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Abstract—Redundant manipulators offer several advantages,
including improved manipulability, singularity avoidance, and
obstacle evasion. However, kinematic redundancy also introduces
additional challenges, such as the need to solve an underdeter-
mined inverse kinematic problem to control the manipulator.
This paper introduces a novel approach for motion planning of
redundant manipulators, based on the exploration of feasibility
maps. The proposed method is an extension of the RRT algo-
rithm, modified to explore the redundant space in order to find a
suboptimal feasible path in the joint space, sacrificing optimality
for scalability to higher degrees of redundancy. The method is
able to follow a given task trajectory while considering other
constraints, such as joint limits, self-collisions, and obstacles.

Index Terms—redundant manipulator, inverse kinematics, mo-
tion planning

I. INTRODUCTION

Kinematic redundancy occurs when a manipulator has more
degrees of freedom (DOF) than necessary to perform a task.
This is a common feature in many robotic systems, such as
industrial manipulators, collaborative arms, or mobile manipu-
lators. The presence of redundant DOF allows the manipulator
to perform the task in multiple ways, which can be exploited
to improve the performance of the robot [1]. For instance,
redundancy can be used to avoid singularities [2], [3], improve
manipulability [4], or avoid obstacles [5].

However, the existence of redundant DOF also introduces
additional challenges, such as the need to solve the inverse
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kinematic problem (IKP) to obtain the joint configuration
of the manipulator from a given task. It is well known
that the IKP is an underdetermined problem for redundant
manipulators, resulting in an infinite number of solutions.

The most common way to address this issue is by solving
the IKP at a differential level, by means of the Moore-
Penrose pseudoinversion of the Jacobian matrix J [6], in
order to express joint velocities q̇ in terms of task velocities
ẋ. However, this approach does not ensure the avoidance of
kinematic singularities, as proved in [7]. The authors of [2] and
[3] proposed to use a damped least-squares approach to solve
the IKP, which results in a nonsingular Jacobian throughout
the workspace.

Task-space augmentation, proposed in [8], is another ap-
proach to solve the IKP for redundant manipulators. It adds
additional parameters to the task, which are used to satisfy
additional constraints. This way, the task vector can be aug-
mented to equal the number of DOF of the manipulator,
resulting in an augmented task for which the manipulator is
nonredundant.

The recent trend is to use optimization-based approaches to
solve the IKP, which allows to take into account additional
constraints. Gradient descent is employed in [9] to maximize
the distance to obstacles while minimizing the end-effector’s
orientation error. However, the typical approach is to formulate
the IKP as a quadratic programming (QP) problem and obtain
a solution using a QP solver [10] or [11]. In [12], this approach
was used to achieve robust constrained control that can be
used to incorporate hard joint constraints (e,g,. joint limits or
obstacles). Joint torque optimization is achieved in [13] by
formulating a QP problem subject to physical constraints.
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Neural networks (NN) have also been used to solve the
IKP of redundant manipulators. In [14], the authors present
a dual network architecture to solve the IKP of redundant
manipulators. The authors in [15] propose using an ANFIS
architecture [16], which combines fuzzy logic and NN, to
obtain the joint configuration for a given task. For further
information on the use of NN for solving the IKP, the reader
is referred to [17].

Based on the concept of task-space augmentation, reference
[18] presents feasibility maps, which are used to determine
whether a manipulator is able to track a given trajectory while
avoiding obstacles. A subsequent work [19], uses feasibility
maps to plan collision-free trajectories for redundant manip-
ulators minimizing the change in the redundant parameter.
The concept is also expanded in [20] to plan the trajectory
of a redundant parallel manipulator by transitioning among
working modes. However, the path is not planned completely
autonomously, as it needs a human operator to select some
intermediate waypoints. In [21], an exhaustive grid-search on
feasibility maps is performed using dynamic programming to
find the globally optimal trajectory.

In this paper, we present a novel approach for motion
planning of redundant manipulators, based on the exploration
of feasibility maps. The proposed method is an extension of
the Rapidly-exploring Random Trees (RRT) algorithm [22],
modified to explore the redundant parameters in order to find a
feasible path in the joint space. Like previous similar methods,
the method is capable of handling constraints such as joint
limits, self-collisions, or obstacles while following a given
task trajectory. However, instead of performing exhaustive grid
searches to find globally optimal trajectories, our proposed
method uses an RRT-based sampling to find a suboptimal path
in the space of redundant parameters, sacrificing global opti-
mality for computational efficiency, which allows the method
to scale to higher degrees of redundancy.

The rest of the paper is organized as follows. Section
II reviews the concept of feasibility maps. The proposed
method is presented in Section III, which uses RRT to explore
the redundant space of the manipulator. In Section IV, the
proposed method is evaluated in a simulated example. Finally,
Section V presents the conclusions and future work.

II. FEASIBILITY MAPS

The IKP refers to the task of obtaining the joint con-
figuration q of an n-DOF manipulator from a given m-
dimensional task x, which is typically its end-effector position
and orientation. The forward kinematic problem consists in
computing the position and orientation x of the end-effector
from the joint angles q, which can be written as follows for
serial robots:

x = f(q) (1)

When solving the IKP, it would be desirable to be able to
invert (1) and obtain an expression as follows, which provides
the joint coordinates as a function of the task variables:

q = f−1(x) (2)

However, in general it is not possible to obtain a global
inverse function, because normally, for nonredundant manipu-
lators (n = m), a single x can be achieved by a finite number
of different solutions for q, i.e., the inverse kinematic mapping
is multivalued. This is even worse for kinematically redundant
manipulators (n > m), for which equation (1) admits infinitely
many different solutions for q for a given x. The degree of
redundancy r can be defined as the difference between the
DOF of manipulator and task:

r = n−m (3)

One way to address this issue is by using an augmented
task space, which causes the IKP to become determined and
can be solved by specifying the redundant parameters of the
task. For a manipulator performing a task x with r degrees
of kinematic redundancy, the augmented task xa is defined as
an n-dimensional vector, for which the manipulator becomes
nonredundant [23]:

xa =
[
x1 · · · xm xm+1 · · · xm+r

]⊺
=

[
x
xr

]
(4)

where xr is an additional r-dimensional task vector, whose
components are independent of every other in xa, and can
be freely selected depending on the application needs. The
redundant parameters vector xr is typically comprised by joint
coordinates or a differentiable function in terms of the joints
vector, such as the position or orientation of a tracked point
of the manipulator.

In the presence of multiple constraints, such as joint limits
or obstacles that must be avoided, the set of feasible con-
figurations that satisfy the desired task can be depicted in a
(r+1)-dimensional map. The extra dimension corresponds to
the time dimension on which the task is defined, which often
is the trajectory followed by the end-effector over time. These
maps are known as feasibility maps and were first introduced
in [18]. A feasibility map FM is defined as the set of points
in the (t, xm+1, . . . , xm+r) space, where t is the time, for
which there exists a feasible joint configuration that satisfies
the commanded task and the imposed constraints.

To illustrate the concept, let us consider a 2R planar
manipulator (n = 2), shown in Fig. 1, whose link lengths
are l1 = 1 and l2 = 1, and whose joint configuration is
defined by q =

[
q1 q2

]⊺
. It executes a task x =

[
py
]

defined by the position of the Y coordinate of its end-effector
py over time t (m = 1), where the desired trajectory is
py = −6.662t2 + 8.162t − 1.5, with t varying from 0 to 1.
This scenario results on the manipulator having r = 1 degree
of redundancy for achieving the commanded task. Therefore,
an augmented task can be defined by adding an extra parameter
to the task vector x. In this example, the first revolute joint q1
is chosen as the redundant joint, resulting in the augmented
task vector xa:

xa =

[
py
q1

]
(5)
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Fig. 1. 2R planar manipulator with an elliptic obstacle.

In order to solve the IKP, the remaining joint coordinates
must be expressed in terms of the augmented task parameters.
Following the example, q2 must be defined in terms of py and
q1:

q2 = arcsin

(
py − l1 sin (q1)

l2

)
− q1 (6)

or

q2 = π − arcsin

(
py − l1 sin (q1)

l2

)
− q1 (7)

where li is the length of i-th link that constitutes the manipu-
lator. Note that there exist two solutions to the IKP depending
on the quadrant where (q1 + q2) is located. When the angle
lies in the first (QI) or fourth quadrant (QIV), the value of
q2 is calculated as in (6) and the resulting joint configuration
corresponds to the one drawn in solid line in Fig. 1. Otherwise,
the angle belongs in the second (QII) or third quadrant (QIII)
and (7) is employed. The solution for the latter case is plotted
in dashed line. Consequently, two different feasibility maps
can be extracted from the task, one when (6) is used for solving
q2, and another when using (7).

The environment on which the manipulator operates is
shown in Fig. 1. The red ellipse represents a forbidden

region for the end-effector, and it is defined by the following
inequation:

(px − 1.1)2

12
+

(py + 0.2)2

0.252
≤ 1 (8)

where px and py are the coordinates of the end-effector in the
reference system of the base, identified by X and Y in Fig.
1. The ellipse is an obstacle that the end-effector must avoid
colliding with (px and py must not satisfy (8)), but the rest of
the manipulator can intersect with it.

Fig. 2 shows the feasibility maps of the 2R planar manipu-
lator, which are r + 1 = 2-dimensional and can be plotted in
a 2D space. The horizontal axis represents time t, while the
vertical axis represents the joint coordinate q1, which is the
only parameter in the additional task vector xr. The elliptic
obstacle in the task space (Fig. 1) appears as red regions in the
plot. Points in the (t, q1) space that lead to a complex solution
of the IKP (i.e., points for which the argument of the arcsin in
(6) and (7) is higher than 1 or smaller than -1) are represented
in purple.

It is important to note that the actual feasibility maps
are strictly limited to the uncolored regions of the plot and
the colored regions do not pertain to them because they
imply forbidden configurations (either collisions or complex
solutions). The upper and lower boundaries of the feasibility
maps are also established by the joint limits in case the values
of the vector xr of redundant parameters are chosen as such.
For example, in Fig. 2, it is assumed that q1 is unbounded, so
the displayed limits are ±π radians.

III. PROPOSED MOTION PLANNING ALGORITHM

Feasibility maps depict every feasible point in a (t,xr)
space that meets specific constraints to accomplish a given
task. By exploring feasibility maps, it is possible to determine
a continuous trajectory in the redundant space xr over time t,
for a prescribed desired task trajectory x(t) parameterized in
terms of t (which typically represents time, or an arc-length
parameter).

As an example, consider the feasibility map FM shown
in Fig. 2a and a pair of start pstart = [tstart, q1,start] and

(a) (q1 + q2) ∈ QI or QIV (b) (q1 + q2) ∈ QII or QIII

Fig. 2. Feasibility maps of the 2R planar manipulator for the given task and constraints.



end points pend = [tend, q1end]. Note that the augmented task
vector xa is uniquely defined for each point in the map, since
it is defined by the task py , which only depends on t, and the
redundant joint q1. Consequently, the joint configuration q can
be calculated at any point in the map by means of (6).

A feasible path in the redundant space over time can be
established if a set of points that belong to the feasibility map
connect the initial and final configurations. In other words,
a feasible path P = {p0,p1, . . . ,pn} exists if there is a
continuous set of points pi = [ti,x

⊺
ri] such that pi ∈ FM

for all i, where ti > ti−1, p0 = pstart and pn = pend.
Fig. 3 depicts two feasible paths connecting the start and

end points in the feasibility map. The solid-line path navigates
a narrow passage between the red obstacle region and the
purple region where the IKP has complex solutions. On the
other hand, the dashed-line path takes advantage of angular
wrapping in q1 through ±π, resulting in a more direct path that
avoids the narrow passage. If the joint limits for q1 constrained
the joint to remain within the range of [−π, π], then the solid-
line path would be the only feasible option, as the wrapping
would be impossible.

Furthermore, if the end configuration, determined by pend,
is irrelevant as long as it is feasible, then any path ending
in the vertical green line shown in Fig. 3, where the time is
equal to tend (tend = 1 s in this case), would be considered
valid. If the final time tend is reached, it means that the task,
determined by the trajectory x has been completed. This fact
will be exploited in the proposed algorithm.

Path-planning is a well-established problem in robotics and
there are many algorithms that can be employed to solve it.
Search-based algorithms, like Dijkstra’s [24], A∗ [25] and
its variations [26]–[28], are capable of finding the optimal
path in a graph by exploring and evaluating paths using a
heuristic function that guides the search. However, as the
dimensionality of the problem grows, their computational costs
become prohibitively expensive.

In contrast, sampling-based algorithms, such as Probabilistic
Roadmaps (PRM) [29] and Rapidly-exploring Random Trees
(RRT) [22], can identify a feasible path more efficiently,
regardless of the dimensionality of the search space. Nonethe-

Fig. 3. Two possible paths in the feasibility map.

less, they do not guarantee the optimality of the found path.
RRT is a popular sampling-based motion-planning algo-

rithm that explores a given space and constructs a tree by
randomly sampling points and connecting them to the nearest
point in the tree. Starting from an initial state pstart, the RRT
algorithm generates a tree T by iteratively adding new nodes
to the tree until a path that reaches a final state pend is found.

RRT was first introduced in [22] as a randomized data
structure for path planning in high-dimensional spaces in an
incremental way. Since then, many variations of the original
algorithm have been proposed to address different challenges
and requirements. RRT-Connect extends the RRT algorithm
to allow for bidirectional search between the start and end
points [30]. In [31], ERRT is proposed to make the original
RRT algorithm suitable for real-time applications. Dynamic
RRT [32] provides a method to replan the path when the
environment changes. RRT∗ [33] and Anytime RRT [34] are
extensions that ensure the optimality of the found path when
given enough time.

Due to its scalability to a higher number of dimensions,
RRT has been widely employed for motion planning of redun-
dant manipulators with collision avoidance [35], [36]. Recent
works have proposed various enhancements, such as using an
artificial potential field on the target configuration to guide
the tree expansion towards the goal [37], a bidirectional RRT-
based algorithm that can directly connect both generated trees
to avoid obstacles [38], and another variant that leverages the
scalability of the method to plan the path of a 17-DOF robot
while avoiding obstacles and adhering to the joint deflection
angles [39].

A. Modified RRT algorithm

A modified RRT algorithm that explores the feasibility map
of a redundant manipulator to determine a feasible path in
the redundant space is proposed in this subsection. It is an
adaptation of the original RRT with some modifications to
account for the particularities of the problem at hand.

The main difference between the original RRT algorithm
and the proposed algorithm is that the latter does not have a
final state pend. Instead, our algorithm searches for a feasible
path that reaches the goal subset G = {[t,x⊺

r ] ∈ FM : t =
tend}, regardless of the final configuration xr, which is not
of interest, as long as it is feasible. From the set of feasible
paths found, the algorithm will select the one that minimizes
a cost function c(p) that will be defined later.

Moreover, unlike most RRT-based algorithms [40], the pro-
posed algorithm uses online planning. That is, the algorithm
does not require to precompute the whole feasibility map in
advance, it exists implicitly. In Figure 2, the feasibility maps,
which are the white obstacle-free regions due to constraints,
have been precomputed in advance only for illustrative pur-
poses. However, during the online execution of the algorithm,
the map is generated and explored in real time as required.
Algorithm 1 presents the proposed algorithm and Fig. 4
illustrates its most important steps, which are described over
the next paragraphs.



Algorithm 1: Modified RRT for feasibility maps

1 T ← InitializeTree(pstart)
2 for i = 1, 2, . . . , imax do
3 prand ← RandomNode
4 pparent ← BestParent(prand)
5 if conditions (C1), (C2) and (C3) are met then
6 Add node prand with parent pparent to T
7 pext ← ExtendPath(pparent,prand)
8 if conditions (C2) and (C3) are met then
9 Add node pext with parent prand to T

10 Pbest ← BestPath(T , c(p))
11 Psmooth ← SmoothPath(Pbest)
12 return Psmooth

tstart tend
xr,min

xr,start

xr,max

pstart

p2≡ pparent

p3

p1

prand

pext
Unfeasible paths

Extended path

xr

t
t1 t2≡ tparent t3 trand

Fig. 4. Proposed modified RRT algorithm for feasibility maps, where FM′

is the complement of FM.

The algorithm starts by initalizing the tree T with the
starting state pstart, which is a point in the feasibility map
FM. The tree is a data structure that establishes a hierarchical
relationship between its nodes, each of which corresponds to
a state p ∈ FM. Each node may have multiple descendants
but only a single parent. The initial node pstart is the root of
the tree and has no parent.

Next, the algorithm performs imax iterations, where imax is
a predefined maximum number of iterations. In each iteration,
a random node prand ∈ FM is generated, guaranteeing its
feasibility since it is contained in FM. The algorithm then
searches for the best parent node pparent for prand (we will
explain next what means to be the best parent node).

The search process must respect the requirement that time is
strictly monotonically increasing, which requires that the time
coordinate of the parent node tparent must be less than the time
coordinate of the random node trand, i.e., tparent < trand.
The search is made forward in the time dimension, starting
from the root node, until a node pparent is found such that:
(C1) tparent < trand, (C2) the straight path between pparent

and prand completely lies in FM (i.e., it does not intersect
forbidden regions), and (C3) other requirements, which are
specific to the problem at hand, are met. For instance, one such
requirement could be that the velocity of some component q̇i

of xr lies within its established limits [q̇i,min, q̇i,max]:

q̇i,min ≤
qi,rand − qi,parent
trand − tparent

≤ q̇i,max (9)

where tj and qi,j are directly extracted from the node pj .
The most computationally demanding task of the algorithm

is verifying condition (C2), i.e., whether the straight line path
lies completely within FM. Since the feasibility map is not
precomputed, this verification must be performed online. The
feasibility of the straight path between pparent and prand is
checked by discretizing it with the same resolution as the
map and verifying if every discretized point lies within FM.
To improve the efficiency of the process, these discretized
points are checked in random order following a continuous
uniform distribution. This approach increases the probability
of identifying an unfeasible point in the path early and results
in faster rejection of the path if it is invalid. If the path is
valid, prand is added to the tree as a child of pparent and the
path is extended.

The extension process consists in extending the previously-
verified valid straight path from prand to an extended node
pext, which is the intersection of the elongated straight path
with the vertical goal subset G. Next, the algorithm tests the
straight path between prand and pext by verifying conditions
(C2) and (C3) as explained above. If the extended path is
feasible, pext is added to the tree as a child of prand, meaning
that a complete feasible path P has been found.

In Fig. 4, the algorithm is applied to an example scenario
where the feasibility map is bounded by tstart and tend in the
time dimension, xr,min and xr,max in the redundant param-
eters dimension, and a red region representing an obstacle in
the feasibility map. At the current iteration shown in Fig. 4,
the tree contains four nodes: pstart, p1, p2, and p3.

The algorithm generates the random node prand and
searches for the best parent node pparent. The straight path
between pstart and prand is first checked for feasibility and
rejected because it crosses the red region, which is not in the
feasibility map. The remaining nodes are checked iteratively
in the order determined by t, until p2 is identified as the best
parent node pparent. Note that p3 has not been tested at the
moment pparent is determined since t3 > t2.

Then, the straight path between pparent and prand is
extended to pext ∈ G and its feasibility is verified, resulting
in a complete path P that connects pstart and G.

Once the maximum number of iterations imax has been
reached, the algorithm evaluates the tree and selects the best
path Pbest using a cost function c(p). This function evaluates
the cost of the connection between a node and its parent,
and should be chosen depending on the problem at hand. For
instance, a simple choice would be to minimize the sum of
the weighted norm of the segments of the path. For a node pc

with parent pp, this cost function would be:

c(pc) =
√
(pc − pp) W (pc − pp)⊺ (10)

where W is a diagonal matrix, whose diagonal elements are
the weights wi associated to each component of p. Meaning



that, for a higher wi, the cost function will prioritize the
minimization of the i-th component of p.

The cost function is computed recursively for each path, by
starting from its final node, whose time coordinate equals the
end time (t = tend), and adding its cost to that of its parent.
This operation is recursively performed until the root node is
reached, accumulating the cost of each segment of the path.
The path with the lowest accumulated cost is selected as the
best path Pbest.

Due to the nature of the search algorithm, the path returned
is polygonal, which means discontinuous velocities and infinite
accelerations, which is not desirable in most applications. To
address this, Pbest is smoothed using a B-spline interpolation.

Given a path P = {pstart,p1, . . . ,pnp
,pend}, consisting

of the start and end nodes and a set of np intermediate nodes,
a set of control points C is established along the path:

C = {1c1, 1c2, . . . , 1cnc
, 2c1,

2c2, . . .
2cnc

, . . .} (11)

where nc is the number of control points for each link (e.g.,
from pstart to p1) of the complete path P . The control point
icj is the j-th control point of the i-th link that forms P . The
control points in each link are regularly spaced along it. The
number of control points must be high enough. Moreover, the
abrupt changes of direction of the original path, are smoothed
with arcs that remain close to it. This ensures that the resulting
path does not deviate significantly from the original one in
order to maintain the feasibility of the path. The notation and
resulting control points are illustrated in an example in Fig. 5.

The control points C are then interpolated using a cubic
(degree 3) B-spline interpolation [41], which results in an
smooth path Psmooth, as shown in Fig. 5. This smooth path
is the output of the algorithm.

The returned path includes the time values and the redun-
dant parameters in each time step. By solving q from xa as
explained in Section II, the joint configuration can be derived
from the redundant parameters at each time. Once the joint
configuration is determined for each time step, the manipulator
can be controlled to perform the task using a standard joint-
space controller.

IV. SIMULATIONS

In order to validate the proposed algorithm, it has been
simulated under two different scenarios. The first one cor-
responds to the one shown in Fig. 1, where a 2R planar

p1

p2

pend

1c1

1c2

1c3

1c4
1c5

2c5

2c4

2c3

2c2

2c1

3c1

3c4
3c2 3c3

3c5

pstart P

Psmooth

Fig. 5. B-spline interpolation Psmooth (in red) of the path P (in green),
with nc = 5.

manipulator is required to follow a commanded trajectory
on the Y coordinate of its end-effector (py) while avoiding
placing it inside the elliptic obstacle in red.

The commanded trajectory is given by py(t) = −6.662t2+
8.162t − 1.5, with t varying from 0 to 1 seconds, which
causes the vertical coordinate of the end-effector to describe a
parabolic trajectory versus time, passing through the points
(0,−1.5), (0.613, 1) (maximum), and (1, 0) in the (t, py)
space. The starting configuration of the manipulator is q =
[−0.698,−0.331] rad.

Since the sum of the joint angles lies in QIV, (6) will be
used to solve the IKP, corresponding to the feasibility map
shown in Fig. 2a. It is appropriate to remind the reader that
the algorithm does not have prior knowledge of the feasibility
map, which is explored and generated in real time, and is only
shown for illustrative purposes. The resolution employed for
the check of the feasibility of the segments ((C2) in Section
III-A) is 0.005 seconds.

The joints of the manipulator are constrained to lie in the
range [−2π, 2π] radians to allow for angle wrapping at ±π,
and the maximum joint velocities are limited to 13 rad/s.
Equation (10) is employed as the cost function c(p), with
an identity weight matrix W = I.

The algorithm is executed with a maximum number of
iterations imax , which means that imax random nodes prand

will be generated, along with the likely extended nodes pext,
whose number is not affected by the maximum number of
iterations. For path smoothing, nc = 6 control points are
employed per link of the path during the B-spline interpolation.

In Table I we show the results, averaged over 100 runs, for a
selection of values of imax . Simulations have been performed
in Python on an Intel Core i5-10400 CPU @ 2.90GHz.

To evaluate the quality of the obtained paths, the optimal
path Popt is calculated using the A∗ algorithm [25]. The cost
of the optimal path is 3.003, and it is plotted in magenta in Fig.
6. Fig. 7 shows the relationship between the relative error of
the average path per maximum number of iterations, together
with the best-fit hyperbola, providing visual representation of
the quality of the paths obtained by the algorithm. This error is
defined as the difference between the cost of the path obtained

TABLE I
AVERAGE TIME AND COST (OVER 100 RUNS) FOR DIFFERENT imax

imax Average time (s) Average cost

100 0.217 3.974
200 0.974 3.473
300 1.232 3.415
400 1.879 3.312
500 2.216 3.258
600 3.659 3.249
700 4.489 3.208
800 5.074 3.226
900 6.267 3.208
1000 7.124 3.208
2500 37.442 3.173
5000 140.841 3.165
7500 302.732 3.163



Fig. 6. Best path output by the A∗ algorithm.
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Fig. 7. Relative error of the average path per imax.

by the algorithm and the cost of the optimal path. It has
been observed that the failure rate, which is defined as the
percentage of runs in which the algorithm does not find a
feasible path, drops to 0% after imax = 70, thus the data is
not shown in the table. Considering the results, we have chosen
imax = 500 as the optimal maximum number of iterations for
this example, since it provides a good trade-off between time
and quality of the path returned.

Fig. 8 shows the tree generated by the algorithm with
imax = 500. Every path is colored based on its status: light
red for paths that do not reach tend, green for paths that reach
tend and blue for the smooth path Psmooth returned.

Fig. 8. Output of the modified RRT algorithm with imax = 500.

In the following simulation, consider the same scenario
(Figure 1), but the length of the first link l1 of the manipulator
depends now on the value of an additional prismatic joint q2:
l1 = 0.5 + q2, with q2 constrained in the range [0, 0.5] m.
The joint stated as q2 in Figure 1 now is q3. With those
new definitions of qi, the degree of redundancy is r = 2
and the new redundant parameters vector is xr = [q1, q2]

⊺.
The starting configuration of the manipulator is now q =
[−0.698 rad, 0.5 m,−0.331 rad].

Following the same process as in the previous example,
yields the optimal imax = 2100. However, the obtained data
and its analysis are not shown for brevity. Averaged over 100
runs, the algorithm takes 1.367 seconds to find a path with a
cost of 3.642. Also, the failure rate is 0% for imax ≥ 1600. In
Figure 9, the tree generated by the algorithm is shown along
with the feasibility map, which is now three-dimensional (r+
1 = 3). The same color scheme as in Figure 8 is employed
for representing every obtained path.

V. CONCLUSIONS

This paper has presented a new algorithm for motion
planning of redundant manipulators that builds upon the RRT
algorithm. The proposed method randomly samples points in
the task’s feasibility map subject to certain constraints and
iteratively builds a tree by connecting these points to previous
nodes in the tree. Paths that reach the goal are evaluated based
on a cost function and the one that minimizes it is selected. The
chosen path is then smoothed using a B-spline interpolation.
The algorithm has been evaluated on a 2R and an RPR planar
manipulator and was able to generate feasible paths efficiently.

Future work will involve extending the algorithm to ma-
nipulators with higher degrees of redundancy r, which will
require exploring higher dimensional feasibility maps, for

pend
pwrap

pwrap

pstart

Fig. 9. Output of the modified RRT algorithm for the RPR manipulator with
imax = 2100.



which exhaustive grid-based searches, like classic A∗, would
require a prohibitive amount of time. Successful preliminary
tests on a manipulator with r = 5 suggest promising scalability
to more complex scenarios. Also, we will test the method on
real manipulators.
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