%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q = INVERSEKINEMATIC_IRB1600id(robot, T) Solves the inverse kinematic problem for the ABB IRB 140 robot where: robot stores the robot parameters. T is an homogeneous transform that specifies the position/orientation of the end effector. A call to Q=INVERSEKINEMATIC_IRB1600ID returns 8 possible solutions, thus, Q is a 6x8 matrix where each column stores 6 feasible joint values. Example code: abb=load_robot('abb', 'IRB1600ID'); q = [0 0 0 0 0 0]; T = directkinematic(abb, q); %Call the inversekinematic for this robot qinv = inversekinematic(abb, T); check that all of them are feasible solutions! and every Ti equals T for i=1:8, Ti = directkinematic(abb, qinv(:,i)) end See also DIRECTKINEMATIC. Author: Daniel Vivancos Unica Jose David Martinez Exposito, Maria Jose Martinez Liza %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % Q = INVERSEKINEMATIC_IRB1600id(robot, T) 0003 % Solves the inverse kinematic problem for the ABB IRB 140 robot 0004 % where: 0005 % robot stores the robot parameters. 0006 % T is an homogeneous transform that specifies the position/orientation 0007 % of the end effector. 0008 % 0009 % A call to Q=INVERSEKINEMATIC_IRB1600ID returns 8 possible solutions, thus, 0010 % Q is a 6x8 matrix where each column stores 6 feasible joint values. 0011 % 0012 % 0013 % Example code: 0014 % 0015 % abb=load_robot('abb', 'IRB1600ID'); 0016 % q = [0 0 0 0 0 0]; 0017 % T = directkinematic(abb, q); 0018 % %Call the inversekinematic for this robot 0019 % qinv = inversekinematic(abb, T); 0020 % check that all of them are feasible solutions! 0021 % and every Ti equals T 0022 % for i=1:8, 0023 % Ti = directkinematic(abb, qinv(:,i)) 0024 % end 0025 % See also DIRECTKINEMATIC. 0026 % 0027 % Author: Daniel Vivancos Unica 0028 % Jose David Martinez Exposito, 0029 % Maria Jose Martinez Liza 0030 % 0031 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0032 0033 % Copyright (C) 2012, by Arturo Gil Aparicio 0034 % 0035 % This file is part of ARTE (A Robotics Toolbox for Education). 0036 % 0037 % ARTE is free software: you can redistribute it and/or modify 0038 % it under the terms of the GNU Lesser General Public License as published by 0039 % the Free Software Foundation, either version 3 of the License, or 0040 % (at your option) any later version. 0041 % 0042 % ARTE is distributed in the hope that it will be useful, 0043 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0044 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0045 % GNU Lesser General Public License for more details. 0046 % 0047 % You should have received a copy of the GNU Leser General Public License 0048 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0049 function q = inversekinematic_irb1600id(robot, T) 0050 0051 %initialize q, 0052 %eight possible solutions are generally feasible 0053 q=zeros(6,8); 0054 0055 %Evaluate the parameters 0056 theta = eval(robot.DH.theta); 0057 d = eval(robot.DH.d); 0058 a = eval(robot.DH.a); 0059 alpha = eval(robot.DH.alpha); 0060 0061 0062 %See geometry at the reference for this robot 0063 L6=d(6); 0064 0065 0066 %T= [ nx ox ax Px; 0067 % ny oy ay Py; 0068 % nz oz az Pz]; 0069 Px=T(1,4); 0070 Py=T(2,4); 0071 Pz=T(3,4); 0072 0073 %Compute the position of the wrist, being W the Z component of the end effector's system 0074 W = T(1:3,3); 0075 0076 % Pm: wrist position 0077 Pm = [Px Py Pz]' - L6*W; 0078 0079 %first joint, two possible solutions admited: 0080 % if q(1) is a solution, then q(1) + pi is also a solution 0081 q1=atan2(Pm(2), Pm(1)); 0082 0083 0084 %solve for q2 0085 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm); 0086 0087 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm); 0088 0089 %solve for q3 0090 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm); 0091 0092 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm); 0093 0094 0095 %Arrange solutions, there are 8 possible solutions so far. 0096 % if q1 is a solution, q1* = q1 + pi is also a solution. 0097 % For each (q1, q1*) there are two possible solutions 0098 % for q2 and q3 (namely, elbow up and elbow up solutions) 0099 % So far, we have 4 possible solutions. Howefer, for each triplet (theta1, theta2, theta3), 0100 % there exist two more possible solutions for the last three joints, generally 0101 % called wrist up and wrist down solutions. For this reason, 0102 %the next matrix doubles each column. For each two columns, two different 0103 %configurations for theta4, theta5 and theta6 will be computed. These 0104 %configurations are generally referred as wrist up and wrist down solution 0105 q = [q1 q1 q1 q1 q1+pi q1+pi q1+pi q1+pi; 0106 q2_1(1) q2_1(1) q2_1(2) q2_1(2) q2_2(1) q2_2(1) q2_2(2) q2_2(2); 0107 q3_1(1) q3_1(1) q3_1(2) q3_1(2) q3_2(1) q3_2(1) q3_2(2) q3_2(2); 0108 0 0 0 0 0 0 0 0; 0109 0 0 0 0 0 0 0 0; 0110 0 0 0 0 0 0 0 0]; 0111 0112 0113 %leave only the real part of the solutions 0114 q=real(q); 0115 0116 0117 %normalize q to [-pi, pi] 0118 q(1,:) = normalize(q(1,:)); 0119 q(2,:) = normalize(q(2,:)); 0120 0121 % solve for the last three joints 0122 % for any of the possible combinations (theta1, theta2, theta3) 0123 for i=1:2:size(q,2), 0124 % use solve_spherical_wrist2 for the particular orientation 0125 % of the systems in this ABB robot 0126 % use either the geometric or algebraic method. 0127 % the function solve_spherical_wrist2 is used due to the relative 0128 % orientation of the last three DH reference systems. 0129 0130 %use either one algebraic method or the geometric 0131 %qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1, 'geometric'); %wrist up 0132 qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1,'algebraic'); %wrist up 0133 qtemp(4:6)=normalize(qtemp(4:6)); 0134 q(:,i)=qtemp; 0135 0136 %qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'geometric'); %wrist down 0137 qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'algebraic'); %wrist down 0138 qtemp(4:6)=normalize(qtemp(4:6)); 0139 q(:,i+1)=qtemp; 0140 end 0141 0142 0143 0144 0145 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0146 % solve for second joint theta2, two different 0147 % solutions are returned, corresponding 0148 % to elbow up and down solution 0149 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0150 0151 function q2 = solve_for_theta2(robot, q, Pm) 0152 0153 %Evaluate the parameters 0154 d = eval(robot.DH.d); 0155 a = eval(robot.DH.a); 0156 0157 %See geometry 0158 L2=a(2); 0159 L3=d(4); 0160 0161 A2=a(3); % desfase porculero 0162 0163 %given q1 is known, compute first DH transformation 0164 T01=dh(robot, q, 1); 0165 0166 %brazo ficticio que nos quita el desfase 0167 l3 = sqrt (A2^2 + L3^2); 0168 0169 %Express Pm in the reference system 1, for convenience 0170 p1 = inv(T01)*[Pm; 1]; 0171 0172 r = sqrt(p1(1)^2 + p1(2)^2); 0173 0174 beta = atan2(-p1(2), p1(1)); 0175 gamma = (acos((L2^2+r^2-l3^2)/(2*r*L2))); 0176 0177 if ~isreal(gamma) 0178 disp('WARNING:inversekinematic_irb1600id: the point is not reachable for this configuration, imaginary solutions'); 0179 %gamma = real(gamma); 0180 end 0181 0182 %return two possible solutions 0183 %elbow up and elbow down 0184 %the order here is important and is coordinated with the function 0185 %solve_for_theta3 0186 q2(1) = pi/2 - beta - gamma; %elbow up 0187 q2(2) = pi/2 - beta + gamma; %elbow down 0188 0189 0190 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0191 % solve for third joint theta3, two different 0192 % solutions are returned, corresponding 0193 % to elbow up and down solution 0194 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0195 0196 function q3 = solve_for_theta3(robot, q, Pm) 0197 0198 %Evaluate the parameters 0199 d = eval(robot.DH.d); 0200 a = eval(robot.DH.a); 0201 0202 %See geometry 0203 L2=a(2); 0204 L3=d(4); 0205 0206 A2= a(3); %desfase 0207 0208 %See geometry of the robot 0209 %compute L4 0210 l3 = sqrt(A2^2 + L3^2); 0211 0212 %the angle phi is fixed 0213 phi=acos((A2^2+l3^2-L3^2)/(2*A2*l3)); 0214 0215 %given q1 is known, compute first DH transformation 0216 T01=dh(robot, q, 1); 0217 0218 %Express Pm in the reference system 1, for convenience 0219 p1 = inv(T01)*[Pm; 1]; 0220 0221 r = sqrt(p1(1)^2 + p1(2)^2); 0222 0223 eta = (acos((L2^2 + l3^2 - r^2)/(2*L2*l3))); 0224 0225 if ~isreal(eta) 0226 disp('WARNING:inversekinematic_irb140: the point is not reachable for this configuration, imaginary solutions'); 0227 %eta = real(eta); 0228 end 0229 0230 %return two possible solutions 0231 %elbow up and elbow down solutions 0232 %the order here is important 0233 q3(1) = pi - phi - eta; 0234 q3(2) = pi - phi + eta; 0235 0236