to the coincidence rate between
both maps. Given these two maps, the transformation be-
tween map; and map, is computed with each onc of the
methods described in Section 3. In each case, the results
are cvaluated according to the error obtained. This is the
Mean Quadratic Error computed with the map, and
a ground truth. map; is transformed again with the so-
lution obtained and the ground truth is the map, before
being initially transformed regarding map; .

In Figs. 3, 4, 5 and 6, the results are presented with o,
and ¢p equal to 0.20, whereas Figs. 7, 8, 9 and 10 show
the results with ¢, and op equal to 0.50. In the X-axis
the number of points that both maps have in common is
represented. This value varies from 0 to 160. The first
valuc shows the case in which the maps do not have any
point in common. For each value, the experiment is re-
peated 10 times. Then, the Mean Quadratic Error is
shown in the Y-axis (blue line). The blue points represents
the individual values of the Error in each onc of the 10
repetitions. In a similar way, the number of supports is
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Figure 1. 2D view of map, and map, before
the alignment.

-0 0 20 4 o 0 100 120 140 150 120
# overlappng poinis

Figure 2. Time of computation vs no. of
overlapping points.

also included in the graphics (red points). The number of
supports is the number of correspondences that satisfy the
transformation obtained as solution. The mean value of
the supports is represented by a red line. In Figs. 3 and 7
an horizontal green line represents the minimum number
of supports that must have a solution to be considered as
acceptable (parameter m in Scc. 3.1). If the number of
supports is bellow 1, no solution will be considered and
therefore no value of Error will be represented. Finally,
all figures show the number of failurcs obtained in the 10
repetitions (see bars). Each failure represents the case in
which the method docs not converge to any solution or
the solution does not satisfy the constraints (in the case of
the RANSAC method), so that no alignment between the
maps has been found.

Figs. 3 and 7 show the results obtained with the
RANSAC algorithm of Sec. 3.1. In Fig. 3 the first so-
lutions appear when the number of overlapping points is
equal or higher than 60 points. In all of those cases, the
Mean Quadratic Error is always below 2. Regard-
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Figure 3. RANSAC algorithm. The Gaussian
noise is ap = o = 0.20,

SigmeD = 020 Sigmal. = 0.20

Figure 4. SVD algorithm. The Gaussian
nolse Is op = o7 = 0.20.

ing to the number of supports (red line), a logically as-
cendent tendency is appreciable. The maximum value of
Mean support achieved is 80 from the total of 160 coin-
cident points in that case. If the Gaussian noisc grows, as
occurs in Fig. 7, the results get worse. It can be seen that
the number of supports decreases in all the experiments.
Besides, it is noticeable that no solution is obtained un-
til the number of overlapping points is 120. Before that,
the number of failures is always 10 out of 10 repetitions
(bars).

Figs. 4 and 8 present the results of the SVD algorithm
of Scc. 3.2. In those cases, the error values are 100 high.
For instance, in Fig. 4 the error value having 100 over-
lapping points is close to 30. At least, the error has a de-
scendent tendency as the number of overlapping points in-
creases. However, in Fig. 8 the crror values are much more
unstable. Regarding the number of supports, the tendency
is quite constant in both graphics.

The behavior of the ICP algorithm of Secc. 3.3 is re-
flected in Figs. 5 and 9. In Fig. 5 the error value obtained
are quite acceptable. It is noticeable that the error curve
decreases sharply from the case of 20 to 60 overlapping

Sigrad = 0.20 Sigrmat = 020

Figure 5. ICP algorithm. The Gaussian

noiseis op = o1, = 0.20.

SigmeD «0.20 Sigmal » 0.20

Figure 6. ImpICP algorithm. The Gaussian
noise is op = ¢, = 0.20.

points. Then, the curve continues descending but very
slightly. This last part of the curve shows that the error
values are around 2, which is a quite good result. How-
ever, the yellow bars show, in some cases, a small number
of failures. Fig. 9 shows worse results.

Finally, in Figs. 6 and 10 the results of the improved
version of the ICP algorithm (Scc. 3.4) are shown. In these
cases, the results obtained are very similar to the previous
ICP algorithm in terms of error and mean support values.
However, it is noticeable that the stability of the algorithm
is higher. Paying attention to the yellow bars in Fig. 6 it is
shown that the algorithm always obtains a solution when
the number of overjapping points is equal or higher than
100. In Fig. 10 the number of failures is also reduced in
comparison with Fig. 9.

In general, the best results are obtained by the ImpICP
and the RANSAC algorithm. It is true that the error val-
ues of RANSAC are slightly lower. However, the ImpICP
algorithm is more stable in terms of having less number
of failures. Comparing Figs. 3 and 6, it can be seen
that RANSAC presents failures until the case in which
the number of overlapping points is 140. By contrast, the
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Figure 7. RANSAC algorithm. The Gaussian
noise is op = o1 = 0.50.

SigmeD = 0.50 Sigmel. = 0.50

Error (Due peints)
Mean siror (Slue ine)
# suports (red points)
Maan support (red Ena)
# tallures (bare)
ez 8 8 8 § 5 5 88 &

Figure 8. SVD algorithm. The Gaussian

noise Is op = o, = 0.50.

ImpICP algorithm do not obtain any failure when having
more or equal than 100 overlapping points. In Figs. 7 and
10, it is shown that RANSAC obtains a much lower value
of error than ImpICP. Nevertheless, it only achicves re-
sults until 120 overlapping points, whereas ImpICP ob-
tains solutions with 40 overlapping points.

In addition to the experiments performed, the compu-
tation time of each algorithm has also been measured, as
Fig. 2 shows. The curves shown have an ascendent ten-
dency. This is due to the size of mapsz, which is higher
as the number of overlapping paints increases. It is re-
markable that the values of the computation time are very
similar in all of the methods. For that reason, this criterion
can not be used to select one of the methods.

5. Conclusions

Several algorithms for performing map alignment have
been analyzed in this paper. The experiments have been
performed with two 3D landmark-based maps constructed
by two different robots in a multi-robot visual SLAM sys-
tem. The methods have been evaluated under noisy condi-

Sigrad « 050 Sigrat =050

rses?
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Q8-

[ 0 © €0 © 10 10 0 0 180
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Figure 9. ICP algorithm. The Gaussian

noiseis ocp = o = 0.50.

swno-o.woswm-o.so

-

L Ay

£
© ®
# Overtapping poirss

Figure 10. ImpICP algorithm. The Gaussian
noiseis op = oy, = 0.50.

tions and different intersections between both maps. The
ImpICP has shown to perform the best in our experiments,
resulting in low error values and an acceptable stability, in
terms of a small number of failures.

As future work, our aim is to analyze these methods
using real input data captured in a SLAM process. We also
like to study the next stage of the fusion of local maps, i.e.,
map merging.
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