Home > arte3.2.0 > robots > ABB > IRB52 > inversekinematic_irb52.m

inversekinematic_irb52

PURPOSE ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SYNOPSIS ^

function [q] = inversekinematic_irb52(robot, T)

DESCRIPTION ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Q = INVERSEKINEMATIC_IRB52(robot, T)    
   Solves the inverse kinematic problem for the ABB IRB 52 robot
   where:
   robot stores the robot parameters.
   T is an homogeneous transform that specifies the position/orientation
   of the end effector.

   A call to Q=INVERSEKINEMATIC_IRB52 returns 8 possible solutions, thus,
   Q is a 6x8 matrix where each column stores 6 feasible joint values.

   
   Example code:

   abb=load_robot('ABB', 'IRB52');
   q = [0 0 0 0 0 0];    
   T = directkinematic(abb, q);
   %Call the inversekinematic for this robot
   qinv = inversekinematic(abb, T);
   check that all of them are feasible solutions!
   and every Ti equals T
   for i=1:8,
        Ti = directkinematic(abb, qinv(:,i))
   end
    See also DIRECTKINEMATIC.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0002 %   Q = INVERSEKINEMATIC_IRB52(robot, T)
0003 %   Solves the inverse kinematic problem for the ABB IRB 52 robot
0004 %   where:
0005 %   robot stores the robot parameters.
0006 %   T is an homogeneous transform that specifies the position/orientation
0007 %   of the end effector.
0008 %
0009 %   A call to Q=INVERSEKINEMATIC_IRB52 returns 8 possible solutions, thus,
0010 %   Q is a 6x8 matrix where each column stores 6 feasible joint values.
0011 %
0012 %
0013 %   Example code:
0014 %
0015 %   abb=load_robot('ABB', 'IRB52');
0016 %   q = [0 0 0 0 0 0];
0017 %   T = directkinematic(abb, q);
0018 %   %Call the inversekinematic for this robot
0019 %   qinv = inversekinematic(abb, T);
0020 %   check that all of them are feasible solutions!
0021 %   and every Ti equals T
0022 %   for i=1:8,
0023 %        Ti = directkinematic(abb, qinv(:,i))
0024 %   end
0025 %    See also DIRECTKINEMATIC.
0026 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0027 
0028 % Copyright (C) 2012, by Arturo Gil Aparicio
0029 %
0030 % This file is part of ARTE (A Robotics Toolbox for Education).
0031 %
0032 % ARTE is free software: you can redistribute it and/or modify
0033 % it under the terms of the GNU Lesser General Public License as published by
0034 % the Free Software Foundation, either version 3 of the License, or
0035 % (at your option) any later version.
0036 %
0037 % ARTE is distributed in the hope that it will be useful,
0038 % but WITHOUT ANY WARRANTY; without even the implied warranty of
0039 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0040 % GNU Lesser General Public License for more details.
0041 %
0042 % You should have received a copy of the GNU Leser General Public License
0043 % along with ARTE.  If not, see <http://www.gnu.org/licenses/>.
0044 
0045 % Nos hemos basado en la cinem�tica inversa del IRB140, pues ambos robots
0046 % son muy parecidos, y hemos le�do la resoluci�n de la cinem�tica inversa y
0047 % nos vale para nuestro robot.
0048 function [q] = inversekinematic_irb52(robot, T)
0049 
0050 %initialize q,
0051 %eight possible solutions are generally feasible
0052 q=zeros(6,8);
0053 
0054 %Evaluate the parameters
0055 theta = eval(robot.DH.theta);
0056 d = eval(robot.DH.d);
0057 a = eval(robot.DH.a);
0058 alpha = eval(robot.DH.alpha);
0059 
0060 
0061 %See geometry at the reference for this robot
0062 L1=d(1);
0063 L2=a(2);
0064 L3=d(4);
0065 L6=d(6);
0066 
0067 A1 = a(1);
0068 
0069 
0070 %T= [ nx ox ax Px;
0071 %     ny oy ay Py;
0072 %     nz oz az Pz];
0073 Px=T(1,4);
0074 Py=T(2,4);
0075 Pz=T(3,4);
0076 
0077 %Compute the position of the wrist, being W the Z component of the end effector's system
0078 W = T(1:3,3);
0079 
0080 % Pm: wrist position
0081 Pm = [Px Py Pz]' - L6*W; 
0082 
0083 %first joint, two possible solutions admited:
0084 % if q(1) is a solution, then q(1) + pi is also a solution
0085 q1=atan2(Pm(2), Pm(1));
0086 
0087 
0088 %solve for q2
0089 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm);
0090 
0091 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm);
0092 
0093 %solve for q3
0094 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm);
0095 
0096 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm);
0097 
0098 
0099 %Arrange solutions, there are 8 possible solutions so far.
0100 % if q1 is a solution, q1* = q1 + pi is also a solution.
0101 % For each (q1, q1*) there are two possible solutions
0102 % for q2 and q3 (namely, elbow up and elbow up solutions)
0103 % So far, we have 4 possible solutions. Howefer, for each triplet (theta1, theta2, theta3),
0104 % there exist two more possible solutions for the last three joints, generally
0105 % called wrist up and wrist down solutions. For this reason,
0106 %the next matrix doubles each column. For each two columns, two different
0107 %configurations for theta4, theta5 and theta6 will be computed. These
0108 %configurations are generally referred as wrist up and wrist down solution
0109 q = [q1         q1         q1        q1       q1+pi   q1+pi   q1+pi   q1+pi;   
0110      q2_1(1)    q2_1(1)    q2_1(2)   q2_1(2)  q2_2(1) q2_2(1) q2_2(2) q2_2(2);
0111      q3_1(1)    q3_1(1)    q3_1(2)   q3_1(2)  q3_2(1) q3_2(1) q3_2(2) q3_2(2);
0112      0          0          0         0         0      0       0       0;
0113      0          0          0         0         0      0       0       0;
0114      0          0          0         0         0      0       0       0];
0115 
0116 %leave only the real part of the solutions
0117 q=real(q);
0118 
0119 %Note that in this robot, the joint q3 has a non-simmetrical range. In this
0120 %case, the joint ranges from 60 deg to -219 deg, thus, the typical normalizing
0121 %step is avoided in this angle (the next line is commented). When solving
0122 %for the orientation, the solutions are normalized to the [-pi, pi] range
0123 %only for the theta4, theta5 and theta6 joints.
0124 
0125 %normalize q to [-pi, pi]
0126 q(1,:) = normalize(q(1,:));
0127 q(2,:) = normalize(q(2,:));
0128 
0129 % solve for the last three joints
0130 % for any of the possible combinations (theta1, theta2, theta3)
0131 for i=1:2:size(q,2),
0132  % use solve_spherical_wrist2 for the particular orientation
0133     % of the systems in this ABB robot
0134     % use either the geometric or algebraic method.
0135     % the function solve_spherical_wrist2 is used due to the relative
0136     % orientation of the last three DH reference systems.
0137     
0138     %use either one algebraic method or the geometric
0139     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1, 'geometric'); %wrist up
0140     qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1,'algebraic'); %wrist up
0141     qtemp(4:6)=normalize(qtemp(4:6));
0142     q(:,i)=qtemp;
0143     
0144     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'geometric'); %wrist down
0145     qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'algebraic'); %wrist down
0146     qtemp(4:6)=normalize(qtemp(4:6));
0147     q(:,i+1)=qtemp;
0148 end
0149 
0150 
0151  
0152 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0153 % solve for second joint theta2, two different
0154 % solutions are returned, corresponding
0155 % to elbow up and down solution
0156 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0157 function q2 = solve_for_theta2(robot, q, Pm)
0158 
0159 %Evaluate the parameters
0160 d = eval(robot.DH.d);
0161 a = eval(robot.DH.a);
0162 
0163 %See geometry
0164 L2=a(2);
0165 L3=d(4);
0166 
0167 %given q1 is known, compute first DH transformation
0168 T01=dh(robot, q, 1);
0169 
0170 %Express Pm in the reference system 1, for convenience
0171 p1 = inv(T01)*[Pm; 1];
0172 
0173 r = sqrt(p1(1)^2 + p1(2)^2);
0174 
0175 beta = atan2(-p1(2), p1(1));
0176 gamma = (acos((L2^2+r^2-L3^2)/(2*r*L2)));
0177 
0178 if ~isreal(gamma)
0179     disp('WARNING:inversekinematic_irb52: the point is not reachable for this configuration, imaginary solutions'); 
0180     %gamma = real(gamma);
0181 end
0182 
0183 %return two possible solutions
0184 %elbow up and elbow down
0185 %the order here is important and is coordinated with the function
0186 %solve_for_theta3
0187 q2(1) = pi/2 - beta - gamma; %elbow up
0188 q2(2) = pi/2 - beta + gamma; %elbow down
0189 
0190 
0191 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0192 % solve for third joint theta3, two different
0193 % solutions are returned, corresponding
0194 % to elbow up and down solution
0195 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0196 function q3 = solve_for_theta3(robot, q, Pm)
0197 
0198 %Evaluate the parameters
0199 d = eval(robot.DH.d);
0200 a = eval(robot.DH.a);
0201 
0202 %See geometry
0203 L2=a(2);
0204 L3=d(4);
0205 
0206 %given q1 is known, compute first DH transformation
0207 T01=dh(robot, q, 1);
0208 
0209 %Express Pm in the reference system 1, for convenience
0210 p1 = inv(T01)*[Pm; 1];
0211 
0212 r = sqrt(p1(1)^2 + p1(2)^2);
0213 
0214 eta = (acos((L2^2 + L3^2 - r^2)/(2*L2*L3)));
0215 
0216 if ~isreal(eta)
0217    disp('WARNING:inversekinematic_irb52: the point is not reachable for this configuration, imaginary solutions'); 
0218    %eta = real(eta);
0219 end
0220 
0221 %return two possible solutions
0222 %elbow up and elbow down solutions
0223 %the order here is important
0224 q3(1) = pi/2 - eta;
0225 q3(2) = eta - 3*pi/2;
0226 
0227 
0228 
0229 
0230 
0231 
0232 %remove complex solutions for q for the q1+pi solutions
0233 function  qreal = arrange_solutions(q)
0234 qreal=q(:,1:4);
0235 
0236 %sum along rows if any angle is complex, for any possible solutions, then v(i) is complex
0237 v = sum(q, 1);
0238 
0239 for i=5:8,
0240     if isreal(v(i))
0241         qreal=[qreal q(:,i)]; %store the real solutions
0242     end
0243 end
0244 
0245 qreal = real(qreal);

Generated on Fri 03-Jan-2014 12:20:01 by m2html © 2005