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 A B S T R A C T

This paper presents MinkUNeXt, an effective and efficient architecture for place-recognition from point 
clouds entirely based on the new 3D MinkNeXt Block, a residual block composed of 3D sparse convolutions 
that follows the philosophy established by recent Transformers but purely using simple 3D convolutions. 
Feature extraction is performed at different scales by a U-Net encoder–decoder network and the feature 
aggregation of those features into a single descriptor is carried out by a Generalized Mean Pooling (GeM). 
The proposed architecture demonstrates that it is possible to surpass the current state-of-the-art by only 
relying on conventional 3D sparse convolutions without making use of more complex and sophisticated 
proposals such as Transformers, Attention-Layers or Deformable Convolutions. A thorough assessment of the 
proposal has been carried out using the Oxford RobotCar, the In-house, the KITTI and the USyd datasets. As a 
result, MinkUNeXt proves to outperform other methods in the state-of-the-art. The implementation is publicly 
available at https://juanjo-cabrera.github.io/projects-MinkUNeXt/.
1. Introduction

In many applications, mobile robots must perform autonomous nav-
igation in a specific environment. As it moves, the robot should be able 
to recognize or identify different areas of the environment. This action 
is equivalent to finding a correspondence between its current sensor 
observations and a part of the stored database. This ability is commonly 
denoted as place recognition. In order to speed this process, frequently, 
authors have concentrated on describing some parts of the environment 
by means of an invariant descriptor. In this way, the robot should be 
able to recognize a part of the environment by finding the descriptor 
in the database that most resembles the descriptor associated to its 
current observations. The concept of place recognition is of uttermost 
importance in tasks such as localization, mapping and navigation.

Place recognition and robot localization are two closely related 
concepts. Place recognition centres on the description of the current 
robot observations in a way that allows the robot to identify different 
locations in the map. Thus, place recognition focuses on the extraction 
and codification of relevant features found in the robot query obser-
vation in such a way that they can be compared to previously stored 
data (Fig.  1). Similarly, robot localization refers to the act of estimating 
the position and orientation of the robot within a known map. In this 
way, given a map of the robot, conformed by a series of submaps, 
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a common process to carry out the global localization of the robot 
could consist of two phases [1]: (a) rapidly finding a submap within 
the global database using the feature descriptors (place recognition) 
and (b) performing a fine estimation of the position and orientation 
of the robot in that submap (robot localization). A similar technique is 
proposed in [2], where the descriptor is computed from Light Detection 
and Ranging (LiDAR) measurements. Next, a handcrafted descriptor is 
employed to rapidly retrieve some areas of interest in the map. The final 
localization step, based on the Iterative Closest Point (ICP) algorithm 
or other learnable methods [3] enable the computation of the position 
and orientation within the submap.

To date, place recognition has been performed with different types 
of sensors: visual cameras [4], laser [5], LiDAR [6] and Radar [7] using 
different types of techniques. For example, place recognition has been 
extensively solved by means of techniques based on the Bag of Words 
(BoW) algorithm using images [8,9].

During the last few years LiDAR sensors have lowered in price 
and weight, while increasing in resolution. Therefore, LiDAR sensors 
permit obtaining a large number of precise measurements from the en-
vironment that define its shape and structure. Being a self-illuminated 
sensor, it is insensitive to changes in natural light, making it appro-
priate for a wide range of outdoor robotics applications. While our 
https://doi.org/10.1016/j.array.2025.100569
Received 15 July 2025; Received in revised form 30 September 2025; Accepted 29
vailable online 11 November 2025 
590-0056/© 2025 The Author(s). Published by Elsevier Inc. This is an open access a
 October 2025

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/array
https://www.elsevier.com/locate/array
https://orcid.org/0000-0002-7141-7802
https://orcid.org/0009-0006-0085-6273
https://orcid.org/0000-0001-7811-8955
https://orcid.org/0000-0002-9242-3195
https://orcid.org/0000-0002-3045-4316
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
https://juanjo-cabrera.github.io/projects-MinkUNeXt/
mailto:juan.cabreram@umh.es
https://doi.org/10.1016/j.array.2025.100569
https://doi.org/10.1016/j.array.2025.100569
http://creativecommons.org/licenses/by/4.0/


J.J. Cabrera et al.

 

Array 28 (2025) 100569 
Fig. 1. Point cloud-based place recognition. Each query point cloud (red) is 
embedded into a global descriptor which is compared with the descriptors from 
the database point clouds (blue) by means of a Nearest Neighbour Search.

research focuses on place recognition, this sensor has spurred signif-
icant advancements in other critical areas like 3D object detection, 
where recent works have developed efficient pillar-based architectures 
and post-training quantization techniques to optimize performance on 
robotic platforms [10–12]. In consequence, across these varied applica-
tions, it is necessary to focus on methods that achieve a robust under-
standing of the scene. Regarding the place recognition literature, so far, 
we can find: (a) Classical techniques based on a handcrafted description 
of LiDAR data to generate rotationally invariant representations [2,13] 
and (b) Descriptions based on the use of Deep Neural Networks, either 
operating directly on the coordinates of the points [14] or on the 
projection of the points to image coordinates [15].

This manuscript presents a technique for the robust and invariant 
description of scenes captured by a LiDAR sensor. The method is based 
on the use of a Deep Neural Network that includes several improve-
ments and new developments inspired from the basis of several recent 
architectures. In summary, the main contributions of this paper are:

• A new 3D Sparse Convolutional Neural Network for Place-Reco-
gnition, which is named MinkUNeXt (Minkowski U-Net with Next 
generation neural network enhancements). It is the first approach 
of a U-Net architecture for point cloud embedding and place-
recognition. This architecture has been developed to efficiently 
address the place recognition problem. In addition, substantial 
improvements have been achieved both in terms of macro and 
micro design.

• The definition of a new residual block: the 3D Mink-Next Block 
(Min-kowski Next generation residual Block), which is entirely 
composed of 3D sparse convolutions and surpasses the perfor-
mance of 3D ResNet Blocks. Unlike ConvNeXt Residual Block [16],
which focuses on 2D convolutions and draws inspiration from 
transformer models to enhance performance on vision tasks, the 
3D MinkNext Block extends these design philosophies into the 
3D domain, utilizing sparse convolutions to efficiently process 
high-dimensional and irregular data such as point clouds.

As a result, the proposed topology is able to surpass significantly 
the current state of the art of point cloud place-recognition in terms of 
average recall at 1 (AR@1) and average recall at 1% (AR@1%), when 
compared to the most relevant methods in the literature.

The rest of the paper is organized as follows: Next, Section 2 deepens 
in the state of the art in relation with the use of Deep Neural Networks 
for the description of the structure of point clouds. After that, Section 3 
2 
defines in detail the proposed architecture to describe the point clouds. 
Next, Section 4 describes the datasets, experiments and results. Finally, 
Section 5 presents the main conclusions.

2. State of the art

This section offers a comprehensive overview of the current state-
of-the-art in place recognition, specifically exploring the utilization of 
Deep Neural Networks with point cloud data. Many applications have 
emerged that concentrate on place recognition based on point clouds. In 
this section the methods are presented chronologically. In addition, in 
this manuscript a comparison of the main results achieved by the most 
relevant architectures is provided. In this context, the first approach 
to this task was tackled in [14] with PointNetVLAD, a network model 
based on PointNet [17] for feature extraction followed by a NetVLAD 
layer for feature aggregation. The point clouds taken as input by this 
type of architectures do not need to be sorted, as they use symmetric 
functions such as Multi Layer Perceptron (MLP) or Fully Connected 
layers. Next, a similar approach, named LPD-Net [18] improved the 
state of the art by incorporating a local feature extraction block at the 
beginning of the network and a subsequent graph-based neighbourhood 
aggregation.

After that, the MinkLoc3D architecture emerged [19]. It is based 
on a Feature Pyramid Network (FPN) with Sparse Convolutions for 
feature extraction [20], followed by a Generalized Mean Pooling (GeM) 
for the aggregation of the features into a single vector [21]. At that 
time, the MinkLoc3D architecture marked a significant milestone, as 
it significantly surpassed the existing state-of-the-art methods and also 
demonstrated that the use of 3D convolutional layers was a good choice 
for feature extraction from point clouds. Unlike previous network ty-
pologies, when using 3D convolutions, they do require a sorted point 
cloud as input, where the spatial relationships between points are 
preserved. The same situation occurs in an analogous way with images, 
where 2D convolutions have proven to be very efficient in feature 
extraction thanks to the neighbourhood relationships between pixels. In 
this sense, some 2D architectures have also emerged taking as input the 
projected point cloud into a spherical image (OverlapNet [15]). Other 
works, such as [1] propose creating a rotation-invariant handcrafted 
image: from a polar coordinate representation of the point cloud, 
the 2D distance between consecutive points belonging to the same 
elevation angle (ring) is computed and then, a histogram per ring is 
obtained generating a 2D handcrafted codification of the point cloud.

In addition, both monocular images and point clouds are used 
simultaneously by some architectures (MinkLoc++ [22], PIC-Net [23]). 
In this case, both architectures are formed by two branches, processing 
independently the image and the point cloud. Each branch results in 
a feature vector and both vectors are finally aggregated into a single 
vector by a pooling process. Alternatively, each point can be associated 
with a feature corresponding to the RGB value of the image [24]. This 
requires a precise calibration of the camera-LiDAR system. Otherwise, 
some authors propose to use the relative intensity returned by each 
LiDAR ray, referred to as MinkLoc-SI [25].

The DAGC architecture [26] was the first to introduce self-attention 
layers [27] for point cloud feature extraction to perform place recogni-
tion. Later, other authors continued the use of attention layers, obtain-
ing results close to the state of the art. In this sense, NDT-Transformer 
was presented [28], a network model based on 3 Transformer Encoders 
that takes as input a modified point cloud by using a Normal Dis-
tribution Transform (NDT). This approach preserves the geometrical 
shape of the point cloud while decreasing the memory complexity. 
Building upon established sparse convolution backbones, CASSPR [29] 
later introduced a cross-attention mechanism on MinkLoc3D [19] to 
fuse voxel-based and point-based features, enhancing the description 
of fine-grained geometric details in sparse data.

Simultaneously, PPT-Net [30], a Transformer with a pyramidal dis-
tribution followed by a NetVLAD layer, emerged. Following this line of 
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point-based transformers, the Point-Wave method [31] was proposed, 
which models each point as a wave function to better capture the 
relationships between them. It is applied to different architectures, such 
as PPT-Net [30] and LPD-Net [18], obtaining the best configuration 
with PPT-Net [30]. Next, SOE-Net [32] extracts local features using 
a series of MLPs and subsequently, it applies attention layers in the 
aggregation of those features. In addition, the Retriever [33] network 
also introduces self-attention layers within an autoencoder to perform 
local feature aggregation. Besides, looking for efficiency and the use of 
these architectures in real localization systems (which must work in real 
time), SVT-Net, an efficient Sparse Voxel Transformer based on sparse 
convolutional layers for feature extraction, was presented in [34].

Furthermore, HiTPR [35] employs Farthest Point Sampling [36] to 
reduce the dimensionality of the input cloud while preserving its orig-
inal topological information. In addition, this work introduces a Trans-
former block for short-range local feature extraction and an additional 
Transformer block for extracting global information over long dis-
tances. The mentioned Transformer-based approaches presented similar 
results to those found in the state of the art. However, the proposal 
of TransLoc3D [37] constituted a significant advance. It is a network 
model also based on sparse convolutions but unlike other proposals, 
it extracts features at different scales in parallel by means of convo-
lutional layers with different kernel size. In addition, it also employs 
ECA (Efficient Channel Attention) layers [38] in order to interact 
local features from different channels. This type of layers are also 
used by MinkLoc3Dv2 [39], an architecture based on MinkLoc3D [19]. 
MinkLoc3Dv2 includes the use of ECAs with an increased number of 
planes or channels (depth of the convolution matrices). To date, this 
network architecture shows the best results in terms of average recall 
at 1 (AR@1) in the Oxford RobotCar Dataset [40], partly due to the 
loss function they introduce in the training process and the high batch 
size with which they train.

Finally, the best result in terms of average recall at 1% (AR@1%) 
was obtained by KPPR [41], a network model based on Flexible and 
Deformable Convolutions (KPConv [42]). However, Minkloc3Dv2 is 
still ahead in terms of average recall at 1 (AR@1), which is a more 
demanding metric. Additional architectures have been proposed to 
date, making other types of contributions such as rotation invariance 
E2PN-GeM [43] and RPR-Net [44] or inference efficiency EPC-Net [45] 
and BPT [46]. Other works have also explored more fundamental 
shifts in data representation, such as ComPoint [47], which leverages 
complex-valued neural networks to encode richer phase and magnitude 
information from the point cloud.

This paper presents MinkUNeXt, an architecture based on MinkUNet
[20] modified and enhanced to perform place-recognition from point 
clouds. It is an encoder–decoder architecture entirely based on the 
proposed 3D MinkNeXt Block, a residual block composed of 3D sparse 
convolutions that follows the philosophy proposed by ConvNeXt [16]. 
The feature extraction is performed by the U-Net encoder–decoder and 
the feature aggregation of those features into a single descriptor is 
carried out by a Generalized Mean Pooling (GeM) [48]. The proposed 
architecture demonstrates that it is possible to surpass the current state 
of the art by only relying on conventional 3D sparse convolutions with-
out making use of more complex and sophisticated frameworks such 
as Transformers, Attention-Layers or Deformable Convolutions. In this 
way, this paper shows that the proposed architecture outputs results 
which are superior to those found in the literature while maintaining 
the efficiency, scalability and performance.

3. MinkUNeXt: global point cloud descriptor for place recognition

Place recognition from point clouds can be approached as an em-
bedding task. For this purpose, it is desirable to have an architecture 
capable of extracting the more descriptive features of the scene and, 
in addition, aggregating them into a single vector that most gener-
ally describes the information present in the scene. The present work 
3 
presents a pioneering solution that employs a U-Net architecture [49] in 
the context of place recognition. Most architectures resembling U-Net 
were originally designed for semantic segmentation, where the goal is 
to assign a category to each pixel of an input image, or in this case, 
to each point of the input point cloud. However, the encoder–decoder 
topology of a U-Net is also capable to extract and fuse relevant features 
from the scene as will be shown in the experimental section.

3.1. Global architecture

The proposed model is fed by a point cloud given as an unordered 
set of 3D coordinates 𝑃 = {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}. This point cloud is quantized 
into a sparse tensor, which is a high-dimensional extension of a sparse 
matrix where non-zero elements are represented as a set of indices 𝐶
(coordinates) and associated values (or features) 𝐹 . Some papers [18,
28] propose to employ as feature some handcrafted attributes such as 
the vertical component of the normal vector, height variance, change 
of curvature or just the value of the coordinates. Others [19,39] prefer 
initializating each coordinate’s feature to one, i.e., the first convolution 
(stem) will only take as input features ‘ones’ for the non-empty voxels. 
This idea is also taken in the present paper, where the input data 𝑃 =
{(𝑥̂𝑖, 𝑦̂𝑖, 𝑧̂𝑖, 1)} is conformed by 𝐶, a set of 3D quantized coordinates and 
𝐹 , a vector of ‘ones’ whose length is equal to the number of quantized 
points.

The global architecture is represented in Fig.  2. The encoder of the 
network consists of five 3D Sparse Convolutions (coloured in yellow). 
Among them, the stem is the first convolution and it preserves the 
input dimension of the point cloud since its stride is fixed to 1 and 
the kernel size is 5. While each of the following four convolutions 
gradually decrease the spatial dimension, the receptive field increases 
since successive convolutional layers capture larger and larger patterns 
by combining information from previous layers. Each of those convo-
lutions downsample its input dimension by 2 since they employ both 
kernel size and stride of 2. After the encoder, the dimension of the input 
point cloud is downsampled by 32.

In a common U-Net the decoder is composed of four 3D Sparse 
Transpose Convolutions that upsample the spatial dimension by 2, 
progressively reconstructing the input cloud. However, in this archi-
tecture it is proposed to partially reconstruct the input point cloud by 
only applying three transpose convolutions (coloured in orange), since 
our purpose is point cloud embedding and not semantic segmentation. 
Section 4.5 will justify that features extracted with only three transpose 
convolutions are more robust for understanding the overall context 
of the scene. Furthermore, a Batch Normalization and a ReLU activa-
tion function (coloured in red) are applied after all the convolutions, 
which helps in stabilizing the training process. In addition, in this 
architecture it is proposed to employ the presented Residual MinkNeXt 
Block (coloured in blue) instead of the common ResNet Block after 
each ReLU (without taking into account the one corresponding to the 
stem). This kind of residual blocks provide a direct path for gradients 
to flow through the network, reducing overfitting and boosting the 
generalization capabilities on unseen data. In this architecture, it is also 
used to increase the number of features maps as it will further detailed 
in the following Section 3.2.

The U-Net architecture is characterized for having skip connections 
between the encoder and the decoder. On the one hand, the encoder 
would capture features at different spatial scales, from fine details (low-
level) to more global structures (high-level) present in point clouds. 
On the other hand, thanks to the skip connections, the decoder would 
fuse the low-level and high-level features. After that, a Fully Connected 
Layer is added since it outputs features have been proven to perform 
robustly against viewpoint changes in visual place recognition [50]. 
Furthermore, this Fully Connected Layer is also employed to extend the 
feature maps up to a dimensionality of 512. Subsequently, the points 
descriptors that conform that feature map are aggregated into a single 
global descriptor by a Generalized Mean Pooling (GeM) [48].
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Fig. 2. This diagram shows the architecture of the proposed MinkUNeXt, which is based on a semantic segmentation network (U-Net) modified and enhanced 
to perform place-recognition from point clouds.
3.2. Residual block architecture

As mentioned before, in this paper both a global and a residual 
block architecture are proposed. In this sense, a new residual block is 
designed (Fig.  3) which is entirely composed of 3D Sparse Convolutions 
and follows the philosophy proposed by ConvNeXt [16], surpassing the 
performance of ResNet Blocks. We have named this block MinkNeXt, 
since it takes advantage of the ResNet blocks and is fully implemented 
in Minkowski Engine [20].

In the global architecture (Fig.  2), the proposed residual block 
appears in blue colour after each ReLU activation function (except 
for the one corresponding to the stem). Since the residual block is 
generally employed to increase the number of features maps, the stem 
of the residual block is formed by a 1 × 1 × 1 convolution that 
widens the input dimension to the output channels size. After that, an 
inverted bottleneck is applied by expanding the dimension four times 
and then reducing it again to the output dimension through two 3D 
Sparse Convolutions. This inverted bottleneck was originally proposed 
by MobileNetV2 [51] and nowadays, it is an important design in every 
Transformer block. In addition, a 1 × 1 × 1 Convolution in the residual 
connection is also applied when the input and the output dimensions 
differ.

The activation function employed in this block is the Gaussian 
Error Linear Unit (GeLU) [52], which is smoother than ReLU and is 
utilized in the most advanced Transformers. Finally, the normalization 
is carried out by LayerNorms [53] in the main stream of the block and 
by BatchNorms [54] in the residual connection.

4. Experiments

This section describes the datasets (Section 4.1), the labelling (Sec-
tion 4.2) and the training and evaluation of the proposed architecture 
(Section 4.3). Later, the implementation details are described in Sec-
tion 4.4. Subsequently, in Section 4.5, we present an ablation study of 
the designing steps carried out to obtain the final architecture. Finally, 
the main results are compared with other approaches in the literature 
in Section 4.6.

4.1. Datasets

In order to train and evaluate the proposed architecture, the pro-
tocols introduced in [14] have been used together with the Oxford 
RobotCar Dataset [40] and the In-house Dataset [14]. Additionally, to 
assess the generalization capability of the proposed method in com-
parison with the state-of-the-art, both the USyd Campus Dataset [55] 
and the KITTI Dataset [56] are considered, following the evaluation 
criteria established in [25]. These are common frameworks employed 
4 
Fig. 3. This diagram shows the proposed MinkNeXt Block. This residual block 
is an essential part of the global network, since it increases the number of 
feature maps through an inverted bottleneck.

Table 1
The number of training and testing point clouds for the baseline, refined and 
further test protocols.
 Baseline protocol Refined protocol Further test protocol
 Training Test Training Test Training Test  
 Oxford 21.7k 3.0k 21.7k 3.0k – –  
 In-house – 4.5k 6.7k 1.7k – –  
 USyd – – – – – 8.8k  
 KITTI – – – – – 0.2k  

and respected by a large number of studies that are used to compare 
different proposals that address the place recognition task using both 
point clouds submaps and single-scans. The benchmark consists of 4 
datasets and 6 different environments:

• Oxford RobotCar Dataset [40]. This dataset is generated using 
some SICK LMS-151 2D sensors mounted on a car. The dataset 
covers a 10 km trajectory along the city of Oxford. In total, 
44 sequences of the same trajectory which are geographically 
divided into training (70%) and test (30%) are used. This results 
in 21,711 training submaps and 3,030 test submaps.

• In-house Dataset [14]. This dataset consists of three different en-
vironments: a University Sector (U.S.), a Residential Area (R.A.), 
and a Business District (B.D.). These datasets are captured using a 
Velodyne-64 LiDAR mounted on a motorized vehicle that covers 
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each of the three regions. The paths lengths are 10 km, 8 km 
and 5 km respectively. It is conformed by 5 different sequences 
from each of the U.S., R.A. and B.D. regions, which were cap-
tured at different times. In addition, each U.S. and R.A. sequence 
are geographically divided into train and test. While the B.D. 
environment is only used for testing.

• USyd Campus Dataset [55]. A dataset captured using a Velo-
dyne VLP-16 LiDAR mounted on a buggy-style vehicle over the 
course of 50 weeks. Data was captured across a wide variety of 
weather conditions. As a result, it contains 40 sequences, each 
one including approximately 735 scans. In the experimentation, 
these LiDAR scans were only used for evaluation. Specifically, 
four 100 × 100 m regions were chosen randomly to serve as test 
areas. In total, the dataset contains 8,797 single LiDAR scans for 
testing.

• KITTI Dataset [56]. This is a widely used benchmark for au-
tonomous driving research, recorded in and around the city of 
Karlsruhe, Germany. The data was captured with a Velodyne 
HDL-64E LiDAR sensor mounted on a vehicle. In this paper, this 
dataset is also used exclusively to evaluate the generalization 
capability of the models, meaning that no training is performed 
on this data. Following the established protocol in [25], the 
reference database is built using the first 170 s of Sequence 00, 
while the rest of the sequence serves as queries.

In the Oxford RobotCar Dataset [40] and In-house Dataset [14], the 
LiDAR scans are taken at regular intervals of 12.5 m and 25 m for the 
training and test set, respectively. Also, both datasets are formed by a 
number of submaps. Each submap is constructed by capturing LiDAR 
scans consecutively along 20 m. Next, the scans are registered in a 
common frame and further processed to create a consistent submap. 
Each of these training and test submaps are filtered by removing the 
ground plane and also regularly sampled by a voxel grid filter in order 
to reduce its size to 4096 points. The XYZ coordinates of the points 
that constitute each submap are then shifted and scaled in order to 
obtain a point distribution with zero mean in the [−1, 1] range for 
each coordinate. Conversely, the USyd Campus Dataset [55] and KITTI 
Dataset [56] are composed of single LiDAR scans used in their raw for-
mat. This means that they undergo no further preprocessing steps like 
ground plane removal or point cloud normalization. Following [25], the 
USyd scans are uniformly filtered to maintain a 5-meter spatial interval, 
while the KITTI data is downsampled every 10 m.

4.2. Labelling and similarity

Each point cloud in the dataset is tagged with the UTM coordinates 
of its respective centroid. This constitutes the identifier of each submap 
(or single scan, in the case of USyd and KITTI) and is later used during 
the training and evaluation of the network. Next, we define the simi-
larity between the submaps in the datasets. This concept is generally 
denoted as labelling in the literature and it is important because it 
is necessary to feed the model with structurally similar point clouds 
captured from the same place and structurally dissimilar scans from 
different places. In this sense, most of the proposed labelling protocols 
are based on the Euclidean distance of the UTM coordinates from which 
point clouds are captured (two point clouds are considered structurally 
similar if they are captured within a distance 𝑝 and structurally different 
if they are taken from a distance greater than 𝑛 where 𝑝 < 𝑛). This 
procedure, of course, is a coarse approximation that assumes that point 
clouds captured from the same area will possess a similar structure. 
However, it is a simple but effective manner of labelling the training 
data. In this paper, this method is adopted with 𝑝 = 10 m and 𝑛 =
50 m as in the majority of the referred manuscripts. Authors, have 
also proposed other methods for similarity labelling in the context 
of place-recognition. For example, [15] proposes to use the overlap 
between point clouds as an alternative method for labelling similar and 
dissimilar point clouds. In order to compute the overlap between two 
point clouds a precise registration must be carried out, which hinders 
the application of this technique to large datasets.
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Table 2
Training Parameters in Baseline and Refined Protocols.
 Parameter Baseline Refined  
 Batch Size (𝑏) 2048 2048  
 Number of Epochs 400 500  
 Initial Learning Rate 1 × 10−3 1 × 10−3  
 LR Scheduler Steps 250, 350 350, 450 
 L2 Weight Decay 1 × 10−4 1 × 10−4  
 Sigmoid Temperature (𝜏) 0.01 0.01  
 Positives per Query (𝑘) 4 4  
 Quantization Scale (𝑞𝑠) 0.01 0.01  

4.3. Training and evaluation

As for the training and evaluation of the proposed method, the two 
evaluation protocols established in [14] have been followed. More-
over, an additional assessment of the generalization capabilities of 
the proposed approach is performed following the testing benchmark 
introduced in [25]. In total, three different protocols have been used in 
the experiments:

• The first, baseline protocol, consists in training the model only 
with the Oxford training data and evaluating with the Oxford and 
In-house (U.S., R.A. and B.D.) test data.

• The second, refined protocol, consists in training with the Oxford 
and In-house (U.S., R.A.) training data and evaluating with the 
Oxford and In-house (U.S., R.A. and B.D.) test data.

• The third, further test protocol, consists in evaluating the archi-
tectures trained in the two previous protocols with two totally 
different datasets, that is, the USyd and KITTI datasets.

Table  1 summarizes the number of training and testing point clouds 
corresponding to each dataset and each of the protocols defined above. 
The assessment of the LiDAR-based place recognition descriptors is 
carried out by means of the recall rate at top-K candidates. Following 
the most common evaluation methods (as in the manuscripts cited 
in Section 2), the average recall at 1 (AR@1) and average recall at 
1% (AR@1%) are used in order to ease the comparison with other 
techniques. We start with a ‘‘query submap’’ formed by a point cloud 
which is taken from the test dataset and point clouds submaps from 
different trajectories that cover the same region of the map. Each query 
submap is processed by the network and it outputs, as a result, a 
descriptor vector that codifies its appearance. This descriptor is referred 
to as the ‘‘query descriptor’’. Next, the query descriptor is compared to 
all the descriptors in the map, and an Euclidean distance is computed. 
The point cloud in the database that minimizes this distance in the 
descriptors’ space is selected. Finally, a place recognition match is 
considered successful if the Euclidean distance between the query and 
the retrieved point cloud is below a specific threshold (computed from 
their corresponding GPS coordinates). This threshold is set to 25 m 
for the Oxford, In-house, and KITTI datasets, and 10 m for the USyd 
dataset.

4.4. Implementation details

In the present approach the proposed model is trained following the 
procedure established in [39]. In this regard, the Truncated Smooth-AP 
(TSAP) loss function is employed, which tries to maximize the ranking 
of the positive top-k candidates: 

𝑇𝑆𝐴𝑃 = 1
𝑏

𝑏
∑

𝑞=1
(1 − 𝐴𝑃𝑞) (1)

Where 𝑏 is the batch size and 𝐴𝑃𝑞 is the smooth average precision: 
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Fig. 4. This diagram illustrates the main design progress of the proposed architecture from MinkUNet up to MinkUNeXt. Additional experiments are shown in 
Table  3 and all the proposed modifications are summarized in Table  4.
Given a query point cloud 𝑞, the average precision 𝐴𝑃𝑞 is computed 
from the set of 𝑘 closest candidates 𝑃  (positives) and the set of all 
positives and negatives 𝛺. Also, the function 𝐺 constitutes a Sigmoid 
function 𝐺(𝑥; 𝜏) =

(

1 + exp
(

− 𝑥
𝜏

))−1
 with a parameter 𝜏 that controls 

the sharpness. The term 𝑑(𝑞, 𝑖) represents the Euclidean distance be-
tween the descriptor of a query point cloud 𝑞 and the 𝑖th point cloud. 
The numerator represents a soft ranking of a positive point 𝑖 among the 
top 𝑘 positives (where 𝑘 = 4), while the denominator represents a soft 
ranking of a positive point 𝑖 among all other positives and negatives.

For the correct performance of this type of loss function, it is 
necessary to train with a high batch size, specifically a size of 2048 
has been used with 400 and 500 training epochs for the baseline and 
refined protocol, respectively. The optimizer used to minimize the loss 
function is Adam with an Initial Learning Rate of 1e−3 and it is divided 
by 10 in the epochs given by the LR scheduler steps, which are epochs 
250 and 350 for baseline protocol and epochs 350 and 450 for refined 
protocol. Table  2 summarizes all the parameter values described above.

Additionally, when working with sparse convolutions, the input 
point clouds need to be quantized by a factor of 𝑞𝑠, which is set to 
0.01 for the Oxford and the In-house datasets since these submaps are 
already normalized to [−1, 1]. However, for the evaluation in the USyd 
and KITTI datasets, a quantization factor 𝑞𝑠 of 0.1 is used, as these raw 
point clouds are neither preprocessed nor normalized. Furthermore, to 
increase the number of training instances and reduce model overfitting, 
a data augmentation has been carried out by applying a random jitter 
of a value between [0, 0.001] individually to each point of the point 
cloud, a random transformation to the global point cloud with a value 
between [0, 0.01] and a random removal of 10% of the points.

All experiments are carried out on a NVIDIA GeForce RTX 3090 
GPU with 24 GB. Our code is publicly available on the project website: 
https://juanjo-cabrera.github.io/projects-MinkUNeXt/.

4.5. Ablation study: From MinkUNet to MinkUNeXt

The design departs from the MinkUNet34C architecture [20] as 
a baseline. Next, the series of design decisions are described. Each 
design step is summarized in two main subsections: (1) global design 
and (2) residual block design, which are included next. For every 
step, both the procedure and the results are presented, starting from 
the MinkUNet34C until obtaining the MinkUNeXt architecture. It is 
important to clarify that this was not a sequential process of adding 
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layers, but rather a holistic study involving the modification of numer-
ous parameters across the entire network architecture. Specifically, the 
general evolution of the network and its performance is presented in 
Fig.  4, while Table  3 extends these results with intermediate exper-
iments conducted during the design and development process of the 
architecture. Finally, Table  4 summarizes and describes the main design 
steps.

4.5.1. Global design
As mentioned above, the starting point is the MinkUnet34C [20] 

architecture and it is first modified by adding a GeM pool layer. This 
baseline is coloured in red in Fig.  4. The rest of the roadmap followed 
towards the final design is described next. Each of the designing steps 
are classified in one of the following points: evaluating the cardinality 
and the number of channels, changing the number of skip connections 
and replacing the stem to a ‘‘Patchify’’ configuration.

G1. Evaluating the cardinality. The cardinality is defined as the 
number of parallel blocks, that enables the network to learn 
various input representations. On the image domain, a high 
cardinality (as in ResNeXt [57]) can lead to more expressive 
representations. However, for the task of 3D place recognition, 
a simpler, deeper feature hierarchy may be more effective at 
learning abstract geometric concepts without excessive param-
eterization. Different experiments were conducted to check the 
effects on the results with different cardinalities: (2, 3, 4, 6, 2, 2, 
2, 2), (2, 2, 2, 2, 2, 2, 2, 2) and (1, 1, 1, 1, 1, 1, 1, 1), correspond-
ing to MinkUNet34, MinkUNet18 and MinkUNet14, respectively. 
These cardinality values represent the number of instances of 
each Residual Block that appear in blue colour in Fig.  2, but at 
this point still with ResNet Blocks. In addition, these cardinality 
configurations are summarized respectively in steps G1.1 and 
G1.2 in Fig.  4. In addition, Table  3 also shows these experiments 
in terms of average recall at 1 (AR@1) and the increment of per-
formance (𝛥AR@1) with respect to MinkUNet34C. As illustrated 
both in the diagram and in the table, reducing the cardinality to 
the minimum (G1.2), with no parallel blocks, empirically shows 
a better performance and improves the AR@1 from 92.2% to 
92.8%. This result supports our hypothesis that a lean, focused 
architecture is better suited for place recognition with 3D point 
clouds. From now on, a cardinality of 1 will be used for each 
residual block.

https://juanjo-cabrera.github.io/projects-MinkUNeXt/
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Table 3
This table details every experiment conducted during the evolution from MinkUNet to MinkUNeXt. The first column shows the backbone used 
for the global architecture, while the second indicates the residual block architecture. In the third column, the ID in parentheses refers to the 
summary of modifications in Table  4. Finally, the results of each configuration are presented in terms of AR@1 and 𝛥AR@1 (the increment in 
performance with respect of the initial baseline).
 Backbone Residual block Design modification AR@1 (%) 𝛥AR@1 (%) 
 Phase 1: Global Design
 MinkUNet34C ResNet Block (ReLU, BN) Initial Baseline 92.2 –  
 MinkUNet34A ResNet Block (ReLU, BN) Tune MinkUNet34C Decoder Channels (G2.3) 92.3 +0.1  
 MinkUNet34B ResNet Block (ReLU, BN) Tune MinkUNet34C Decoder Channels (G2.4) 91.0 −1.2  
 MinkUNet18A ResNet Block (ReLU, BN) Reduce MinkUNet34C Cardinality (G1.1) 92.4 +0.2  
 MinkUNet18B ResNet Block (ReLU, BN) Tune MinkUNet18A Decoder Channels (G2.2) 91.8 −0.4  
 MinkUNet18D ResNet Block (ReLU, BN) Tune MinkUNet18A Decoder Channels (G2.5) 89.2 −3.0  
 MinkUNet14A ResNet Block (ReLU, BN) Reduce MinkUNet34C Cardinality (G1.2) 92.8 +0.6  
 MinkUNet14B ResNet Block (ReLU, BN) Tune MinkUNet14A Decoder Channels (G2.1) 93.0 +0.8  
 MinkUNet14C ResNet Block (ReLU, BN) Tune MinkUNet14A Decoder Channels (G2.2) 93.3 +1.1  
 MinkUNet14D ResNet Block (ReLU, BN) Tune MinkUNet14A Decoder Channels (G2.5) 88.0 −4.2  
 MinkUNet14C (2-skip) ResNet Block (ReLU, BN) Change MinkUNet14C Skip Connections to 2 (G3.1) 95.9 +3.7  
 MinkUNet14C (3-skip) ResNet Block (ReLU, BN) Change MinkUNet14C Skip Connections to 3 (G3.2) 96.3 +4.1  
 MinkUNet14C (3-skip) ResNet Block (ReLU, BN) Change Stem of MinkUNet14C (3-skip) to ‘‘Patchify’’ (G4) 92.8 +0.6  
 Phase 2: Residual Block Design
 MinkUNet14C (3-skip) Bottleneck (ReLU, BN) Block Type: Basic → Bottleneck (R1) 95.4 +3.2  
 MinkUNet14C (3-skip) Inv. Bottleneck (ReLU, BN) Block Type: Basic → Inv. Bottleneck (R2) 96.2 +4.0  
 MinkUNet14C (3-skip) ResNet Block (GeLU, BN) Activation: ReLU → GeLU (R3.1) 96.9 +4.7  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, BN) Block Type + Activation (R3.2) 97.1 +4.9  
 MinkUNet14C (3-skip) Inv. Bottleneck (BN) Remove intermediate activations (R3.3) 95.4 +3.2  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Normalization: BN → LN (R4.1) 97.4 +5.2  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Add LN to shortcut connection (R4.2) 97.2 +5.0  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (1st Conv): 3 → 5 (R5.1) 97.2 +5.0  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (1st Conv): 3 → 7 (R5.2) 97.3 +5.1  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (1st Conv): 3 → 1 (R5.3) 97.7 +5.5  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (2nd and 3rd Conv): 3 → 1 (R5.4) 97.1 +4.9  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (2nd and 3rd Conv): 3 → 5 (R5.5) 97.2 +5.0  
 MinkUNet14C (3-skip) Inv. Bottleneck (GeLU, LN) Kernel Size (2nd and 3rd Conv): 3 → 7 (R5.6) 97.3 +5.1  
G2. Evaluating the number of channels. The number of channels 
or planes correspond to the number of feature maps that the 
convolutional layer can learn. The number of filters correspond-
ing to the convolutional layers of the encoder are fixed to (32, 
64, 128, 256), while multiple decoder channel configurations 
across all cardinalities are evaluated. As detailed in Table  3, 
this exploration was crucial, as several configurations led to a 
severe performance degradation, specifically when drastically 
reducing the number of channels (MinkUNet34B) or increasing it 
(MinkUNet18D, MinkUNet14D). The best result is obtained with 
MinkUNet14C (G2.2) with an AR@1 of 93.3%. This configura-
tion allocates higher capacity to the deeper layers of the decoder, 
suggesting that it is critical for fusing the most salient high-
level features. Thus, the number of channels of the transposed 
convolutions that will be adopted in the subsequent architecture 
variations is (192, 192, 128, 128).

G3. Changing the number of skip connections. The original U-Net 
is characterized by the presence of 4 skip connections between 
the encoder and the decoder networks. Since it was originally de-
signed for semantic segmentation, the predicted segmented point 
cloud must have the same dimension as the input point cloud. 
However, when it comes to place recognition, a totally different 
output from the model is expected, i.e., a global embedding. For 
this purpose, there is no need to retain the entire decoder along 
with its skip connections. In this sense, in the present paper 
the performance of the network is studied when reducing the 
number of skip connections and removing the transposed convo-
lutions after the last connection. In addition, when changing the 
number of skip connections, the overall depth of the model also 
varies. Apart from the 4 skip connections already implemented 
in the previous configurations, 2 and 3 skip connections together 
with the removal of the decoder blocks attached to the last skip 
connection are evaluated (it corresponds to G3.1 and G3.2 in 
Fig.  4). By reducing the number of skip connections to 3 and 
removing the layers after the last connection (G3.2), the model 
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shows, by far, the greatest improvement on the AR@1, increas-
ing the performance from 93.3% to 96.3%. When using the full 
encoder–decoder architecture, low-level details from early skip 
connections can introduce noise and hinder the formation of a 
robust global descriptor. By reducing the number of skip con-
nections and removing the decoder blocks attached to them, we 
force the model to rely more heavily on the semantic information 
from the deeper layers, which results in more discriminative 
global embeddings.

G4. Changing the stem to ‘‘Patchify’’. The stem refers to the first 
layer in the network, which performs the initial processing. In 
this case, the first processing is carried out by a 3D Sparse 
Convolution with kernel size 5 and stride 1. The term ‘‘Patchify’’ 
refers to the act of splitting the input data into an independent 
sequence of patches. Visual Transformers [58] introduced this 
concept, originally inspired by NLP Transformers [27]. The Swin 
Transformer [59] uses as stem a non-overlapping convolution 
with kernel size 4 and stride 4 on images. In this sense, these 
parameters are adopted for the stem in G4. For sparse 3D point 
clouds, unlike dense 2D images, this aggressive initial downsam-
pling empirically decreases the performance of the network from 
96.3% to 92.8%.

4.5.2. Residual block design
This section describes each design step from ResNet Block to the 

proposed MinkNeXt Block. The roadmap of the design of this residual 
block is divided in the following points: creating a Bottleneck in the 
residual block, creating an Inverted Bottleneck in the residual block, 
replacing ReLUs with GeLUs, substituting BN with LN and evaluating 
different kernel sizes.

R1. Creating a Bottleneck in the residual block. A Bottleneck 
consists in reducing the dimensionality of the hidden layer and 
then expanding it to its original size using 1 × 1 convolutions. 
As shown both in Fig.  4 and Table  3, this modification led to 



J.J. Cabrera et al. Array 28 (2025) 100569 
worse results in the performance of the proposed architecture 
comparing to G3.2 which is the best model so far.

R2. Creating an Inverted Bottleneck in the residual block. Every 
Transformer block is characterized by an inverted bottleneck, 
which consists in expanding the dimensionality of the feature 
map of the hidden layer and then reducing it to its original size 
by 1 × 1 convolutions. In this case, 3D sparse convolutions with 
kernel size 3 and stride 1 are employed to create the inverted 
bottleneck with a hidden dimension four times wider than the 
input dimension. Fig.  4 shows that this inverted bottleneck block 
produces better results compared to the previous ResNet block 
when analysed jointly with the following modification (R3).

R3. Replacing ReLUs with GeLUs. The Rectified Linear Unit (ReLU)
[60] is the most employed activation function over time due to 
its simplicity and efficiency. However, recent advanced Trans-
formers such as Google’s BERT [61] or OpenAI’s GPT-4 [62] 
employ Gaussian Error Linear Units (GeLUs) [52], which is 
a smoother variant of ReLUs. Following the same philosophy, 
ReLUs are replaced with GeLUs in both the ResNet Block and 
the inverted bottleneck block, steps R3.1 and R3.2 in Fig.  4, 
respectively. In both cases, the performance of the architecture 
improves, but better results are obtained with the proposed 
inverted bottleneck block (R3.2), achieving an AR@1 of 97.0%. 
Additionally, removing intermediate activation functions in the 
Inverted Bottleneck Block (R3.3) does not yield any improve-
ment comparing to R3.2 (see Table  3). In consequence, an 
inverted bottleneck with GeLUs will be used as residual block.

R4. Substituting BN with LN. Batch Normalization (BN) [54] plays 
a critical role in convolutional networks by enhancing conver-
gence and mitigating overfitting. However, BN may introduce 
complexities that may negatively impact the model’s perfor-
mance. Recently, the simpler Layer Normalization [53] (LN) 
has been successfully implemented in Transformers. Thus, BN 
is replaced with LN in the main stream (R4.1) of the residual 
block, obtaining an improvement of the model performance up 
to 97.4%. However, we also found that over-normalization, such 
as adding LN to the shortcut connection (R4.2), was detrimental. 
As a result, Layer Normalization will be employed instead of 
Batch Normalization in the main stream of the residual block.

R5. Evaluating different kernel sizes. Modern architectures like 
ConvNeXt [16] often favour large kernel sizes to increase the 
receptive field. However, their effectiveness on sparse 3D data 
is not guaranteed. While sparse convolutions only operate on 
active voxels, a large kernel may still connect points that are 
structurally unrelated in the real world, potentially degrading 
the quality of learned local patterns. As shown in Fig.  4 and 
Table  3 (R5), the usage of smaller kernel sizes is beneficial in 
the present place recognition task. We find the best parameter 
configuration with a kernel size of 1 in the first convolution 
and kernel sizes of 3 in the hidden and last convolutions (R5.3). 
This result suggests that for sparse data, efficient channel-wise 
feature mixing, as performed by 1 × 1 convolutions, is more 
effective than expanding the spatial receptive field within the 
residual block. This leads to the final model and residual block 
architectures, which we have named MinkUNeXt and MinkNeXt 
block, respectively.

The final MinkUNeXt architecture balances depth and compactness: 
after removing redundant skip connections and reducing cardinality, 
the resulting 7 residual blocks constitute the minimum depth that still 
preserves a hierarchical abstraction of geometric features while avoid-
ing over-parameterization. Further reduction degraded performance, 
whereas deeper configurations did not provide additional gains (see 
Table  3).
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Table 4
This table summarizes all modifications proposed in the architecture design 
progress from MinkUNet up to MinkUNeXt. 
 ID Design modifications  
 G1.1 Cardinality: (2, 3, 4, 6, 2, 2, 2, 2) → (2, 2, 2, 2, 2, 2, 2, 2)  
 G1.2 Cardinality: (2, 2, 2, 2, 2, 2, 2, 2) → (1, 1, 1, 1, 1, 1, 1, 1)  
 G2.1 Decoder channels: (128, 128, 96, 96) → (128, 128, 128, 128) 
 G2.2 Decoder channels: (128, 128, 96, 96) → (192, 192, 128, 128) 
 G2.3 Decoder channels: (256, 128, 96, 96) → (256, 128, 64, 64)  
 G2.4 Decoder channels: (256, 128, 96, 96) → (256, 128, 64, 32)  
 G2.5 Decoder channels: (256, 128, 96, 96) → (384, 384, 384, 384) 
 G3.1 4 skip connections → 2 skip connections  
 G3.2 4 skip connections → 3 skip connections  
 G4 Stem (k=5, s=1 → k=4, s=4)  
 R1 ResNet Block → Bottleneck  
 R2 ResNet Block → Inv. Bottleneck  
 R3.1 ResNet Block with ReLUs → ResNet Block with GeLUs  
 R3.2 Inv. Bottleneck with ReLUs → Inv. Bottleneck with GeLUs  
 R3.3 Inv. Bottleneck without activation functions  
 R4.1 BNs → LNs in the main stream of the Inv. Bottleneck  
 R4.2 BNs → LNs in the whole Inv. Bottleneck  
 R5.1 Inv. Bottleneck 1st convolution (k=3 → k=5)  
 R5.2 Inv. Bottleneck 1st convolution (k=3 → k=7)  
 R5.3 Inv. Bottleneck 1st convolution (k=3 → k=1)  
 R5.4 Inv. Bottleneck 2nd and 3rd convolutions (k=3 → k=5)  
 R5.5 Inv. Bottleneck 2nd and 3rd convolutions (k=3 → k=7)  
 R5.6 Inv. Bottleneck 2nd and 3rd convolutions (k=3 → k=1)  

4.6. Comparison with the state of the art

As defined in Section 4.3, the two training and evaluation protocols 
established in [14] have been followed for place recognition with the 
Oxford RobotCar and In-house datasets. The baseline protocol consists 
in training the model only with the Oxford training data and evaluating 
with the Oxford and In-house (U.S., R.A. and B.D.) test data. In contrast, 
the refined protocol consists in training with Oxford and In-house 
(U.S., R.A.) training data and evaluating with the Oxford and In-house 
(U.S., R.A. and B.D.) test data. These protocols are widely used in the 
literature, so that the comparison is performed on the same terms and 
conditions. Additionally, the comparative results shown here have been 
obtained from the same works that are referenced.

Tables  5 and 6 present an overview of the results with different tech-
niques proposed in the state of the art compared to the one proposed in 
this paper under the same training and evaluation protocols (baseline 
and refined), in terms of average recall at 1 (AR@1) and average recall 
at 1% (AR@1%). Each column presents the results obtained with each 
of the datasets, whereas the last two columns present the mean results.

4.6.1. Results with the baseline protocol
Table  5 presents the results of several methods in terms of aver-

age recall at 1 (AR@1) and average recall at 1% (AR@1%). It can 
be observed that, PointNetVLAD established the starting point for 
place-recognition from point clouds with the Oxford Robotcar and the 
In-house dataset. PCAN slightly outperforms PointNetVLAD on most 
datasets. BPT stands out with really competitive results, especially 
in Oxford and U.S. RPR-Net outperforms BPT in U.S, R.A and B.D., 
showing better generalization capabilities. Some works, such as DAGC 
and Retriever, do not provide AR@1 results for all datasets. However, 
they presented AR@1% results which show a performance better than 
PCAN, but worse than BPT. Futhermore, LPD-Net, HiTPR, EPC-Net and 
E2PN-GeM show similar, but good results across multiple scenarios. 
SOE-Net, only provides AR@1% results which are really promising 
as they are close to MinkLoc3D, the first architecture to exceed 90% 
in AR@1 with the Oxford dataset. Moreover, HiBi-Net, PPT-Net and 
SVT-Net show slightly higher performance, specifically for the In-house 
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Table 5
Evaluation results in terms of average recall at 1 (AR@1) and at 1% (AR@1%) of place recognition methods trained using the 
baseline protocol.
 Method Oxford U.S. R.A. B.D. Mean

 AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% 
 PointNetVLAD [14] 62.8 80.3 63.2 72.6 56.1 60.3 57.2 65.3 59.8 69.6  
 PCAN [63] 69.1 83.8 62.4 79.1 56.9 71.2 58.1 66.8 61.6 75.2  
 DAGC [26] – 87.5 – 83.5 – 75.7 – 71.2 – 79.5  
 BPT [46] 85.7 93.3 80.5 89.3 77.4 86.6 74.1 78.5 79.4 86.9  
 Retriever [33] – 91.9 – 91.9 – 87.4 – 85.5 – 89.2  
 RPR-Net [44] 81.0 92.2 83.2 94.5 83.3 91.3 80.4 86.4 82.0 91.1  
 LPD-Net [18] 86.3 94.9 87.0 96.0 83.1 90.5 82.5 89.1 84.7 92.6  
 HiTPR [35] 87.8 94.6 86.0 94.0 81.3 89.1 81.8 88.3 84.2 91.5  
 EPC-Net [45] 86.2 94.7 – 96.5 – 88.6 – 84.9 – 91.2  
 E2PN-GeM [43] 84.8 93.2 88.1 95.3 83.7 90.5 83.3 87.7 85.0 91.7  
 SOE-Net [32] – 96.4 – 93.2 – 91.5 – 88.5 – 92.4  
 MinkLoc3D [19] 93.0 97.9 86.7 95.0 80.4 91.2 81.5 88.5 85.4 93.2  
 HiBi-Net [64] 87.5 95.1 87.8 – 85.8 – 83.0 – 86.0 –  
 NDT-Transformer [28] 93.8 97.7 – – – – – – – –  
 PPT-Net [30] 93.5 98.1 90.1 97.5 84.1 93.3 84.6 90.0 88.1 94.7  
 SVT-Net [34] 93.7 97.8 90.1 96.5 84.3 92.7 85.5 90.7 88.4 94.4  
 TransLoc3D [37] 95.0 98.5 – 94.9 – 91.5 – 88.4 – 93.3  
 MinkLoc3Dv2 [39] 96.3 98.9 90.9 96.7 86.5 93.8 86.3 91.2 90.0 95.1  
 KPPR [41] 91.5 97.1 – 98.0 – 95.1 – 92.1 – 95.6  
 ComPoint [47] 69.3 83.7 67.3 80.6 58.1 72.2 62.6 69.2 64.3 76.4  
 CASSPR [29] 95.6 98.5 92.9 97.9 89.5 94.8 87.9 92.1 91.5 95.8  
 Point-Wave [31] 92.4 97.5 92.8 98.6 86.2 94.5 85.5 90.8 89.2 95.3  
 MinkUNeXt (ours) 95.8 98.6 89.9 96.5 87.4 93.3 86.6 91.3 89.9 95.0  
dataset. TransLoc3D takes a step forward with the best result so far in 
Oxford and solid performance in the other scenarios, and its improved 
version MinkLoc3Dv2 outperforms the previous approaches. In addi-
tion, KPPR also shows a remarkable performance, but only presented 
average recall at 1% results in the case of U.S., R.A., B.D. ComPoint, 
while introducing a novel approach with complex-valued networks, 
achieves a similar performance to PCAN with this protocol. In contrast, 
Point-Wave demonstrates positive results, particularly excelling in the 
U.S. dataset with the highest AR@1%. Most notably, CASSPR sets 
a new state-of-the-art in the baseline protocol. By effectively fusing 
MinkLoc3D with cross-attention layers, it achieves the highest AR@1 
in all three in-house datasets (U.S., R.A., B.D.).

Finally, the proposed architecture, MinkUNeXt, demonstrates supe-
rior performance in terms of AR@1 and AR@1% in Oxford. It outper-
forms all of the existing methods with a 95.8% in AR@1 and 98.6% 
in AR@1%. This indicates a powerful capacity for in-domain feature 
learning. Meanwhile, its generalization to unseen datasets is lower than 
CASSPR in the case of the in-house dataset, where the scenarios are 
considerably more open than Oxford, with fewer obstructions and a 
more dispersed arrangement of urban elements.

4.6.2. Results with the refined protocol
As for the performances of the models when training with the 

refined protocol (Table  6), PointNetVLAD introduced the starting ref-
erence point as well, surprisingly achieving a good performance in 
U.S. R.A. and B.D. despite the simplicity of the network architecture. 
PCAN and DAGC presented similar results to PointNetVLAD for the 
In-house dataset, but especially better in Oxford. In contrast, LPD-Net 
and SOE-Net show substantially better performance in all metrics and 
datasets. MinkLoc3D also manages to exceed 90% on average recall at 1 
(AR@1) in Oxford and generally performs well in all metrics and sets. 
PPT-Net does not provide values for average recall at 1 (AR@1), but 
shows a promising performance on average recall at 1% (AR@1%). 
Furthermore, SVT-Net stands out especially in U.S., R.A. and B.D. In 
addition, TransLoc3D achieves good results in all metrics, being one 
of the best methods overall. MinkLoc3Dv2 boasted the best results in 
the state of the art so far, showing improvements over MinkLoc3D. 
In addition, ComPoint achieves again a similar performance to PCAN 
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and DAGC. Regarding CASSPR, which excelled at generalization with 
limited data variety, it does not scale as effectively, with a mean AR@1 
of 96.0%.

Finally, the proposed MinkUNeXt model shows considerable im-
provements in average recall at 1 (AR@1) and average recall at 1% 
(AR@1%) for all the scenarios obtaining the best results of the state of 
the art so far. The average recall at 1 (AR@1) metric in Oxford dataset 
is 97.7% and outperforms the runner-up MinkLoc3Dv2 by 0.8 p.p. In 
the R.A., B.D. scenarios it surpasses MinkLoc3Dv2 by 0.1 to 1.1 p.p. 
Nevertheless, slightly worse results (0.3 p.p.) are obtained with this 
metric in the U.S. dataset. Regarding the results in terms of AR@1% for 
the refined protocol, there was little room for improvement. However, 
the results in Oxford are improved by 0.2 p.p. to reach 99.3%, on R.A. 
by 0.5 p.p. to reach 99.9% and on B.D. by 0.1 p.p. to reach 97.7%. In 
addition, although the model previously output slightly worse results 
for U.S. in terms of AR@1, the performance of the network in the 
AR@1% metric is equal to the best previous result in the state-of-the-art 
with a value of 99.9%. The mean AR@1 and AR@1% over all 4 datasets 
improves by 0.4% and 0.2%, respectively. To conclude, training the 
MinkUNeXt with the refined protocol overcomes the generalization 
difficulties presented when training with the baseline protocol, since 
the model adapts to both LiDAR characteristics.

4.6.3. Results with the further test protocol
Given the potential limitations of the baseline and refined protocols, 

a further test protocol is employed to conduct an exhaustive assess-
ment of the proposal. This evaluation is extended to the KITTI [56] 
and USyd [55] datasets to assess the generalization capability of the 
proposed model, MinkUNeXt, compared to other methods such as 
MinkLoc3Dv2 [39] and CASSPR [29].

The results are presented in Table  7. The data indicates that the 
proposed MinkUNeXt architecture consistently yields higher perfor-
mance across both datasets and training protocols. Specifically, under 
the refined protocol, MinkUNeXt achieves an AR@1 of 90.5% in the 
KITTI dataset and 82.6% in the USyd dataset. These figures represent a 
notable improvement over the other evaluated methods. The enhanced 
performance is also reflected in the AR@1%, where MinkUNeXt outputs 
scores of 94.1% and 93.2% for KITTI and USyd, respectively.
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Table 6
Evaluation results in terms of average recall at 1 (AR@1) and at 1% (AR@1%) of place recognition methods trained using the 
refined protocol.
 Method Oxford U.S. R.A. B.D. Mean

 AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% AR@1 AR@1% 
 PointNetVLAD [14] 63.3 80.1 86.1 94.5 82.7 93.1 80.1 86.5 78.0 88.6  
 PCAN [63] 70.7 86.4 83.7 94.1 82.5 92.5 80.3 87.0 79.3 90.0  
 DAGC [26] 71.5 87.8 86.3 94.3 82.8 93.4 81.3 88.5 80.5 91.0  
 LPD-Net [18] 86.6 94.9 94.4 98.9 90.8 96.4 90.8 94.4 90.7 96.2  
 SOE-Net [32] 89.3 96.4 91.8 97.7 90.2 95.9 89.0 92.6 90.1 95.7  
 MinkLoc3D [19] 94.8 98.5 97.2 99.7 96.7 99.3 94.0 96.7 95.7 98.6  
 PPT-Net [30] – 98.4 – 99.7 – 99.5 – 95.3 – 98.2  
 SVT-Net [34] 94.7 98.4 97.0 99.9 95.2 99.5 94.4 97.2 95.3 98.8  
 TransLoc3D [37] 95.0 98.5 97.5 99.8 97.3 99.7 94.8 97.4 96.2 98.9  
 MinkLoc3Dv2 [39] 96.9 99.1 99.0 99.7 98.3 99.4 97.6 99.1 97.9 99.3  
 ComPoint [47] 69.3 84.7 87.2 95.8 85.6 92.5 82.6 87.6 81.2 90.2  
 CASSPR [29] 95.6 98.8 98.3 99.9 96.6 98.5 93.6 96.9 96.0 98.5  
 MinkUNeXt (ours) 97.7 99.3 98.7 99.9 99.4 99.9 97.7 99.0 98.3 99.5  
 
(a) KITTI dataset

  
(b) USyd dataset

 

Fig. 5. Recall@N results for 𝑁 from 1 to 25 in the KITTI and USyd datasets, comparing our MinkUNeXt with state-of-the-art methods.
Table 7
Evaluation results in terms of average recall at 1 (AR@1) and at 1% (AR@1%) 
in KITTI and USyd when training the models both in the baseline and refined 
protocols, in which only Oxford or Oxford and In-House datasets are used to 
train.
 Method Trained with KITTI USyd

 AR@1 AR@1% AR@1 AR@1% 
 MinkLoc3Dv2 [39] Baseline protocol 75.0 79.8 77.5 90.1  
 MinkLoc3Dv2 [39] Refined protocol 81.0 81.0 78.6 89.7  
 CASSPR [29] Baseline protocol 64.3 65.5 73.8 83.2  
 CASSPR [29] Refined protocol 76.2 77.4 73.9 87.0  
 MinkUNeXt (ours) Baseline protocol 82.1 84.5 82.4 92.7  
 MinkUNeXt (ours) Refined protocol 90.5 94.1 82.6 93.2  

To provide a more detailed analysis, Fig.  5 illustrates the Recall@N 
performance for 𝑁 values ranging from 1 to 25. The plots for both 
the KITTI (left) and USyd (right) datasets show that the proposed 
method, MinkUNeXt, consistently outperforms MinkLoc3Dv2 [39] and 
CASSPR [29] across the entire range of N. This indicates that the global 
descriptors generated by MinkUNeXt are not only more accurate in 
identifying the top-1 candidate but are also more effective at retrieving 
the correct place descriptor within a larger set of top candidates.

These findings suggest the robustness and effectiveness of the
MinkUNeXt architecture. The design of the model appears to facilitate 
the learning of more discriminative features for the place recognition 
task. The consistent results on different datasets and protocols support 
the viability of the proposed approach.

4.6.4. Computational cost analysis
In addition to the performance in place recognition, the compu-

tational efficiency of the proposed method is another key aspect to 
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consider, especially for real-world applications. Table  8 presents a 
comparative analysis of the number of parameters and the inference 
time for the MinkUNeXt model compared to other state-of-the-art meth-
ods. The results indicate that MinkUNeXt has a significantly larger 
number of parameters (43.5 M) compared to the other architectures. 
This increased model complexity is a direct consequence of its deep, 
U-Net-based architecture, which is fundamental to its high descriptive 
performance and accuracy, as demonstrated in the previous sections. 
However, it is important to note that this increase in size does not trans-
late into a prohibitive inference time, which is 10.8 ms. Therefore, our 
model remains competitive and operates in real-time, being faster than 
other recent methods such as CASSPR [29] (20.5 ms) and comparable 
to MinkLoc3Dv2 [39] (9.6 ms). The efficiency of MinkUNeXt comes 
from the use of sparse convolutions, which only perform computations 
on occupied voxels, effectively ignoring the vast empty space.

This analysis highlights a trade-off between model complexity and 
performance, where MinkUNeXt prioritizes achieving the highest pos-
sible accuracy while maintaining a viable inference speed for practical 
deployments.

4.6.5. Qualitative results
In this section, visual examples of the results obtained with Min-

kLoc3Dv2 [39], CASSPR [29] and the proposed MinkUNeXt, which 
were trained in the refined protocol, are presented for both the Oxford 
RobotCar and the In-house datasets (Fig.  6). These examples have been 
selected from the test sequences of each dataset to illustrate qualita-
tively the model’s ability to recognize places in different environments 
and conditions.

Each row in the figure displays a single query point cloud captured 
by the LiDAR sensor, the nearest (in the metric space) point cloud 
from the database (i.e. the ground truth), and the top-1 prediction 
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Fig. 6. Qualitative comparison in the Oxford RobotCar and In-house datasets. From top to bottom, the rows illustrate different scenarios: (1) a successful retrieval 
by all methods in Oxford; (2) a challenging case with perceptual aliasing from the University Sector scenario; (3) a scene with dynamic objects from the Residential 
Area environment; and (4) a query with significant rotation from one of the Business District sequences. A green border indicates a correct match, while red 
indicates a failure.
Table 8
Comparison of the number of parameters and inference time for different place 
recognition methods.
 Method Number of parameters (M) Inference time (ms) 
 PointNetVLAD [14] 19.8 3.9  
 LPD-Net [18] 19.8 5.5  
 MinkLoc3D [19] 1.1 3.3  
 TransLoc3D [37] 11.0 7.3  
 MinkLoc3Dv2 [39] 2.7 9.6  
 CASSPR [29] 3.8 20.5  
 MinkUNeXt (ours) 43.5 10.8  

retrieved from the database (using the descriptor space) by MinkUNeXt, 
MinkLoc3Dv2, and CASSPR. The map on the right visualizes the spatial 
metric context of these results. Specifically, the database positions are 
represented by black dots for the entire database, the red cross is the 
current query position, and the green ring is the nearest position from 
the database. The positions of the top-1 retrieved point clouds are 
marked with an orange circle for our MinkUNeXt, a purple square for 
MinkLoc3Dv2, and a cyan triangle for CASSPR. Additionally, in the 
point cloud visualizations, a green border indicates a correct retrieval, 
while a red border means a failure. Note that for both the Oxford and 
the In-house datasets, a retrieval is considered correct if the Euclidean 
distance between the query and the retrieved point cloud positions is 
below 25 m.

The top row, an example from the Oxford RobotCar dataset, shows 
a scenario where the three methods correctly retrieve a database point 
cloud within 25 m (a true positive). However, while CASSPR and Min-
kLoc3Dv2 retrieve the closest possible database location, MinkUNeXt 
retrieves the second nearest. In contrast, the second row highlights a 
more challenging case from the University Sector scenario of the in-
house dataset, where all methods fail due to perceptual aliasing. In this 
instance, although MinkUNeXt also fails, its prediction is the closest one 
to the ground truth. Next, the third row, from the Residential Area of 
the In-house dataset, displays a query point cloud with dynamic objects 
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(three cars and a van) that confuse MinkLoc3Dv2, whereas MinkUNeXt 
and CASSPR perform the task correctly. Finally, the last row, taken 
from the Business District of the In-house dataset, shows an example 
where the query point cloud is rotated with respect to the database. In 
this case, both MinkUNeXt and MinkLoc3Dv2 exhibit greater robustness 
to rotation than CASSPR.

5. Conclusion

This paper presents MinkUNeXt, an architecture based on
MinkUNet [20] exhaustively modified and enhanced to perform place-
recognition based on point clouds. It is an encoder–decoder architecture 
entirely based on the proposed 3D MinkNeXt Block: a residual block 
composed of 3D sparse convolutions that follows the philosophy pro-
posed by ConvNeXt [16]. The feature extraction step is performed by 
a U-Net encoder–decoder. The feature aggregation of those features 
into a single descriptor is carried out by a Generalized Mean Pooling 
(GeM) [48]. The designed architecture demonstrates that it is possible 
to surpass the current state of the art by only relying on conven-
tional 3D sparse convolutions without making use of more complex 
and sophisticated proposals such as Transformers, Attention-Layers or 
Deformable Convolutions.

The proposed network shows that the usage of a U-Net architecture 
for point cloud-based place recognition is beneficial, since it is able 
to capture both detailed and contextual information of the three-
dimensional environment. The fusion of features from multiple spatial 
scales improves the robustness of the place recognition model, allowing 
it to adapt to variations in point cloud geometry and density, as well 
as to different scenarios.

It should be also noted that the proposed method outputs results 
outperforming an already saturated state-of-the-art. In particular, the 
network achieved an AR@1 of 97.5% and an AR@1% of 99.3% when 
trained with the refined protocol. Furthermore, the generalization ca-
pability of MinkUNeXt was validated through a further test protocol in 
the KITTI and USyd datasets, where it consistently outperformed state-
of-the-art methods like MinkLoc3Dv2 and CASSPR. The computational 
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analysis revealed that despite a larger number of parameters, the infer-
ence time of our model remains competitive, highlighting that model 
complexity is not directly proportional to latency when leveraging 
efficient sparse convolutions. Qualitative results further substantiated 
these findings, visually demonstrating the model’s superior robustness 
in challenging real-world scenarios, including those with significant 
perceptual aliasing, dynamic objects and viewpoint rotations.

Future work will consider the inclusion of visual information into 
the place recognition system. In this sense, we consider that it would 
result in a richer representation of the environment compared to the 
use of LiDAR with pure distance data. However, visual information 
is hindered by changing lighting conditions, weather and seasonal 
changes, which pose a great challenge.
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