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OBJECTIVES	
  
	
  This practical session deals with the following concepts: 

- Computation of the inverse dynamics of a serial manipulator by means of 
the recursive Newton-Euler formulation.  

- Computation of the torques required by the robot at different situations. A 
simulation of the worst case is carried out. 

- Motor selection based on trapezoidal speed profiles. 
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1 First steps 

The dynamic analysis of a robot manipulator is considered and advanced 
concept. In most of the cases the dynamic parameters of the robotic arm are 
not provided by the manufacturer. In consequence, during this session we will 
restrict our analysis to a very well known robotic manipulator: the UNIMATE 
PUMA 560, whose parameters have been previously identified. Figure 1 
presents the robot and its D-H parameters table. 



	
  
Figure	
  1	
  

All the parameters belonging to this robot can be found under 
arte/robots/unimate/puma560/parameters.m. The student should now take a 
look at these parameters. 

	
  

function robot = parameters() 
%KYNEMATICS 
robot.name= 'puma_560'; 
  
robot.DH.theta = '[q(1) q(2) q(3) q(4) q(5) q(6)]'; 
robot.DH.d='[0  0   0.15005  0.4318     0    0.04]'; 
robot.DH.a='[0 0.4318  0.0203      0       0    0]'; 
robot.DH.alpha= '[pi/2  0   -pi/2  pi/2   -pi/2 0]'; 
robot.J=[]; 
robot.name='Puma 560 robotic arm'; 
  
robot.inversekinematic_fn = 'inversekinematic_puma560(robot, 
T)'; 
  
  
%R: rotational, T: translational 
robot.kind=['R' 'R' 'R' 'R' 'R' 'R']; 
  
%number of degrees of freedom 
robot.DOF = 6; 
  
%minimum and maximum rotation angle in rad 
robot.maxangle =[deg2rad(-160) deg2rad(160); %Axis 1, minimum, 
maximum 
                deg2rad(-110) deg2rad(110); %Axis 2, minimum, 



maximum 
                deg2rad(-135) deg2rad(135); %Axis 3 
                deg2rad(-266) deg2rad(266); %Axis 4: Unlimited 
(400ÔøΩ default) 
                deg2rad(-100) deg2rad(100); %Axis 5 
                deg2rad(-266) deg2rad(266)]; %Axis 6: Unlimited 
(800ÔøΩ default) 
  
%maximum absolute speed of each joint rad/s or m/s 
robot.velmax = [1 
                1 
                1 
                1 
                1 
                1];%not available 
% end effectors maximum velocity 
robot.linear_velmax = 0.5; %m/s, from datasheet 
robot.accelmax=robot.velmax/0.1; % 0.1 is here an acceleration 
time 
  
%base reference system 
robot.T0 = eye(4); 
  
%INITIALIZATION OF VARIABLES REQUIRED FOR THE SIMULATION 
%position, velocity and acceleration 
robot=init_sim_variables(robot); 
robot.path = pwd; 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% GRAPHICS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%read graphics files 
robot.graphical.has_graphics=1; 
robot.graphical.color = [150 180 130]./255; 
%for transparency 
robot.graphical.draw_transparent=0; 
%draw DH systems 
robot.graphical.draw_axes=1; 
%DH system length and Font size, standard is 1/10. Select 2/20, 
3/30 for 
%bigger robots 
robot.graphical.axes_scale=1; 
%adjust for a default view of the robot 
robot.axis=[-1 1 -1 1 -0.66 2]; 
robot = read_graphics(robot); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
%DYNAMIC PARAMETERS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
robot.has_dynamics=1; 
  
%consider friction in the computations 
robot.dynamics.friction=0; 



  
%link masses (kg) 
robot.dynamics.masses=[0 17.4 4.8 0.82 0.34 0.09]; 
  
%COM of each link with respect to own reference system 
robot.dynamics.r_com=[0       0          0; %(rx, ry, rz) link 1 
    -0.3638  0.006   0.2275; %(rx, ry, rz) link 2 
    -0.0203 -0.0141  0.070;  %(rx, ry, rz) link 3 
    0       0.019       0;%(rx, ry, rz) link 4 
    0       0           0;%(rx, ry, rz) link 5 
   0         0         -0.008];%(rx, ry, rz) link 6 
  
%Inertia matrices of each link with respect to its D-H reference 
system. 
% Ixx   Iyy Izz Ixy Iyz Ixz, for each row 
robot.dynamics.Inertia=[0      0.35 0       0   0   0; 
    0.13    0.524   0.539   0   0   0; 
    0.066   0.086   0.0125  0   0   0; 
    1.8e-3  1.3e-3  1.8e-3  0   0   0; 
    0.3e-3  0.4e-3  0.3e-3  0   0   0; 
    0.15e-3 0.15e-3 0.04e-3 0   0   0]; 
  
  
%Please note that we are simulating the motors as presented in 
MAXON 
%catalog 
robot.motors=load_motors([5 5 5 5 5 5]); 
  
  
%Actuator rotor inertia 
%robot.motors.Inertia=[200e-6 200e-6 200e-6 33e-6 33e-6 33e-6]; 
%Speed reductor at each joint 
%robot.motors.G=[-62.6111 107.815 -53.7063 76.0364 71.923 
76.686]; 
%Please note that, for simplicity in control, we consider that 
the gear 
%ratios are all positive 
robot.motors.G=[62.6111 107.815 53.7063 76.0364 71.923 76.686]; 
 
 
	
  

By calling load_robot, we load all these parameters into a workspace variable. 
The variable robot.has_dynamics tells us that the robot dynamics are 
available. You can load the PUMA 560 robot and draw it in 3D. 

>> init_lib 
>> robot=load_robot('unimate','puma560') 
>> T=directkinematic(robot, [0 0 0 0 0 0]) 
 
T = 
 
    1.0000         0         0    0.8000 
         0   -1.0000   -0.0000   -0.0000 
         0    0.0000   -1.0000    0.4000 
         0         0         0    1.0000 
>> drawrobot3d(robot, [0 0 0 0 0 0]) 
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2 Inverse dynamics 

Given the joint positions, velocities, accelerations and arm load, we can 
compute the torques/forces at each link to instantaneously bring the robot to 
this state. We can now analyse the robot under different dynamic situations. 

>> init_lib 
>> robot=load_robot('unimate','puma560') 
>> q1 = [0 0 0 0 0 0];  
>> T=directkinematic(robot, q1) 
T = 
 
    1.0000         0         0    0.4521 
         0    1.0000         0   -0.1500 
         0         0    1.0000    0.4718 
         0         0         0    1.0000 
 
>> drawrobot3d(robot, q1) 
>> tau = inversedynamic(robot, q1, [0 0 0 0 0 0], [0 0 0 0 0 0], [0  0 
9.81]', [0 0 0 0 0 0]') 
 

The above code computes the torques tau when the robot is placed at q1, with 
zero speeds and accelerations, the gravity acts at its Z0 axis and no load are 
applied at its end effector.  

At the demos directory you should find three files: 

a) inversedynamics_2DOFplanar.m: Performs a simulation of a 2DOF 
arm. The dynamic parameters in this case are simplified for the sake of 
an easy-to-understand simulation.	
  



b) inversedynamics_3DOFplanar.m: The simulation is extended to the 
case of a 3 DOF planar arm.	
  

c) inversedynamics_puma560.m: The file simulates the inverse 
dynamic model of the Unimate Puma 560 robotic arm. The arm is 
simulated under different conditions.	
  

	
  

Exercise	
  1:	
  	
  
Compute the torques at each joint under the following conditions. 
q =  [0 0 -pi/2 0 0 0] 
qd =  [0 0 0 0 0 0] %zero speeds 
qdd =[1 1 1 0 0 0] 
 
Justify your results. Now repeat the experiments but consider that the robot 
carries a point centered mass with 5 Kg. Describe the differences found.	
  
	
  

Exercise	
  2:	
  	
  
Adapt the dynamic parameters for your chosen robot. The link masses and 
actuator’s weights are generally not specified by the manufacturers. In 
consequence, the link masses should be imagined considering the total weight 
of the robot. Simulate your robot under different conditions. 
	
  

	
  

3 Motor selection 

Open the file named motor_selection.m under arte/demos. This file simulates 
the inverse dynamics of the robot under a set of practical situations. The 
approach considers that the robot has a joint configuration that makes the 
torques at each actuator maximum. In this sense, the inverse dynamic function 
computes the torques at each joint that would bring the robot to the specifed 
motion state (that is, joint positions, joint speeds and accelerations). The 
student should consider the arm and place it at a joint position where the torque 
requirements are higher. For the case of the Puma 560, this configuration is 
presented in Figure 3. 
 



 
Figure	
  3 

 
The approach considers that, when a trajectory is planned by the robot’s 
controller, each actuator must follow a trapezoidal speed profile shown in Figure 
4. This speed profile is often used in the selection of electric motors. This speed 
profile considers an acceleration phase (at a maximum angular acceleration), a 
phase at constant speed (maximum speed) and a deceleration phase. Each 
robot manufacturer specifies these parameters for their robots (you may have a 
look at any of the datasheets included in the library). It is common that the joints 
corresponding to the first, second and third joints move at lower speeds and 
accelerations, compared to the rest of the joints. As you will observe, these 
joints require higher torques and power. The shape of the trapezoidal profile for 
each axis can be changed at the parameters section in the file 
motor_selection.m, by changing the maximum speed and acceleration for 
each joint.  
 
 
 
% robot pose: experiment by changing the pose while observing 
the different 
%             torques at each joint 
q=[0 0 -pi/2 0 0 0]; %rad 
  
%maximum speeds for joint 1, 2, 3, 4, 5 and 6 
maximum_speeds=[3 3 4 5 5 5]; %rad/s 



%maximum acceleration/deceleration for each joint 
maximum_accels=[5 5 6 7 8 9]; %rad/second^2 
  
% time of the trapezoidal profile that the joint moves at 
maximum speed 
time_at_constant_speed=0.4; %seconds 
 

 
Figure	
  4 

 
 
 

Figure 5 presents a typical result obtained after simulating motor_selection.m. If 
we have a look at this figure, we can observe that the peak torque is around 6 
N·m, whereas the nominal torque is approximately 1.8 N·m. Note that the 
matlab script takes the gear reduction ratio in consideration. Thus, the plot 
presents the torque on the motor axis that differs from the torque at the joint. 
Selecting a suitable gear is, in addition, complex. We should take several 
parameters in consideration, such as: 

- Gear reduction ration. 

- Maximum allowed input torque.	
  

- Maximum allowed output torque.	
  

- Maximum allowed output or input speeds.	
  

- Maximum axial load.	
  

- Average backslash. 

Motor manufacturers offer sometimes a selection programme that allows to 
select the actuator, gearhead and electric drive as a single configuration, 
considering at the same time most of the  parameters above. It is nontheless a 
complex task that requires experiencies. In order to simplify this selection, the 



gearhead in our case is only modelled by its reduction ratio, meaning that we 
are only interested in the conversion of torque and speed. This means that the 
torque seen by the electric motor will be reduced by the gear ratio whereas the 
rotor will turn at a speed increased by the same ratio. 
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After executing the motor_selection.m script you will find the following 
figures: 
- Figure 6 presents the input joint speeds. That is, the speed at which each joint 
is moving in rad/s. 
- Figure 7 presents the actuator speeds. That is, the speed at which each 
actuator is moving in rev/min. Please note that the speed in the actuators’ rotor 
depend on the gear ratio that is parameter that should be specified. The 
máximum speed in rev/min of the actuator should not surpass the value 
specified by the motor manufacturer. 
- Figure 8 presents the torque at each joint at every time step. It is important to 
note that the inverse dynamics function simulates the robot at different motion 
states, that are specified by the speed profiles. In this sense, it is important to 
understand that, during the simulation: 
 - The joint positions remain constant. 
 - The speed varies according to the specified profile. 
 - The acceleration varies accordint to the same specified profile. 
It is also impor 
 
- Figure 9 presents the torque at each joint at every time step reduced by the 
gear ratio, which is also a parameter that must be chosen.  
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Please note that if we select a higher reduction ratio we will obtain lower 
torques at each actuator, at the prize of increasing the speed that each actuator 
should move. In consequence, the process of selecting an actuator and a 
gearhead can be very complex. For educational purposes, we have simplified 
the process of selecting an actuator, by considering only its maximum speed 
and maximum torque. It is important to note that motor manufacturers 
sometimes give a chart similar to the one presented in Figure 10, where the 
torque and speed are related to each other. In addition, in this chart we find an 
area of nominal speed and speed, meaning that the motor should normally work 
within this range  of speeds and torques. Eventually (approximately a 10% of 
the total time), the motor may go into the peak torque and speed area, where 
the requirements for the motor are higher. The student should also consider 



that, if we are not able to find a combination of motor and gearhed, perhaps it 
may be necessary to select a different motor model. Several motor 
manufacturers exist. In the motor_catalog directory you can find datasheet from 
different motor companies. If higher torques are required, perhaps we should 
select a bigger actuator that will bear higher torques and perhaps speeds. 
However, this normally increases the weight that should carry the robot, thus it 
is necessary to recompute the whole robot model and validate the actuator 
selection in a cyclic scheme. 
 

 
Figure	
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In order to understand how the motor_selection.m script works, perform the 
following steps: 
	
  

Exercise	
  3:	
  	
  
- Open the file motor_selection.m. Execute it. 
- Visualize the trapezoidal speed profile at each joint. 
- Change the máximum speeds and accelerations for each joint and observe 
the results in terms of joint and actuator torques. 
- Find the call to the function inversedynamic(). Consider changing the load 
carried by the robot on its end effector. 



- Plot the torque at each joint and the required motor torque. Identify the peak 
torque and the nominal torque. 
- These torques should be increased by a 1.5 factor for safety when selecting a 
rotor. 
- Now, you should search in the catalog (motor_catalog_maxon.pdf, 
ABB_catalog.pdf, PowerTec_catalog.pdf) a motor that suits the torque 
and speed requirements for the robot.  
- Finally, note down the maximum torques at each joint for your robot. 
	
  
	
  

Exercise	
  4:	
  
You can now simulate the PUMA 560 robot under different configurations and 
loads. For example, the torques should be lower if the robot is placed at a 
different joint position. In consequence, the load that the robot is able to carry 
may be greater. As an exercise, try to draw a load diagram as the one shown 
that specifies the load as a function of the robot position. 

	
  
	
  
	
  

Finally, the student should note that the forces implied in the movement of the 
arm are coupled. That means that if one of the links accelerates at a high rate, 
forces and torques will be induced to different joints. In this sense, in some 
cases it may be interesting to simulate the movement and accelerations with 
different sign, since it is “a priori” difficult to foresee the results. 

	
  

	
  

4 Summary 

Everything is summarized in the following videos: 

- Inverse dynamic of a 6 DOF robot.  



http://arvc.umh.es/arte/videos/pr3_video1_din_inversa.mp4 

- Motor selection (simulink). 

http://arvc.umh.es/arte/videos/pr3_video1_din_inversa.mp4 

	
  


