Home > arte3.2.0 > robots > ABB > IRB6650S_90_390 > inversekinematic_irb6650S_90_390.m

inversekinematic_irb6650S_90_390

PURPOSE ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SYNOPSIS ^

function q = inversekinematic_irb6650S_90_390(robot, T)

DESCRIPTION ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Q = INVERSEKINEMATIC_IRB6650S_90_390(robot, T)    
   Solves the inverse kinematic problem for the ABB IRB IRB6650-90/390 robot
   where:
   robot stores the robot parameters.
   T is an homogeneous transform that specifies the position/orientation
   of the end effector.

   A call to Q=INVERSEKINEMATIC_IRBS6650_90_390 returns 8 possible solutions, thus,
   Q is a 6x8 matrix where each column stores 6 feasible joint values.

   
   Example code:

   abb=load_robot('ABB', 'IRB6650S_90_390');
   q = [0 0 0 0 0 0];    
   T = directkinematic(abb, q);
   %Call the inversekinematic for this robot
   qinv = inversekinematic(abb, T);
   check that all of them are feasible solutions!
   and every Ti equals T
   for i=1:8,
        Ti = directkinematic(abb, qinv(:,i))
   end
    See also DIRECTKINEMATIC.

   Author: Arturo Gil Aparicio
           Universitas Miguel Hernandez, SPAIN.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0002 %   Q = INVERSEKINEMATIC_IRB6650S_90_390(robot, T)
0003 %   Solves the inverse kinematic problem for the ABB IRB IRB6650-90/390 robot
0004 %   where:
0005 %   robot stores the robot parameters.
0006 %   T is an homogeneous transform that specifies the position/orientation
0007 %   of the end effector.
0008 %
0009 %   A call to Q=INVERSEKINEMATIC_IRBS6650_90_390 returns 8 possible solutions, thus,
0010 %   Q is a 6x8 matrix where each column stores 6 feasible joint values.
0011 %
0012 %
0013 %   Example code:
0014 %
0015 %   abb=load_robot('ABB', 'IRB6650S_90_390');
0016 %   q = [0 0 0 0 0 0];
0017 %   T = directkinematic(abb, q);
0018 %   %Call the inversekinematic for this robot
0019 %   qinv = inversekinematic(abb, T);
0020 %   check that all of them are feasible solutions!
0021 %   and every Ti equals T
0022 %   for i=1:8,
0023 %        Ti = directkinematic(abb, qinv(:,i))
0024 %   end
0025 %    See also DIRECTKINEMATIC.
0026 %
0027 %   Author: Arturo Gil Aparicio
0028 %           Universitas Miguel Hernandez, SPAIN.
0029 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0030 
0031 % Copyright (C) 2012, by Arturo Gil Aparicio
0032 %
0033 % This file is part of ARTE (A Robotics Toolbox for Education).
0034 %
0035 % ARTE is free software: you can redistribute it and/or modify
0036 % it under the terms of the GNU Lesser General Public License as published by
0037 % the Free Software Foundation, either version 3 of the License, or
0038 % (at your option) any later version.
0039 %
0040 % ARTE is distributed in the hope that it will be useful,
0041 % but WITHOUT ANY WARRANTY; without even the implied warranty of
0042 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0043 % GNU Lesser General Public License for more details.
0044 %
0045 % You should have received a copy of the GNU Leser General Public License
0046 % along with ARTE.  If not, see <http://www.gnu.org/licenses/>.
0047 function q = inversekinematic_irb6650S_90_390(robot, T)
0048 
0049 %initialize q,
0050 %eight possible solutions are generally feasible
0051 q=zeros(6,8);
0052 
0053 % %Evaluate the parameters
0054 % theta = eval(robot.DH.theta);
0055 d = eval(robot.DH.d);
0056 L6=d(6);
0057 
0058 
0059 %T= [ nx ox ax Px;
0060 %     ny oy ay Py;
0061 %     nz oz az Pz];
0062 Px=T(1,4);
0063 Py=T(2,4);
0064 Pz=T(3,4);
0065 
0066 %Compute the position of the wrist, being W the Z component of the end effector's system
0067 W = T(1:3,3);
0068 
0069 % Pm: wrist position
0070 Pm = [Px Py Pz]' - L6*W; 
0071 
0072 %first joint, two possible solutions admited:
0073 % if q(1) is a solution, then q(1) + pi is also a solution
0074 q1=atan2(Pm(2), Pm(1));
0075 
0076 
0077 %solve for q2
0078 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm);
0079 %the other possible solution is q1 + pi
0080 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm);
0081 
0082 %solve for q3
0083 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm);
0084 %solver for q3 for both cases
0085 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm);
0086 
0087 
0088 %the next matrix doubles each column. For each two columns, two different
0089 %configurations for theta4, theta5 and theta6 will be computed. These
0090 %configurations are generally referred as wrist up and wrist down solution
0091 q = [q1         q1         q1        q1       q1+pi   q1+pi   q1+pi   q1+pi;   
0092      q2_1(1)    q2_1(1)    q2_1(2)   q2_1(2)  q2_2(1) q2_2(1) q2_2(2) q2_2(2);
0093      q3_1(1)    q3_1(1)    q3_1(2)   q3_1(2)  q3_2(1) q3_2(1) q3_2(2) q3_2(2);
0094      0          0          0         0         0      0       0       0;
0095      0          0          0         0         0      0       0       0;
0096      0          0          0         0         0      0       0       0];
0097 
0098 %leave only the real part of the solutions
0099 q=real(q);
0100 
0101 %Note that in this robot, the joint q3 has a non-simmetrical range. In this
0102 %case, the joint ranges from 60 deg to -219 deg, thus, the typical normalizing
0103 %step is avoided in this angle (the next line is commented). When solving
0104 %for the orientation, the solutions are normalized to the [-pi, pi] range
0105 %only for the theta4, theta5 and theta6 joints.
0106 
0107 %normalize q to [-pi, pi]
0108 q(1,:) = normalize(q(1,:));
0109 q(2,:) = normalize(q(2,:));
0110 
0111 % solve for the last three joints
0112 % for any of the possible combinations (theta1, theta2, theta3)
0113 for i=1:2:size(q,2),
0114     % use solve_spherical_wrist2 for the particular orientation
0115     % of the systems in this ABB robot
0116     % use either the geometric or algebraic method.
0117     % the function solve_spherical_wrist2 is used due to the relative
0118     % orientation of the last three DH reference systems.
0119     
0120     %use either one algebraic method or the geometric
0121     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1, 'geometric'); %wrist up
0122     qtemp = solve_spherical_wrist2(robot, q(:,i), T, 1,'algebraic'); %wrist up
0123     qtemp(4:6)=normalize(qtemp(4:6));
0124     q(:,i)=qtemp;
0125     
0126     %qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'geometric'); %wrist down
0127     qtemp = solve_spherical_wrist2(robot, q(:,i), T, -1, 'algebraic'); %wrist down
0128     qtemp(4:6)=normalize(qtemp(4:6));
0129     q(:,i+1)=qtemp;
0130 end
0131 
0132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0133 % solve for second joint theta2, two different
0134 % solutions are returned, corresponding
0135 % to elbow up and down solution
0136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0137 function q2 = solve_for_theta2(robot, q, Pm)
0138 
0139 %Evaluate the parameters
0140 d = eval(robot.DH.d);
0141 a = eval(robot.DH.a);
0142 
0143 %See geometry
0144 L2=a(2);
0145 L3=sqrt(d(4)^2+a(3)^2);
0146 
0147 %given q1 is known, compute first DH transformation
0148 T01=dh(robot, q, 1);
0149 
0150 %Express Pm in the reference system 1, for convenience
0151 p1 = inv(T01)*[Pm; 1];
0152 
0153 r = sqrt(p1(1)^2 + p1(2)^2);
0154 
0155 beta = atan2(-p1(2), p1(1));
0156 gamma = (acos((L2^2+r^2-L3^2)/(2*r*L2)));
0157 
0158 if ~isreal(gamma)
0159     disp('WARNING:inversekinematic_irb6650_90_390: the point is not reachable for this configuration, imaginary solutions'); 
0160     %gamma = real(gamma);
0161 end
0162 
0163 %return two possible solutions
0164 %elbow up and elbow down
0165 %the order here is important and is coordinated with the function
0166 %solve_for_theta3
0167 q2(1) = pi/2 - beta - gamma; %elbow up
0168 q2(2) = pi/2 - beta + gamma; %elbow down
0169 
0170 
0171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0172 % solve for third joint theta3, two different
0173 % solutions are returned, corresponding
0174 % to elbow up and down solution
0175 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0176 function q3 = solve_for_theta3(robot, q, Pm)
0177 
0178 %Evaluate the parameters
0179 d = eval(robot.DH.d);
0180 a = eval(robot.DH.a);
0181 
0182 %See geometry
0183 L2=a(2);
0184 L3=sqrt(d(4)^2+a(3)^2);
0185 
0186 %given q1 is known, compute first DH transformation
0187 T01=dh(robot, q, 1);
0188 
0189 %Express Pm in the reference system 1, for convenience
0190 p1 = inv(T01)*[Pm; 1];
0191 
0192 r = sqrt(p1(1)^2 + p1(2)^2);
0193 
0194 eta = (acos((L2^2 + L3^2 - r^2)/(2*L2*L3)));
0195 
0196 if ~isreal(eta)
0197    disp('WARNING:inversekinematic_irb6650_90_390: the point is not reachable for this configuration, imaginary solutions'); 
0198    %eta = real(eta);
0199 end
0200 
0201 %return two possible solutions
0202 %elbow up and elbow down solutions
0203 %the order here is important
0204 q3(1) = -(atan(d(4)/a(3))+eta - pi);
0205 q3(2) = -(pi+atan(d(4)/a(3))-eta);
0206 
0207 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0208 % % solve for second joint theta2, two different
0209 % % solutions are returned, corresponding
0210 % % to elbow up and down solution
0211 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0212 % function q2 = solve_for_theta2(robot, q, Pm)
0213 %
0214 % %Evaluate the parameters
0215 % theta = eval(robot.DH.theta);
0216 % d = eval(robot.DH.d);
0217 % a = eval(robot.DH.a);
0218 % alpha = eval(robot.DH.alpha);
0219 %
0220 % %See geometry
0221 % L2=a(2);
0222 % L3=d(4);
0223 % A2=a(3);
0224 %
0225 % %See geometry of the robot
0226 % %compute L4
0227 % L4 = sqrt(A2^2 + L3^2);
0228 %
0229 % %The inverse kinematic problem can be solved as in the IRB 140 (for example)
0230 %
0231 % %given q1 is known, compute first DH transformation
0232 % T01=dh(robot, q, 1);
0233 %
0234 % %Express Pm in the reference system 1, for convenience
0235 % p1 = inv(T01)*[Pm; 1];
0236 %
0237 % r = sqrt(p1(1)^2 + p1(2)^2);
0238 %
0239 % beta = atan2(-p1(2), p1(1));
0240 % gamma = real(acos((L2^2+r^2-L4^2)/(2*r*L2)));
0241 %
0242 % %return two possible solutions
0243 % %elbow up and elbow down
0244 % %the order here is important and is coordinated with the function
0245 % %solve_for_theta3
0246 % q2(1) = pi/2 - beta - gamma; %elbow up
0247 % q2(2) = pi/2 - beta + gamma; %elbow down
0248 %
0249 %
0250 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0251 % % solve for third joint theta3, two different
0252 % % solutions are returned, corresponding
0253 % % to elbow up and down solution
0254 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0255 % function q3 = solve_for_theta3(robot, q, Pm)
0256 %
0257 % %Evaluate the parameters
0258 % theta = eval(robot.DH.theta);
0259 % d = eval(robot.DH.d);
0260 % a = eval(robot.DH.a);
0261 % alpha = eval(robot.DH.alpha);
0262 %
0263 % %See geometry
0264 % L2=a(2);
0265 % L3=d(4);
0266 % A2=a(3);
0267 %
0268 % %See geometry of the robot
0269 % %compute L4
0270 % L4 = sqrt(A2^2 + L3^2);
0271 %
0272 % %the angle phi is fixed
0273 % phi=acos((A2^2+L4^2-L3^2)/(2*A2*L4));
0274 %
0275 % %given q1 is known, compute first DH transformation
0276 % T01=dh(robot, q, 1);
0277 %
0278 % %Express Pm in the reference system 1, for convenience
0279 % p1 = inv(T01)*[Pm; 1];
0280 %
0281 % r = sqrt(p1(1)^2 + p1(2)^2);
0282 %
0283 % eta = real(acos((L2^2 + L4^2 - r^2)/(2*L2*L4)));
0284 %
0285 % %return two possible solutions
0286 % %elbow up and elbow down solutions
0287 % %the order here is important
0288 % q3(1) = pi - phi- eta;
0289 % q3(2) = pi - phi + eta;
0290 %

Generated on Fri 03-Jan-2014 12:20:01 by m2html © 2005