%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Q = INVERSEKINEMATIC_RV_6S_6DOF(robot, T) Solves the inverse kinematic problem for the MITSUBISHI RV-6S robot where: robot stores the robot parameters. T is an homogeneous transform that specifies the position/orientation of the end effector. A call to Q=INVERSEKINEMATIC_RV_6S_6DOF returns 8 possible solutions, thus, Q is a 6x8 matrix where each column stores 6 feasible joint values. Example code: robot=load_robot('mitsubishi', 'rv-6s'); q = [0 0 0 0 0 0]; T = directkinematic( robot, q); %Call the inversekinematic for this robot qinv = inversekinematic( robot, T); check that all of them are feasible solutions! and every Ti equals T for i=1:8, Ti = directkinematic( robot, qinv(:,i)) end See also DIRECTKINEMATIC. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
0001 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0002 % Q = INVERSEKINEMATIC_RV_6S_6DOF(robot, T) 0003 % Solves the inverse kinematic problem for the MITSUBISHI RV-6S robot 0004 % where: 0005 % robot stores the robot parameters. 0006 % T is an homogeneous transform that specifies the position/orientation 0007 % of the end effector. 0008 % 0009 % A call to Q=INVERSEKINEMATIC_RV_6S_6DOF returns 8 possible solutions, thus, 0010 % Q is a 6x8 matrix where each column stores 6 feasible joint values. 0011 % 0012 % 0013 % Example code: 0014 % 0015 % robot=load_robot('mitsubishi', 'rv-6s'); 0016 % q = [0 0 0 0 0 0]; 0017 % T = directkinematic( robot, q); 0018 % %Call the inversekinematic for this robot 0019 % qinv = inversekinematic( robot, T); 0020 % check that all of them are feasible solutions! 0021 % and every Ti equals T 0022 % for i=1:8, 0023 % Ti = directkinematic( robot, qinv(:,i)) 0024 % end 0025 % See also DIRECTKINEMATIC. 0026 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0027 0028 % Copyright (C) 2012, by Arturo Gil Aparicio 0029 % 0030 % This file is part of ARTE (A Robotics Toolbox for Education). 0031 % 0032 % ARTE is free software: you can redistribute it and/or modify 0033 % it under the terms of the GNU Lesser General Public License as published by 0034 % the Free Software Foundation, either version 3 of the License, or 0035 % (at your option) any later version. 0036 % 0037 % ARTE is distributed in the hope that it will be useful, 0038 % but WITHOUT ANY WARRANTY; without even the implied warranty of 0039 % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 0040 % GNU Lesser General Public License for more details. 0041 % 0042 % You should have received a copy of the GNU Leser General Public License 0043 % along with ARTE. If not, see <http://www.gnu.org/licenses/>. 0044 function q = inversekinematic_rv_6s(robot, T) 0045 0046 %initialize q, 0047 %eight possible solutions are generally feasible 0048 q=zeros(6,8); 0049 0050 % %Evaluate the parameters 0051 % theta = eval(robot.DH.theta); 0052 d = eval(robot.DH.d); 0053 L6=d(6); 0054 0055 0056 %T= [ nx ox ax Px; 0057 % ny oy ay Py; 0058 % nz oz az Pz]; 0059 Px=T(1,4); 0060 Py=T(2,4); 0061 Pz=T(3,4); 0062 0063 %Compute the position of the wrist, being W the Z component of the end effector's system 0064 W = T(1:3,3); 0065 0066 % Pm: wrist position 0067 Pm = [Px Py Pz]' - L6*W; 0068 0069 %first joint, two possible solutions admited: 0070 % if q(1) is a solution, then q(1) + pi is also a solution 0071 q1=atan2(Pm(2), Pm(1)); 0072 0073 0074 %solve for q2 0075 q2_1=solve_for_theta2(robot, [q1 0 0 0 0 0 0], Pm); 0076 %the other possible solution is q1 + pi 0077 q2_2=solve_for_theta2(robot, [q1+pi 0 0 0 0 0 0], Pm); 0078 0079 %solve for q3 0080 q3_1=solve_for_theta3(robot, [q1 0 0 0 0 0 0], Pm); 0081 %solver for q3 for both cases 0082 q3_2=solve_for_theta3(robot, [q1+pi 0 0 0 0 0 0], Pm); 0083 0084 %the next matrix doubles each column. For each two columns, two different 0085 %configurations for theta4, theta5 and theta6 will be computed. These 0086 %configurations are generally referred as wrist up and wrist down solution 0087 q = [q1 q1 q1 q1 q1+pi q1+pi q1+pi q1+pi; 0088 q2_1(1) q2_1(1) q2_1(2) q2_1(2) q2_2(1) q2_2(1) q2_2(2) q2_2(2); 0089 q3_1(1) q3_1(1) q3_1(2) q3_1(2) q3_2(1) q3_2(1) q3_2(2) q3_2(2); 0090 0 0 0 0 0 0 0 0; 0091 0 0 0 0 0 0 0 0; 0092 0 0 0 0 0 0 0 0]; 0093 0094 0095 %leave only the real part of the solutions 0096 q=real(q); 0097 0098 %Note that in this robot, the joint q3 has a non-simmetrical range. 0099 0100 0101 %normalize q to [-pi, pi] 0102 q(1,:) = normalize(q(1,:)); 0103 q(2,:) = normalize(q(2,:)); 0104 0105 % solve for the last three joints 0106 % for any of the possible combinations (theta1, theta2, theta3) 0107 for i=1:2:size(q,2), 0108 qtemp = solve_spherical_wrist(robot, q(:,i), T, 1,'geometric'); %wrist up 0109 qtemp(4:6)=normalize(qtemp(4:6)); 0110 q(:,i)=qtemp; 0111 0112 qtemp = solve_spherical_wrist(robot, q(:,i), T, -1, 'geometric'); %wrist up 0113 qtemp(4:6)=normalize(qtemp(4:6)); 0114 q(:,i+1)=qtemp; 0115 end 0116 0117 0118 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0119 % solve for second joint theta2, two different 0120 % solutions are returned, corresponding 0121 % to elbow up and down solution 0122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0123 function q2 = solve_for_theta2(robot, q, Pm) 0124 0125 %Evaluate the parameters 0126 theta = eval(robot.DH.theta); 0127 d = eval(robot.DH.d); 0128 a = eval(robot.DH.a); 0129 alpha = eval(robot.DH.alpha); 0130 0131 %See geometry 0132 L2=a(2); 0133 L3=d(4); 0134 A2=a(3); 0135 0136 %See geometry of the robot 0137 %compute L4 0138 L4 = sqrt(A2^2 + L3^2); 0139 0140 %The inverse kinematic problem can be solved as in the IRB 140 (for example) 0141 0142 %given q1 is known, compute first DH transformation 0143 T01=dh(robot, q, 1); 0144 0145 %Express Pm in the reference system 1, for convenience 0146 p1 = inv(T01)*[Pm; 1]; 0147 0148 r = sqrt(p1(1)^2 + p1(2)^2); 0149 0150 beta = atan2(-p1(2), p1(1)); 0151 gamma = real(acos((L2^2+r^2-L4^2)/(2*r*L2))); 0152 0153 %return two possible solutions 0154 %elbow up and elbow down 0155 %the order here is important and is coordinated with the function 0156 %solve_for_theta3 0157 q2(1) = pi/2 - beta - gamma; %elbow up 0158 q2(2) = pi/2 - beta + gamma; %elbow down 0159 0160 0161 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0162 % solve for third joint theta3, two different 0163 % solutions are returned, corresponding 0164 % to elbow up and down solution 0165 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 0166 function q3 = solve_for_theta3(robot, q, Pm) 0167 0168 %Evaluate the parameters 0169 theta = eval(robot.DH.theta); 0170 d = eval(robot.DH.d); 0171 a = eval(robot.DH.a); 0172 alpha = eval(robot.DH.alpha); 0173 0174 %See geometry 0175 L2=a(2); 0176 L3=d(4); 0177 A2=a(3); 0178 0179 %See geometry of the robot 0180 %compute L4 0181 L4 = sqrt(A2^2 + L3^2); 0182 0183 %the angle phi is fixed 0184 phi=acos((A2^2+L4^2-L3^2)/(2*A2*L4)); 0185 0186 %given q1 is known, compute first DH transformation 0187 T01=dh(robot, q, 1); 0188 0189 %Express Pm in the reference system 1, for convenience 0190 p1 = inv(T01)*[Pm; 1]; 0191 0192 r = sqrt(p1(1)^2 + p1(2)^2); 0193 0194 eta = real(acos((L2^2 + L4^2 - r^2)/(2*L2*L4))); 0195 0196 %return two possible solutions 0197 %elbow up and elbow down solutions 0198 %the order here is important 0199 q3(1) = pi - phi- eta; 0200 q3(2) = pi - phi + eta; 0201 0202