Home > arte3.2.0 > robots > FANUC > LR_MATE_200iC > inversekinematic_fanuc_mate.m

inversekinematic_fanuc_mate

PURPOSE ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

SYNOPSIS ^

function q = inversekinematic_fanuc_mate(robot, T)

DESCRIPTION ^

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
   Q = INVERSEKINEMATIC_FANUC_MATE(robot, T)    
   Solves the inverse kinematic problem for the FANUC LR MATE 200iC robot
   where:
   robot stores the robot parameters.
   T is an homogeneous transform that specifies the position/orientation
   of the end effector.

   A call to Q=INVERSEKINEMATIC_FANUC_MATE returns 8 possible solutions, thus,
   Q is a 6x8 matrix where each column stores 6 feasible joint values.

   
   Example code:

   fanuc=load_robot('fanuc', 'LR_MATE_200iC');
   q = [0 0 0 0 0 0];    
   T = directkinematic(fanuc, q);
   %Call the inversekinematic for this robot
   qinv = inversekinematic(fanuc, T);
   check that all of them are feasible solutions!
   and every Ti equals T
   for i=1:8,
        Ti = directkinematic(fanuc, qinv(:,i))
   end
    See also DIRECTKINEMATIC.

   Author:Juan Alejandro And�jar Cuenca & Israel Mira Ant�n

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0002 %   Q = INVERSEKINEMATIC_FANUC_MATE(robot, T)
0003 %   Solves the inverse kinematic problem for the FANUC LR MATE 200iC robot
0004 %   where:
0005 %   robot stores the robot parameters.
0006 %   T is an homogeneous transform that specifies the position/orientation
0007 %   of the end effector.
0008 %
0009 %   A call to Q=INVERSEKINEMATIC_FANUC_MATE returns 8 possible solutions, thus,
0010 %   Q is a 6x8 matrix where each column stores 6 feasible joint values.
0011 %
0012 %
0013 %   Example code:
0014 %
0015 %   fanuc=load_robot('fanuc', 'LR_MATE_200iC');
0016 %   q = [0 0 0 0 0 0];
0017 %   T = directkinematic(fanuc, q);
0018 %   %Call the inversekinematic for this robot
0019 %   qinv = inversekinematic(fanuc, T);
0020 %   check that all of them are feasible solutions!
0021 %   and every Ti equals T
0022 %   for i=1:8,
0023 %        Ti = directkinematic(fanuc, qinv(:,i))
0024 %   end
0025 %    See also DIRECTKINEMATIC.
0026 %
0027 %   Author:Juan Alejandro And�jar Cuenca & Israel Mira Ant�n
0028 %
0029 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0030 
0031 % Copyright (C) 2012, by Juan Alejandro And�jar Cuenca & Israel Mira Ant�n
0032 %
0033 % This file is part of ARTE (A Robotics Toolbox for Education).
0034 %
0035 % ARTE is free software: you can redistribute it and/or modify
0036 % it under the terms of the GNU Lesser General Public License as published by
0037 % the Free Software Foundation, either version 3 of the License, or
0038 % (at your option) any later version.
0039 %
0040 % ARTE is distributed in the hope that it will be useful,
0041 % but WITHOUT ANY WARRANTY; without even the implied warranty of
0042 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
0043 % GNU Lesser General Public License for more details.
0044 %
0045 % You should have received a copy of the GNU Leser General Public License
0046 % along with ARTE.  If not, see <http://www.gnu.org/licenses/>.
0047 function q = inversekinematic_fanuc_mate(robot, T)
0048 
0049 %initialize q,
0050 %eight possible solutions are generally feasible
0051 q=zeros(6,8);
0052 
0053 %Evaluate the parameters
0054 d = eval(robot.DH.d);
0055 
0056 %See geometry at the reference for this robot
0057 L6=d(6);
0058 
0059 
0060 %T= [ nx ox ax Px;
0061 %     ny oy ay Py;
0062 %     nz oz az Pz];
0063 Px=T(1,4);
0064 Py=T(2,4);
0065 Pz=T(3,4);
0066 
0067 %Compute the position of the wrist, being W the Z component of the end effector's system
0068 W = T(1:3,3);
0069 
0070 % Pm: wrist position
0071 Pm = [Px Py Pz]' - L6*W; 
0072 
0073 %first joint, two possible solutions admited:
0074 % if q(1) is a solution, then q(1) + pi is also a solution
0075 q1=atan2(Pm(2), Pm(1));
0076 
0077 
0078 %solve for q2
0079 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm);
0080 
0081 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm);
0082 
0083 %solve for q3
0084 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm);
0085 
0086 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm);
0087 
0088 
0089 %Arrange solutions, there are 8 possible solutions so far.
0090 % if q1 is a solution, q1* = q1 + pi is also a solution.
0091 % For each (q1, q1*) there are two possible solutions
0092 % for q2 and q3 (namely, elbow up and elbow up solutions)
0093 % So far, we have 4 possible solutions. Howefer, for each triplet (theta1, theta2, theta3),
0094 % there exist two more possible solutions for the last three joints, generally
0095 % called wrist up and wrist down solutions. For this reason,
0096 %the next matrix doubles each column. For each two columns, two different
0097 %configurations for theta4, theta5 and theta6 will be computed. These
0098 %configurations are generally referred as wrist up and wrist down solution
0099 q = [q1         q1         q1        q1       q1+pi   q1+pi   q1+pi   q1+pi;   
0100      q2_1(1)    q2_1(1)    q2_1(2)   q2_1(2)  q2_2(1) q2_2(1) q2_2(2) q2_2(2);
0101      q3_1(1)    q3_1(1)    q3_1(2)   q3_1(2)  q3_2(1) q3_2(1) q3_2(2) q3_2(2);
0102      0          0          0         0         0      0       0       0;
0103      0          0          0         0         0      0       0       0;
0104      0          0          0         0         0      0       0       0];
0105 
0106 %leave only the real part of the solutions
0107 q=real(q);
0108 
0109 %Note that in this robot, the joint q3 has a non-simmetrical range. In this
0110 %case, the joint ranges from 60 deg to -219 deg, thus, the typical normalizing
0111 %step is avoided in this angle (the next line is commented). When solving
0112 %for the orientation, the solutions are normalized to the [-pi, pi] range
0113 %only for the theta4, theta5 and theta6 joints.
0114 
0115 %normalize q to [-pi, pi]
0116 q(1,:) = normalize(q(1,:));
0117 q(2,:) = normalize(q(2,:));
0118 % solve for the last three joints
0119 % for any of the possible combinations (theta1, theta2, theta3)
0120 for i=1:2:size(q,2),
0121     qtemp = solve_spherical_wrist(robot, q(:,i), T, 1,'geometric'); %wrist up
0122     qtemp(4:6)=normalize(qtemp(4:6));
0123     q(:,i)=qtemp;
0124         
0125     qtemp = solve_spherical_wrist(robot, q(:,i), T, -1, 'geometric'); %wrist up
0126     qtemp(4:6)=normalize(qtemp(4:6));
0127     q(:,i+1)=qtemp;
0128 end
0129 
0130  
0131 
0132 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0133 % solve for second joint theta2, two different
0134 % solutions are returned, corresponding
0135 % to elbow up and down solution
0136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0137 function q2 = solve_for_theta2(robot, q, Pm)
0138 
0139 %Evaluate the parameters
0140 d = eval(robot.DH.d);
0141 a = eval(robot.DH.a);
0142 
0143 %See geometry
0144 L2=a(2);
0145 L3=d(4);
0146 
0147 A3=a(3); % desfase
0148 
0149 %given q1 is known, compute first DH transformation
0150 T01=dh(robot, q, 1);
0151 
0152 %Eslab�n equivalente para simplificar el desfase
0153 l3 = sqrt (A3^2 + L3^2);
0154 
0155 %Express Pm in the reference system 1, for convenience
0156 p1 = inv(T01)*[Pm; 1];
0157 
0158 r = sqrt(p1(1)^2 + p1(2)^2);
0159 
0160 beta = atan2(-p1(2), p1(1));
0161 gamma = (acos((L2^2+r^2-l3^2)/(2*r*L2)));
0162 
0163 if ~isreal(gamma)
0164     disp('WARNING:inversekinematic_fanuc_mate: the point is not reachable for this configuration, imaginary solutions'); 
0165     %gamma = real(gamma);
0166 end
0167 
0168 %return two possible solutions
0169 %elbow up and elbow down
0170 %the order here is important and is coordinated with the function
0171 %solve_for_theta3
0172 q2(1) = pi/2 - beta - gamma; %elbow up
0173 q2(2) = pi/2 - beta + gamma; %elbow down
0174 
0175 
0176 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0177 % solve for third joint theta3, two different
0178 % solutions are returned, corresponding
0179 % to elbow up and down solution
0180 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0181 function q3 = solve_for_theta3(robot, q, Pm)
0182 
0183 %Evaluate the parameters
0184 d = eval(robot.DH.d);
0185 a = eval(robot.DH.a);
0186 
0187 %See geometry
0188 L2=a(2);
0189 L3=d(4);
0190 
0191 A3= a(3); %desfase
0192 
0193 %See geometry of the robot
0194 %compute L4
0195 l3 = sqrt(A3^2 + L3^2);
0196 
0197 %the angle phi is fixed
0198 phi=acos((A3^2+l3^2-L3^2)/(2*A3*l3));
0199 
0200 %given q1 is known, compute first DH transformation
0201 T01=dh(robot, q, 1);
0202 
0203 %Express Pm in the reference system 1, for convenience
0204 p1 = inv(T01)*[Pm; 1];
0205 
0206 r = sqrt(p1(1)^2 + p1(2)^2);
0207 
0208 eta = (acos((L2^2 + l3^2 - r^2)/(2*L2*l3)));
0209 
0210 if ~isreal(eta)
0211    disp('WARNING:inversekinematic_fanuc_mate: the point is not reachable for this configuration, imaginary solutions'); 
0212    %eta = real(eta);
0213 end
0214 
0215 %return two possible solutions
0216 %elbow up and elbow down solutions
0217 %the order here is important
0218 q3(1) = pi - phi - eta;
0219 q3(2) = pi - phi + eta;
0220 
0221 
0222 %remove complex solutions for q for the q1+pi solutions
0223 function  qreal = arrange_solutions(q)
0224 qreal=q(:,1:4);
0225 
0226 %sum along rows if any angle is complex, for any possible solutions, then v(i) is complex
0227 v = sum(q, 1);
0228 
0229 for i=5:8,
0230     if isreal(v(i))
0231         qreal=[qreal q(:,i)]; %store the real solutions
0232     end
0233 end
0234 
0235 qreal = real(qreal);

Generated on Fri 03-Jan-2014 12:20:01 by m2html © 2005