RT — Linux Based Control of an Experimental Platform for
Teleoperated Systems with 1 d.o.f.

R. Puerto, L.M. Jimenez, J.A. Alenda
Dept. of Industrial Systems Engineering. Miguel Hernandez University
Av. del Ferrocarril s/n, Elche (Alicante), Spain
{r.puerto}@Qumbh.es

R. Aracil
DISAM, Polytecnical University of Madrid
Jose Abascal, 1. Madrid, Spain

Abstract

In this work, a control system developed under RT-Linux is presented. The system consist of an
experimental platform for time-response analysis and control of a teleoperated system with one degree of
freedom, controlled under different strategies and connected by means a computer network. This platform
can be used for testing new strategies for remote control on teleoperated systems. The implementation
core is an RT-linux module that uses the COMEDI library to execute the feedback control tasks interacting
with the data acquisition board. Communication tasks between the RT-Linux controller and the client
graphical user interface (GUI), are based on Java2 and JNI technologies.

1 Introduction

In a general way, teleoperation covers all those tech-
nologies that allow humans the remote operation
by means two devices: a master device close to the
operator in the local area, and a slave device in
the remote zone. This configuration is specially im-
portant in tasks performed in dangerous or hostile
environments (radioactive products manipulation,
underwater or spatial works, remote surgery, etc.).

The use of tools to transport or manipulate dan-
gerous substances has been very common from the
beginning of the industrial era. But is in the mid-
dle of XX century, when the need for manipulation
of radioactive elements leads to the development of
more sophisticate systems for remote operation, and
becomes what it is now called “master-slave sys-
tems”, where a device called slave, reproduce the
same movements done of the master device, who is
controlled by a human operator.

The teleoperated systems [1], have been evolving
since their first applications in the fourties, where the
teleoperate systems were mechanical systems to ma-
nipulate radioactive substances, until the newest sys-

tems, like comercial systems (GRIPS, JPL-PUMA,
...), or submarine, space or medical applications,
where human operator, can “sense” the same forces
than the ones produced in the slave device work
place.

The teleoperated systems are still a science in de-
velopment. The present work, develops a computer
application who has to be stable, robust, and inde-
pendent from the operating system, where teleoper-
ated scientists or engineers, can develop or test new
control strategies suitable for teleoperation. This
application had to be capable of running “real-time”
tasks, and to allow supervision and control in a dis-
tributed way through a computer network.

The developed application is made of three main
blocks:

e RT-Linux module: this program runs the feed-
back control tasks interacting with the data
acquisition board. Their functionality consists
of: recovery of data from acquisition board
A/D channels, control action calculation for
the configured control scheme, and execution
of control actions through the analog output

channels of acquisition board.

e Data server: this program is in charge of the
communication tasks between the RT-Linux
controller and the client graphical user inter-
face (GUI). Therefore, this module receives
configurations of each experiment from the
client GUI and send them to the RT-Linux
control module. Also, collects the experiment
output data from the control tasks and send
them to the client GUI. This communication
is based in standard sockets library (TCP and
UDP protocols) so it can be accessed from In-
ternet.

e Client graphical user interface: this application
allows the user to configure the experiment, re-
quest its execution, and recover the resultant
experimental data. This software application
has been developed in Java, so it can be ex-
ecuted in any platform with a Java2 virtual
machine.

The use of RT-Linux [2], [3], as base plataform for
this system, was choosed by this excellent perfor-
mance as hard real — time operating system, its re-
liability, stability and, of course, its low cost. Also,
RT-Linux has a installation, configuration and ad-
ministration less complicated, that other real — time
operating systems based on UNIX.

2 Types of control in teleoper-
ation.

Control schemes in teleoperation can be classified in
two main groups [1]: unilateral control (information
only flows from master to slave devices) and bilateral
control (information flows in both ways). Bilateral
control (more robust and accurate) allows for force
feedback.

The first developments of master-slave teleoperated
systems were based on mechanical transmission. The
implemented control was of unilateral type, or also
call direct control. In this type of control doesn’t ex-
ist feedback between master and slave devices. And
the master doesn’t have motor drived links.

The name of the unilateral comes from the notion
that the control only has one direction. The slave de-
vice can be moved when the master device is moved,

but not backwards. Therefore, the master generates
reference signals (position or velocity) for the slave
links. We can say that the slave has a control system
similar to an industrial robot, but the references are
generated by the master articulations, instead of a
CPU. The control of the slave side is easier than the
one implemented in most industrial robots, because
in this case, the inverse cinematics and dynamics
calculations are not needed.

The bilateral control (fig.1) appears when we need
haptic! feedback to the operator. In this case, the
slave forces are reproduced to scale in the master
device, and therefore, to the user hands or arms. In
this type of control, the control signals are flowing in
both directions, from the master to slave, and from
the slave to the master.

FIGURE 1: General scheme of a bilateral
control implementation. The figure shows a 1
dof teleoperated system.

Bilateral control can be classified in several types.
Basically, there are two main types of bilateral con-
trol: “position-position” and “position-force”. In the
first type, reference signals are the position of the
devices. The master reference is the slave position,
and the slave reference is the master position. That
control scheme is completely symmetrical.

In the “force-position” control type, the slave has
as a reference, the master position. But now, the
master reference is a force signal from the slave
manipulators. Usually this force feedback signal is
atenuated in order to improve the stability of sys-
tem. This type of control, is an asymmetric scheme.
Due to this, stability problems can arise, but this
method, provide us a better feedback of the slave
state (slave forces).

1Haptic capacity: Human capacity to feel some information through the sense of the tact, or reaction forces.

To conclude this section, it is worth to comment
the huge number of applications where teleoperated
technology has an important role. In the previous
section, we listed classical applications, like nuclear
industry, submarine or space applications, but the
new developments aren’t less importat. New devel-
opments in construction, minery sector, or natural
catastrophes, etc., where dangerous or uncomfort-
able works for the people, can be made by remote
controlled machines.

3 RT — Linux Application.

As it has previous been stated, the objective of this
work is to develop an application under a real — time
operating system, which has to be robust and stable.
RT-Linux complies with this specification. Also, this
application must allow supervision and control from
any computer conected to the network of the tele-
operated system. Java language has been choosed
as programming tool by its plataform independence,
and network capabilities. The application can be di-
vided in three main blocks: the driver or controller,
written in C under RT-Linux; the user graphical
interface application written in Java; and the data
server, written with C and Java.

3.1 RT - Linux Module

The RT — Linux kernel job, is mainly the control
of the master-slave devices, through the data ac-
quisition board. In order to program the kernel
application the modularity of RT — Linux is used [4],
[5], 6], [7]. In this way, a kernel module implements
the necessary operations to make the control: data
acquisition from physical system, calculations of the
control signal value, and transfer of these values to
the physical system through data acquisition system.
This module is made up of two RT-Linux threads
(fig. 2). These threads starts their execution when
the module has been installed in the kernel, and they
finish when the module is extracted from the ker-
nel. The obligatory functions “init_module()” and
“cleanup_module()” intall and extract the module.
Additionally, the module use mutex functions, RT-
Linux FIFO, and several data structures.

RT-Linux kernel.

Device control

: module.
]
F v
I i
3 Configu- S
: ontro
FRELOn B — Hardware: Data

: thread. acquisition target.

(_\._-_"._._/.\

RT-Linux FIFO.

~ |

RT-Linux user space.

FIGURE 2: Scheme with the processes in
the RT-Linux kernel.

COMEDI libraries are used to communicate input
and output channels of the data acquisition board.
“COMEDI” (COntrol MEasure Device Interface),
[8], give an interface to use I/O ports, with measure
devices such data acquisition boards. This interface
is easier and simpler than the Linux I/O interface.

The operation sequence that follows the whole kernel
module installation “init_-module()” is as follows:

e Start up the mutex variable, to protect the crit-
ical section.

e Start up the data structures and arrays, to
store information.

e Start up the RT-Linux FIFO.

e Launch the thread who manages the device
control operations.

e Launch the thread who manages the kernel
module.

e Return of the function.

When the module is extracted from the kernel, the
function “cleanup_module()” undoes the installation
procedure, following the next steps:

e Stop the thread in charge of the control devices.

e Stop the thread who manages the module (in-
ternal administration and configuration).

e Clean up the RT-Linux FIFO.

e Close the COMEDI device (“/dev/comedi0”).

e Clean up RT-Linux mutex.

When the control thread is started, it runs the tasks
of data acquisition, calculation the value of the con-
trol signals, and sending signals to the physical
master-slave devices through the data acquisition
system.

When this thread is launched, it makes its internal
variables selfconfiguration and the Comedi functions
initalizations, and after that it starts the control
cycle. This main cycle implements the feedback con-
trol of the teleoperated devices, according to the
user configuration. The thread, suspends itself after
every control cycle, until the next clock cycle syn-
cronously linked to the sampled time set by the user.
The results of the experiment, are sent to the server
through a FIFO.

The configuration thread, is in charge of the internal
management of the module. This thread, after self-
configuration, repeats a cycle waiting for requests
of parameters configuration from de server. Upon a
request the thread upgrades the module variables,
and comes back to listen for new configurations. The
configurations are received through a specific FIFO.
The access to the modules variables is protected by
an RT-Linux mutex because they are used by both
threads.

By means the COMEDI libraries, six input ana-
logic channels are read, and two output channels are
writen from the acquisition system. This channels
sample signals of position, velocity and current of
both devices (master and slave). The output chan-
nels are used to send control signal to the devices.
These control signals are calculated from input sig-
nals, and user parameters.

3.2 Data Server

The main function of the server is to connect the
kernel module with the user client interfaces. There-
fore, the server has to be a bridge, between the other
two applications, and it has to permit the communi-
cation between those programs through a computer
network.

Basically, the server does the following functions (fig.
3):

e It performs a “direct” communication with the
kernel module. This is possible because both
processes are in the same computer.

e It allows a conection with the client interface,
through computer network using Java sockets.

e It transmits the information between the ker-
nel module and the client.

The server is a text based application. The messages
inform the user about the server state, its operations,
etc. The conection with the client interface, uses two
Java sockets. One of them is a TCP socket, and the
other is a UDP socket. The configuration parametres
are transmited by the TCP socket, and the results
are sent back by the UDP socket.

The communication between user space, and the
kernel space are made through RT-Linux FIFOS.
At the user space, the RT-Linux FIFOS are accesed
by mean C-functions. These functions are built and
assembled in a dinamic library under Linux [9].

The link between the Java and C software is imple-
mented by means JNI libraries of Java [10]. These
libraries implements functions and data structures
which make possible the communication between C
and Java programs.

Finally, the server checks the variables that contains
data about the conection whit de client and redirects
this information between the RT — Linux module and
the remote client.

Data results. Configuration

Experimental
system

Experimental
system

RT-Linux
kernel
module

RT-Linux
kernel
module

FIFO 2
RT-Linux

RT-Linux

SERVER
Java-C

Communications.

JNI Libraries.

SERVER
TCP socket

SERVER
Java-C

Communications.

JNI Libraries.

Computer

RT-Linux

FIGURE 3: Data server functionality.

3.3 Client Graphical User Interface

The client graphical user interface is the application
where user can introduce the configuration param-
eters of the experiments. This application allows
to control and supervise the experiments, and save
the results. The client interface has been written
totally in Java, [11], [12], [13]. This feature allow us
executing the client in every computer, where it is
installed a Java 2 virtual machine.

In the previous sections, it has been shown that
the server and the client interface, use Java sockets
to communicate with each other. The server is lis-
tening for requests, while the client is who begins
the communications. That procedure allow users
to experiment with the physical system through a
network.

The client interface is meant to be a friendly GUI. It
is structured unsing tabs in order to access to differ-
ent configuration or visualization windows (fig. 4).
All experiments must be configured step by step us-
ing a form. According to the parameters that users
have chosen, the interface show new fields to fill. This
method pretends to be an easy way to configure the
experiments.

Graphical components of the cient interface are pro-
gramed with the Swing libraries of Java. This pack-
age allow users to have more graphical independece
from the operating system. Thus, the apparence of
the application is similar on different platforms.

3.4 Example.

The application has been tested with a teleoperated
system. This teleoperated system is a model with
one degree of freedom (fig. 1). The experimental
test carried out has proved the validity of this archi-
tecture showing optimal results.

Figures 4 and 5, shows the client interface. In the
figure 4, we can see the window where experiments
are configured. Figure 5 shows the results of the
position—position controler experiment. The control
strategy used in this experiment, has been PD con-
trollers. The value of these regulators are shown in
the table 1.

Parameter Value
Master proportional 40
Master Differential 0.1
Slave proportional 90
Slave differential 0.1
TABLE 1: Value of the PD-controllers

=] PFC-CREDIT X
Comenzar adquisicién de datos
(informacian | Reg uladores |Red [Archivos [Configuracion grafica |Grafica |

CONFIGURACION DE LOS REG ULADORES.

Modo de captura de los datos: Tipo de regulador a utilizar:

Modo finito o intervalo predefinido. Regulacién "Proporcional-Diferencial®.

de los i diferencial (PD).
Proporcional maestro: |40 Proporcional esclava: 90

Diferencial maestro: 0.1 Diferencial esclavo: 0.1

Periodo de muestreo: Duracién experimento;

10 ms. 15 s.

Desregistrar

[Valores Configuracion grafica registrados

FIGURE 4: Parameters page, to config-
ure the teleoperated experiment (position-
position).

=] PFC-CREDIT X
Comenzar adquisicién de datos
(informaciGn | Reguladores |Red |Archivos [Configuracin grafica |G rafica |

Sefiales a visualizar.

[vI Posicion maestro.

[Velocidad maestro.

[T Intensidad maestro.

(L] Control maestro.

[vI Posicion esclavo.

[[] Velocidad esclavo.

[Intensidad esclave.

[Control esclavo.

Numero de muestras recividas validas: 1501

FIGURE 5: Position signals of the devices,
teleoperated experiment (position-position,)

4 Conclusions and Future

Work

As conclusion, in the present work a laboratory
model for a teleoperated system with one degree of

freedom has been build. The software application
under RT-Linux has also been completed allowing
the control, analysis, and development of specific
application giving optimal results.

The new tasks to continue this work are improving
the security, the code optimization, the shared infor-
mation among the diverse blocks of the application,
and more analysis features.

As we can see at the references section, one of the
big points to work with RT-Linx and free software,
is the amount of available documentation.

Another advantage of working with Linux, as impor-
tant as the previous one, is the open source code. It
is possible to consult the source code to solve any
problem, or to modify the original code to our needs.
These advantages are difficult to find in others oper-
ating systems.

Also to mention, its excellent performance as hard
real — time operating system, stability, reliability,
robustness, availability, and of course, its low cost.
Finally, we can conclude that is an excellent plat-
form to develop real time projects.

References

[1] L.F. Penin 1998, “Control Bilateral de Robots
Teleoperados. Contribuciones en Reflerin de
Esfuerzos”. PhD Thesis. Universidad Politcnica
de Madrid.

[2] V. Yodaiken, M. Baradenov, “RTLinux version

”

two”.

[3] J.I. Ripoll, 2001, “Tutorial de Real Time Linuz”.

[4] D.A. Rusling, 2002, “The Linuz Kernel”.

[5] T. Aivazian, 2001, “Dentro del ncleo 2.4”.

[6] O. Pomerantz, 1999, “Programacin de mdulos
del ncleo de Linux”.

[7] K.A. Robbins, S. Robbins, 1997, “Unixz Systems
Programming”, Ed. Prentice Hall.

[8] D. Schleff, F. Hess, H. Bruyninckx,
“Comedi documentation”.

2002,

[9] A. Rubini, 1998, “Linuz device drivers”, Ed.
O’Reilly.

[10] F. Lpez, 2002, “JNI (Java Native Interface)”.

[11] N. Meyers, 2000 “Java Programming on Linuz”,
Ed. Prentice-Hall.

[12] A. Froufe, 2000, “Java 2: Tutorial and User’s
Manual”, Ed. Ra-Ma.

[13] Sun Microsystems, 1003, “Online Documenta-
tion”, http:/ /java.sun.com

