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Abstract. The ability of finding its situation in a given environment
is crucial for an autonomous agent. While navigating through a space,
a mobile robot must be capable of finding its location in a map of the
environment (i.e. its pose < x, y, θ >), otherwise, the robot will not be
able to complete its task. This problem becomes specially challenging if
the robot does not possess any external measure of its global position.
Typically, dead-reckoning systems do fail in the estimation of robot’s
pose when working for long periods of time. In this paper we present
a localization method based on the Monte Carlo algorithm. During the
last decade this method has been extensively tested in the field of mobile
Robotics, proving to be both robust and efficient. On the other hand, our
approach takes advantage from the use of a vision sensor. In particular,
we have chosen to use SIFT features as visual landmarks finding them
suitable for the global localization of a mobile robot. We have succesfully
tested our approach in a B21r mobile robot, achieving to globally localize
the robot in few iterations. The technique is suitable for office-like en-
vironments and behaves correctly in the presence of people and moving
objects.

1 Introduction

The skill of navigating through an environment is a key aspect for a mobile robot.
A mobile robot must be capable of travelling from a starting point in space,
say A to a final point B. Frequently, the space traversed by the robot will be
unstructured, changing and with people moving around. First, the mobile agent
must plan a trajectory that starts at point A and ends at point B. The set of
algorithms that solve this problem are often referred as path planning techniques.
These techniques use a map of the environment to find the best path that reaches
a particular destination from a given start location. While the robot moves along
the planned path it needs to know its position/orientation, otherwise the mobile
agent would not be able to follow it. Naively, the position/orientation of the
robot can be determined using dead-reckoning, that is, using odometry sensors.
However, these sensors lack of accuracy when used for long periods of time, due
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to wheel slippage, drifts and other problems. GPS and inertial systems offer an
alternative to dead reckoning, but have a drawback: Often mobile robots working
in indoor environments cannot receive the GPS signal properly. Localization
techniques are used instead, in order to find the position of the mobile agent in
space. Most of them try to match salient characteristics of the space sensed by
the robot with the same characteristics in the map, thus localizing the robot. For
example, in [1] a CCD camera and a laser rangefinder are used to find vertical
and horizontal structures in the space that surrounds the robot (i.e. corners and
walls). Those structures and then matched against a map of the environment.
As a result, the robot can localize itself in the map.

Our approach to localization is based on the Monte Carlo algorithm. During
the last decade this method has been extensively tested in the field of mobile
Robotics, proving to be both robust and efficient. On the other hand, our work is
based on a stereo vision system, which allows us to compute the relative distance
of the robot to significant points of the space. These significant points of space
are usually called landmarks, and are the basis that enables the robot to deduce
its location in a previously built map of the environment. In particular, we have
chosen to use SIFT features as visual landmarks finding them suitable for the
global localization of a mobile robot.

In section 2 we relate our work with previous implementations. Section 3
explains the use of SIFT features, which have been used previously in robotics
applications, such as [2] and [3]. Next, in section 4 we will explain the basics
of Monte Carlo localization. The integration of SIFT features in Monte Carlo
localization will be also explained in section 4. Section 5 describes the experi-
mental setup used to test the MCL algorithm together with the use of visual
SIFT features. Finally, in section 6 we analyze the main results that we have
obtained and propose future work related to our investigation.

2 Relation to prior work

As stated previously, a mobile robot must not rely uniquely on its odometry
information to estimate its position: It must use the information provided by its
sensors to observe the space that surrounds it and relate those observations with
a map of the environment.

Vision sensors have been used by different groups for localization tasks. For
example, in [4] Neira et al. use the information provided by a CCD camera and a
laser rangefinder and then extract the significative characteristics from the space
surrounding the robot. Using an EKF, those characteristics are matched with a
previously built map of the environment, thus permitting the estimation of the
robot’s location. Olson [5], proposes the use of salient points in stereo images
extracted using the Förstner interest operator. Afterwards, the 3D position of
each point is calculated an ego-motion measure is estimated by matching the
points accross successive images. This approach reduces significantly the error
in tracking robot’s position, however, it does not provide a solution for the global
localization problem. In [2] and [3] stereo vision is used to track 3D visual land-
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marks extracted from an unstructured environment, in particular, SIFT features
are used as visual landmarks. During an exploration phase, the robot extracts the
SIFT features from stereo images (actually a trinocular stereo system), calculat-
ing their 3D position in space, and stores them in a database (which conforms the
map). Later, when the robot is navigating, the stored SIFT features are found
in the environment and the relative distance to them is computed. Finally, its
pose is calculated by means of a Hough transform.

In our work, we take an approach similar to that of [2] and [3]. That is, we
extract SIFT landmarks from the environment and store them in a database.
SIFT landmarks are characterized using a descriptor. This means that the same
landmark can be recognised by the robot when it navigates through the envi-
ronment, hence, this enables the use of SIFT features for the global localization
problem. However, our localization algorithm differs greatly from the one cited
previously. Indeed, we use a particle filter approach inspired in the work exposed
in [6], [7] and [8], which has proved to be both fast and robust.

3 Sift Features

SIFT (Scale Invariant Feature Transform) features were developed by Lowe for
image feature generation, and used initially in object recognition applications
(See [9] and [10] for details). Lately, SIFT features have been used in robotic
applications ([2], [3]), showing its suitability for localization and SLAM tasks.
The features are invariant to image translation, scaling, rotation and partially
invariant to illumination changes and affine projection. Thus, this enables the
same point in space to be viewed from different poses of the robot, which may
occur while the robot moves around its workplace, thus providing information
for the localization process.

SIFT features are located at maxima and minima of a difference of Gaussian
function applied in scale space. They can be computed by building an image
pyramid with resampling between each level. SIFT locations are extracted by
means of successive filtering. The input image is first convolved with a Gaussian
function of σ =

√
2, resulting in image A. Next, the image is further convolved

with a Gaussian function, yielding image B. SIFT locations are extracted as
maxima and minima from the image C = A−B.

The SIFT locations extracted by this procedure can be understood as sig-
nificant points in space that are highly distinctive. The next step needed is to
describe that point in space, so that the robot can be capable of recognising it in
a later stage, while it navigates through the environment. One simple solution
would be to sample the image around the key location and store the values in a
matrix. Then, a correlation measure could be used in order to identify the fea-
ture. However, this descriptor is very sensitive to illumination and 3D viewpoint
changes, hence this solution does not produce valid results. In our application,
we used a descriptor similar to the one proposed in [10], based on local im-
age gradients, which behaves correctly with illumination and viewpoint changes.
Once the SIFT location is calculated, we assign an orientation to each feature,
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based on local image properties. By doing this we can represent the descriptor
relative to this orientation, thus achieving variance to image rotation.

4 Monte Carlo SIFT localization

In robot localization we are interested in estimating the pose of the vehicle
(typically, the state x = 〈x, y, θ〉) using a set of measurements Zk = {zk, i =
1 . . . k} from the environment and a set of actions uk performed. This can be
stated in a probabilistic way, that is: Localization aims at estimating a belief
function p(x) over the space of all possible poses, conditioned on all data available
until time k, that is: p(xk | Zk). The estimation process is usually done in two
phases:

Prediction phase In this phase, a motion model is used to calculate the
probability density function (PDF) p(xk | Zk−1), taking only motion into ac-
count. Usually it is assumed that the current state xk is only dependent on the
previous state xk−1 and a control input uk−1. The motion model is specified
in the form of the conditional density: p(xk|xk−1,uk−1). The prediction is then
obtained by integration:

p(xk|Zk−1) =
∫

p(xk|xk−1,uk−1)p(xk−1|Zk−1)dxk−1 (1)

Update phase In the second phase, a measurement model is used to in-
corporate information from the sensors and obtain the posterior PDF p(xk|Zk).
The measurement model is given in terms of a probability p(zk | xk) which
provides the likelihood of the state xk supposing that a particular measurement
zk was observed. The posterior density p(xk|Zk) can be calculated using Bayes’
Theorem as follows:

p(xk|Zk) =
p(zk | xk)p(xk|Zk−1)

p(zk|Zk−1)
(2)

The process is repeated recursively after update phase. The knowledge about
the initial state at time t0 is represented by p(x0). In the case of global localiza-
tion, where the pose of the vehicle is totally unknown, p(x0) is represented by a
constant function over the space of all possible poses.

Note that in expressions 1 and 2 nothing is said about the representation of
the PDF. This fact leads to a series of different algorithms that are based on
the above prediction-update scheme, mainly: The Kalman filter, Markov grid-
based localization and Monte Carlo localization. The Kalman filter does not solve
for the global localization. On the other hand, Markov grid-based localization
requires large amounts of memory and computation time. Hence, our approach
relies on the Monte Carlo localization method.

4.1 Monte Carlo localization

Monte Carlo localization can be included in a set of algorithms called particle
filters, which have had a great development during last decade (e.g. [7], [6] and
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[11]). In Monte Carlo localization (MCL for short), the PDF p(x) is represented
by a set of M random samples χk = {xi

k, i = 1 . . . M} extracted from it. Each
particle can be understood as a hypothesis of the true state of the robot (i.e. its
pose 〈x, y, θ〉). The algorithm is calculated in a Prediction-update fashion, as
stated before.

Prediction Phase: A set of particles χk is generated based on the set
of particles χk−1 and a control signal uk. This step uses the motion model
p(xk|xk−1,uk−1) and applies it to every particle in set χk. As a result, a new
set of particles χ′k is generated, which represents the density p(xk|Zk−1).

Update Phase: In this second phase, we take into account an observation
zk made by the robot. For each particle in the set, a weight ωi

k is computed
(frequently called Importance Factor). This weight is calculated using the ob-
servation model ωi

k = p(zk|x′ik ) resulting in the set χk = {xi
k, ωi

k}. Finally the
resulting set χk is calculated by resampling with replacement from the set χk,
where the probability of resampling each particle is given by its importance
weight ωi

k. Finally, the set χk represents the distribution p(xk|Zk).
The prediction-update phases are repeated recursively. To localize the vehicle

globally, the initial set of particles is spreaded randomly over the entire state
space. See [11], [6] and [7] for details.

5 Experimental results

In this section we report the Monte Carlo localization technique that has been
tested together with SIFT features in an office-like environment. A B21r robot
equipped with a calibrated stereo head was used for the experiments. In Fig.
1, an image of the environment is shown. The environment is characterized for
being frequently traversed by people.

The experiment can be divided in two phases: A) Environment exploration
and map creation, and B) Localization.

5.1 Environment exploration and map creation

In this first phase, the robot was commanded to move along the environment,
varying its position and orientation. Simultaneously, images were captured with
both cameras and processed to extract SIFT features. Next, features extracted
in the left image were matched with the ones found in right image. The following
restrictions were applied during this process:

– Epipolarity restriction: The feature location in the right image must be
placed in the same row as the in the left image. In practice, this condition
was relaxed, permitting a maximum ±2 pixel displacement.

– SIFT restriction: The euclidean distance between two SIFT descriptors must
not surpass a certain threshold (determined experimentally).

Each time a SIFT feature is matched correctly in both images, its position
relative to the robot is calculated using stereo vision. In addition, the position
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Fig. 1. B21r robot during data acquisition in the environment.

of the SIFT feature in space is determined relative to a global frame. In order
to minimize the error in robot’s pose, the exploration phase was performed in
several runs. Besides, in order to minimize the error in robot’s odometry, a
tracking procedure of the landmarks was used (similar to the exposed in [2]).
The information gathered is stored in a database, which constitutes the map.

5.2 Localization

During localization, the robot navigates along the environment. Meanwhile, the
robot captures images with its cameras, processes them and finds SIFT features.
Next, a matching procedure is taken, in order to find the relative position of the
feature. Afterwards, the robot tries to match any feature found with its corre-
spondence in the database. The euclidean distance between SIFT descriptors
is used in order to find corresponding features. Some issues appear during this
process:

– The correspondence between the observed feature and a stored landmark is
not direct. The robot may confuse one landmark for another, thus providing
erroneous information for the localization algorithm.

– The use of visual landmarks allows us to localize the robot in populated
environments. It is not necessary for the robot to visualize all SIFT points
in the scene. The robot may only detect a few points and still will be capable
of finding its pose in the map.

The parameters in the observation model were adjusted by experience. It is
worth mentioning that the parameters in motion and observation models have
a great influence in the convergence properties of MCL algorithm. A general
trend is to inflate both motion and observation, which speeds up the localization
process and avoids the possibility of loosing track of the robot ([6], [11]).

In Fig. 2 a global localization process is shown. First, in Fig. 2(a) a random set
of particles is spreaded over the entire space state (we show only the < x, y >
components for clarity). In the following figures a series of prediction-update
phases are shown. Finally, in Fig. 2(f) the particles gather around the last robot
position, hence localizing it. In Table 1 we show a comparison between odometry
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Table 1. Odometry vs MCL comparison

Odometry MCL

xrob (m) yrob (m) θrob (rad) xrob (m) yrob (m) θrob (rad)

Fig. 2(b) 0.307 0.342 0.403 0.275 0.367 0.397

Fig. 2(c) 0.802 0.541 0.403 0.974 0.608 0.391

Fig. 2(d) 1.268 0.732 0.403 1.347 0.802 0.394

Fig. 2(e) 1.714 0.885 0.403 1.753 0.923 0.394

Fig. 2(f) 2.072 1.065 0.403 2.093 1.071 0.395

(a) (b) (c) (d)

(e) (f)

Fig. 2. MCL localization progress. Image a) shows the set of particles spreaded around
the entire state space. From image and b) to f) the localization progress is presented.
Finally, the robot is localized in image f).

and the MCL estimation. Odometry can be used as a good measure of the robot’s
pose when used in short displacements, thus permits us to compare it with the
result of the MCL estimation.

The algorithm was tested during several runs through the environment. We
obtained similar results to the ones showed, achieving to localize the robot quite
accurately in a few steps.

6 Discussion and future work

This paper describes a localization method based on the Monte Carlo algorithm
in combination with visual landmarks. In particular, SIFT features have been
used as visual landmarks, finding them suitable for the global localization prob-
lem. Our approach has been implemented on a mobile platform and tested in a
real environment. Good results have been achieved, proving the effectiveness of
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our solution. However, we plan to further test the algorithm for longer periods
of time. During our experiments, we found that some SIFT features found in
the environment lacked of stability: They were found from a robot’s pose, but
could not be detected from elsewhere. To solve this, we plan to track features
for consecutive frames, hence ensuring that the feature found is stable and can
be detected from different viewpoints.

Note that, in case a sudden change in robot’s position may occur (i.e. the
robot hits an obstacle), the algorithm could fail in localizing the robot. If the par-
ticles concentrate around a certain position and the observation model suggests
that the robot is elsewhere, then the weight ωi

k may be zero for every particle
in the set. This can be avoided by the injection of a random set of particles in
each iteration of the MCL algorithm. We plan to add this feature in a future
approach. On the other hand, as a future work we plan to apply a version of the
MCL algorithm for multi-robot localization. We consider that the localization
problem can be solved efficiently using several robots in combination with the
method exposed in this paper.
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