Home > arte3.2.0 > robots > ABB > IRB6650S_125_350 > inversekinematic_irb6650S_125_350.m

inversekinematic_irb6650S_125_350

PURPOSE ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SYNOPSIS ^

function q = inversekinematic_irb6650S_125_350(robot, T)

DESCRIPTION ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Q = INVERSEKINEMATIC_IRB6650S_125_350(robot, T)    
   Solves the inverse kinematic problem for the ABB  IRB 6650S_125_350 robot
   where:
   robot stores the robot parameters.
   T is an homogeneous transform that specifies the position/orientation
   of the end effector.

   A call to Q=INVERSEKINEMATIC_IRB6650S_125_350 returns 8 possible solutions, thus,
   Q is a 6x8 matrix where each column stores 6 feasible joint values.

   
   Example code:

   abb=load_robot('ABB', 'IRB6650S_125_350');
   q = [0 0 0 0 0 0];    
   T = directkinematic(abb, q);
   %Call the inversekinematic for this robot
   qinv = inversekinematic(abb, T);
   check that all of them are feasible solutions!
   and every Ti equals T
   for i=1:8,
        Ti = directkinematic(abb, qinv(:,i))
   end
    See also DIRECTKINEMATIC.

   Author: Arturo Gil Aparicio
           Universitas Miguel Hern�ndez, SPAIN.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0002 %   Q = INVERSEKINEMATIC_IRB6650S_125_350(robot, T)
0003 %   Solves the inverse kinematic problem for the ABB  IRB 6650S_125_350 robot
0004 %   where:
0005 %   robot stores the robot parameters.
0006 %   T is an homogeneous transform that specifies the position/orientation
0007 %   of the end effector.
0008 %
0009 %   A call to Q=INVERSEKINEMATIC_IRB6650S_125_350 returns 8 possible solutions, thus,
0010 %   Q is a 6x8 matrix where each column stores 6 feasible joint values.
0011 %
0012 %
0013 %   Example code:
0014 %
0015 %   abb=load_robot('ABB', 'IRB6650S_125_350');
0016 %   q = [0 0 0 0 0 0];
0017 %   T = directkinematic(abb, q);
0018 %   %Call the inversekinematic for this robot
0019 %   qinv = inversekinematic(abb, T);
0020 %   check that all of them are feasible solutions!
0021 %   and every Ti equals T
0022 %   for i=1:8,
0023 %        Ti = directkinematic(abb, qinv(:,i))
0024 %   end
0025 %    See also DIRECTKINEMATIC.
0026 %
0027 %   Author: Arturo Gil Aparicio
0028 %           Universitas Miguel Hern�ndez, SPAIN.
0029 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0030 
0031 % Copyright (C) 2012, by Arturo Gil Aparicio
0032 %
0033 % This file is part of ARTE (A Robotics Toolbox for Education).
0034 %
0035 % ARTE is free software: you can redistribute it and/or modify
0036 % it under the terms of the GNU Lesser General Public License as published by
0037 % the Free Software Foundation, either version 3 of the License, or
0038 % (at your option) any later version.
0039 %
0040 % ARTE is distributed in the hope that it will be useful,
0041 % but WITHOUT ANY WARRANTY; without even the implied warranty of
0042 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0043 % GNU Lesser General Public License for more details.
0044 %
0045 % You should have received a copy of the GNU Leser General Public License
0046 % along with ARTE.  If not, see <http://www.gnu.org/licenses/>.
0047 function q = inversekinematic_irb6650S_125_350(robot, T)
0048 
0049 %initialize q,
0050 %eight possible solutions are generally feasible
0051 q=zeros(6,8);
0052 
0053 % %Evaluate the parameters
0054 % theta = eval(robot.DH.theta);
0055 d = eval(robot.DH.d);
0056 L6=d(6);
0057 
0058 
0059 %T= [ nx ox ax Px;
0060 %     ny oy ay Py;
0061 %     nz oz az Pz];
0062 Px=T(1,4);
0063 Py=T(2,4);
0064 Pz=T(3,4);
0065 
0066 %Compute the position of the wrist, being W the Z component of the end effector's system
0067 W = T(1:3,3);
0068 
0069 % Pm: wrist position
0070 Pm = [Px Py Pz]' - L6*W; 
0071 
0072 %first joint, two possible solutions admited:
0073 % if q(1) is a solution, then q(1) + pi is also a solution
0074 q1=atan2(Pm(2), Pm(1));
0075 
0076 
0077 %solve for q2
0078 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm);
0079 %the other possible solution is q1 + pi
0080 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm);
0081 
0082 %solve for q3
0083 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm);
0084 %solver for q3 for both cases
0085 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm);
0086 
0087 
0088 %the next matrix doubles each column. For each two columns, two different
0089 %configurations for theta4, theta5 and theta6 will be computed. These
0090 %configurations are generally referred as wrist up and wrist down solution
0091 q = [q1         q1         q1        q1       q1+pi   q1+pi   q1+pi   q1+pi;   
0092      q2_1(1)    q2_1(1)    q2_1(2)   q2_1(2)  q2_2(1) q2_2(1) q2_2(2) q2_2(2);
0093      q3_1(1)    q3_1(1)    q3_1(2)   q3_1(2)  q3_2(1) q3_2(1) q3_2(2) q3_2(2);
0094      0          0          0         0         0      0       0       0;
0095      0          0          0         0         0      0       0       0;
0096      0          0          0         0         0      0       0       0];
0097 
0098 %leave only the real part of the solutions
0099 q=real(q);
0100 
0101 %Note that in this robot, the joint q3 has a non-simmetrical range. In this
0102 %case, the joint ranges from 60 deg to -219 deg, thus, the typical normalizing
0103 %step is avoided in this angle (the next line is commented). When solving
0104 %for the orientation, the solutions are normalized to the [-pi, pi] range
0105 %only for the theta4, theta5 and theta6 joints.
0106 
0107 %normalize q to [-pi, pi]
0108 q(1,:) = normalize(q(1,:));
0109 q(2,:) = normalize(q(2,:));
0110 
0111 
0112 % solve for the last three joints
0113 % for any of the possible combinations (theta1, theta2, theta3)
0114 for i=1:2:size(q,2),
0115     % use solve_spherical_wrist2 for the particular orientation
0116     % of the systems in this ABB robot
0117     % use either the geometric or algebraic method.
0118     % the function solve_spherical_wrist2 is used due to the relative
0119     % orientation of the last three DH reference systems.
0120     
0121     %use either one algebraic method or the geometric
0122     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1, 'geometric'); %wrist up
0123     qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1,'algebraic'); %wrist up
0124     qtemp(4:6)=normalize(qtemp(4:6));
0125     q(:,i)=qtemp;
0126     
0127     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'geometric'); %wrist down
0128     qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'algebraic'); %wrist down
0129     qtemp(4:6)=normalize(qtemp(4:6));
0130     q(:,i+1)=qtemp;
0131 end
0132 
0133 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0134 % solve for second joint theta2, two different
0135 % solutions are returned, corresponding
0136 % to elbow up and down solution
0137 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0138 function q2 = solve_for_theta2(robot, q, Pm)
0139 
0140 %Evaluate the parameters
0141 d = eval(robot.DH.d);
0142 a = eval(robot.DH.a);
0143 
0144 %See geometry
0145 L2=a(2);
0146 L3=sqrt(d(4)^2+a(3)^2);
0147 
0148 %given q1 is known, compute first DH transformation
0149 T01=dh(robot, q, 1);
0150 
0151 %Express Pm in the reference system 1, for convenience
0152 p1 = inv(T01)*[Pm; 1];
0153 
0154 r = sqrt(p1(1)^2 + p1(2)^2);
0155 
0156 beta = atan2(-p1(2), p1(1));
0157 gamma = (acos((L2^2+r^2-L3^2)/(2*r*L2)));
0158 
0159 if ~isreal(gamma)
0160     disp('WARNING:inversekinematic_irb2400: the point is not reachable for this configuration, imaginary solutions'); 
0161     %gamma = real(gamma);
0162 end
0163 
0164 %return two possible solutions
0165 %elbow up and elbow down
0166 %the order here is important and is coordinated with the function
0167 %solve_for_theta3
0168 q2(1) = pi/2 - beta - gamma; %elbow up
0169 q2(2) = pi/2 - beta + gamma; %elbow down
0170 
0171 
0172 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0173 % solve for third joint theta3, two different
0174 % solutions are returned, corresponding
0175 % to elbow up and down solution
0176 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0177 function q3 = solve_for_theta3(robot, q, Pm)
0178 
0179 %Evaluate the parameters
0180 d = eval(robot.DH.d);
0181 a = eval(robot.DH.a);
0182 
0183 %See geometry
0184 L2=a(2);
0185 L3=sqrt(d(4)^2+a(3)^2);
0186 
0187 %given q1 is known, compute first DH transformation
0188 T01=dh(robot, q, 1);
0189 
0190 %Express Pm in the reference system 1, for convenience
0191 p1 = inv(T01)*[Pm; 1];
0192 
0193 r = sqrt(p1(1)^2 + p1(2)^2);
0194 
0195 eta = (acos((L2^2 + L3^2 - r^2)/(2*L2*L3)));
0196 
0197 if ~isreal(eta)
0198    disp('WARNING:inversekinematic_irb2400: the point is not reachable for this configuration, imaginary solutions'); 
0199    %eta = real(eta);
0200 end
0201 
0202 %return two possible solutions
0203 %elbow up and elbow down solutions
0204 %the order here is important
0205 q3(1) = -(atan(d(4)/a(3))+eta - pi);
0206 q3(2) = -(pi+atan(d(4)/a(3))-eta);
0207 
0208 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0209 % % solve for second joint theta2, two different
0210 % % solutions are returned, corresponding
0211 % % to elbow up and down solution
0212 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0213 % function q2 = solve_for_theta2(robot, q, Pm)
0214 %
0215 % %Evaluate the parameters
0216 % theta = eval(robot.DH.theta);
0217 % d = eval(robot.DH.d);
0218 % a = eval(robot.DH.a);
0219 % alpha = eval(robot.DH.alpha);
0220 %
0221 % %See geometry
0222 % L2=a(2);
0223 % L3=d(4);
0224 % A2=a(3);
0225 %
0226 % %See geometry of the robot
0227 % %compute L4
0228 % L4 = sqrt(A2^2 + L3^2);
0229 %
0230 % %The inverse kinematic problem can be solved as in the IRB 140 (for example)
0231 %
0232 % %given q1 is known, compute first DH transformation
0233 % T01=dh(robot, q, 1);
0234 %
0235 % %Express Pm in the reference system 1, for convenience
0236 % p1 = inv(T01)*[Pm; 1];
0237 %
0238 % r = sqrt(p1(1)^2 + p1(2)^2);
0239 %
0240 % beta = atan2(-p1(2), p1(1));
0241 % gamma = real(acos((L2^2+r^2-L4^2)/(2*r*L2)));
0242 %
0243 % %return two possible solutions
0244 % %elbow up and elbow down
0245 % %the order here is important and is coordinated with the function
0246 % %solve_for_theta3
0247 % q2(1) = pi/2 - beta - gamma; %elbow up
0248 % q2(2) = pi/2 - beta + gamma; %elbow down
0249 %
0250 %
0251 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0252 % % solve for third joint theta3, two different
0253 % % solutions are returned, corresponding
0254 % % to elbow up and down solution
0255 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0256 % function q3 = solve_for_theta3(robot, q, Pm)
0257 %
0258 % %Evaluate the parameters
0259 % theta = eval(robot.DH.theta);
0260 % d = eval(robot.DH.d);
0261 % a = eval(robot.DH.a);
0262 % alpha = eval(robot.DH.alpha);
0263 %
0264 % %See geometry
0265 % L2=a(2);
0266 % L3=d(4);
0267 % A2=a(3);
0268 %
0269 % %See geometry of the robot
0270 % %compute L4
0271 % L4 = sqrt(A2^2 + L3^2);
0272 %
0273 % %the angle phi is fixed
0274 % phi=acos((A2^2+L4^2-L3^2)/(2*A2*L4));
0275 %
0276 % %given q1 is known, compute first DH transformation
0277 % T01=dh(robot, q, 1);
0278 %
0279 % %Express Pm in the reference system 1, for convenience
0280 % p1 = inv(T01)*[Pm; 1];
0281 %
0282 % r = sqrt(p1(1)^2 + p1(2)^2);
0283 %
0284 % eta = real(acos((L2^2 + L4^2 - r^2)/(2*L2*L4)));
0285 %
0286 % %return two possible solutions
0287 % %elbow up and elbow down solutions
0288 % %the order here is important
0289 % q3(1) = pi - phi- eta;
0290 % q3(2) = pi - phi + eta;
0291 %

Generated on Fri 03-Jan-2014 12:20:01 by m2html © 2005