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Abstract

This paper describes an approach to solve the Simultaneous Localization and Map-
ping (SLAM) problem with a team of cooperative autonomous vehicles. We consider
that each robot is equipped with a stereo camera and is able to observe visual land-
marks in the environment. The SLAM approach presented here is feature-based,
thus the map is represented by a set of three dimensional landmarks each one de-
fined by a global position in space and a visual descriptor. The robots move indepen-
dently along different trajectories and make relative measurements to landmarks in
the environment in order to jointly build a common map using a Rao-Blackwellized
particle filter. We show results obtained in a simulated environment that validate
the SLAM approach. The process of observing a visual landmark is simulated in the
following way: first, the relative measurement obtained by the robot is corrupted
with gaussian noise, using a noise model for a standard stereo camera. Second, the
visual description of the landmark is altered by noise, simulating the changes in
the descriptor which may occur when the robot observes the same landmark under
different scales and viewpoints. In addition, the noise in the odometry of the robots
also takes values obtained from real robots. We propose an approach to manage
data associations in the context of visual features. Different experiments have been
performed, with variations in the path followed by the robots and the parameters
in the particle filter. Finally, the results obtained in simulation demonstrate that
the approach is suitable for small robot teams.
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1 Introduction

Acquiring maps of the environment is an essential ability for autonomous
mobile robots, since the maps are needed to perform higher level tasks. In
consequence, in the last two decades the problem of simultaneous localization
and mapping (SLAM) has received significant attention. The SLAM problem
considers the situation in which an autonomous mobile robot moves through
an unknown space and incrementally builds a map of this environment while
simultaneously uses this map to compute its absolute location. This problem
is considered inherently difficult, since noise introduced in the estimate of the
robot pose leads to noise in the estimate of the map and viceversa.

To date, typical SLAM approaches have been using laser range sensors to build
maps in two and three dimensions (e.g., [18,22]). Recently, the interest on
using cameras as sensors in SLAM has increased and some authors have been
concentrating on building three dimensional maps using visual information
obtained from cameras. These approaches are usually denoted as visual SLAM.
The reasons for this interest stem from:

i Stereo vision systems are typically less expensive that laser range systems.
ii Typical laser ranging systems provide 2D information from the environ-

ment whereas stereo vision systems are able to provide a more complete 3D
representation of the space.

iii Vision systems provide a great quantity of information and allow to inte-
grate in the robot other techniques, such as face or object recognition.

However, stereo systems are usually less precise than laser sensors and the
information from the cameras needs normally to be processed in order to
extract salient features. In common configurations, the camera is installed at
a fixed height and orientation [5,17] with respect to the robot reference system
and the movement of the camera is restricted to a plane.

Most approaches to visual SLAM are feature-based. In this case, a set of sig-
nificant points in the environment are used as landmarks. Mainly, two steps
must be distinguished in the selection of visual landmarks. The first step in-
volves the detection of interest points in the images that can be used as reliable
landmarks. The points should be detected at different distances and viewing
angles, since they will be observed by the robot from different poses in the
environment. At a second step the interest points are described by a feature
vector which is computed using local image information. This descriptor is
used in the data association problem, that is, when the robot has to decide
whether the current observation corresponds to one of the landmarks in the
map or to a new one. When the robot observes a visual landmark in the envi-
ronment, it obtains a distance measurement and computes a visual descriptor.
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Next, the descriptor and the measurement are used to find the landmark in
the map that generated the observation. Typically, when the robot traverses
previously explored places, it re-observes landmarks. In this case, if current
observations are correctly associated with the visual landmarks, the robot will
be able to find its location with respect to these landmarks, thus reducing
the error in its pose. If the observations cannot be correctly associated to the
landmarks in the map, the map will become inconsistent. To sum up, the
data association is a fundamental part of the SLAM process, since wrong data
associations will produce incorrect maps.

An important subfield within mobile robotics that requires accurate maps is
the performance of collaborative tasks by multiple vehicles. Multiple vehicles
can frequently perform tasks more quickly and robustly than a single one [15].
However, little effort has been done until now in the field of multi-robot visual
SLAM, which considers the case where several robots move along the envi-
ronment and build a map. In this paper we concentrate on this problem and
propose a solution that allows to build a map using a set of visual observations
obtained by a team of mobile robots. It is worth noting that SLAM algorithms
focus on the incremental construction of a map, given a set of movements car-
ried out by the robots and the set of observations obtained from different
locations. However, SLAM algorithms do not consider the computation of the
movements that need to be performed by the robots, since this is generally
considered a different problem, denoted as exploration. Classical exploration
strategies often try to cover unknown terrain as fast as possible and avoid to
repeatedly visit known areas. This strategy, however, is suboptimal in the con-
text of the SLAM problem because the robot typically needs to revisit places
in order to localize itself and reduce the uncertainty [18]. If the exploration
has to be accomplished using a team of robots, the problem becomes harder,
since the exploration algorithm needs to avoid that different robots explore
the same areas in the map. In this paper we concentrate on the visual SLAM
problem and assume that the robots are able to explore the environment in
an efficient way.

The major contribution of this paper is twofold. First we propose an approach
to the multi-robot SLAM problem using a Rao-Blackwellized Particle Filter
(RBPF). To the best of our knowledge, this is the first work that uses visual
measurements provided by several robots to build a common 3D map of the
environment. The results obtained with different number of robots are com-
pared. Second, we simulate the process of visual SLAM using multiple robots.
We consider that the robots perform observations on visual landmarks using
stereo cameras, and, in addition, each observation is associated with a visual
descriptor, that allows to partially differentiate between landmarks. In addi-
tion, we propose a solution to the data association in the context of visual
SLAM and compare the results when the noise in the descriptor varies, which
simulates the variation in the descriptor when a landmark is observed from
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different viewpoints. Introducing noise in the descriptor makes the data asso-
ciation harder and affects negatively the results of the SLAM algorithm. The
results presented demonstrate that the approach is suitable to build visual
maps using small teams of robots.

The main reason that motivated to carry out a series of experiments using
simulated data is that this enables to assess the validity of the presented
algorithm under different conditions. In simulation, the map and the true path
of the robots is known in advance, and this enables us to evaluate the precision
of the approach when varying some of the parameters in the Rao-Blackwellized
filter. Furthermore, we compare the results when different number of robots
are used and evaluate the computational cost introduced by more robots. On
the contrary, evaluating the results of visual SLAM using real data is complex.
On the one hand the true path followed by the robots is not known. On the
other hand, the map cannot be known precisely, since the exact location of
the landmarks cannot be established in advance.

The remainder of the paper is structured as follows. First, Section 2 discusses
related work. Section 3 presents the approach to multi-robot SLAM, our map
representation is also detailed. Section 4 deals with visual landmarks and their
utility in SLAM. Next, Section 5 exposes our approach to the data associa-
tion problem in the context of visual features. The most relevant features of
the simulated environment are explained in Section 6. Next, in Section 7 we
present the results obtained. Finally, Section 8 summarizes the most important
conclusions and proposes future extensions of the work.

2 Related work

Up to now, the approaches to multi-robot SLAM can be grouped in one of the
two following solutions:

i Approaches in which each robot estimates its own individual map using
its observations. At a later stage, a common map is formed by fusing the
individual maps of the robot team.

ii Approaches where the estimation of all the trajectories and the map is made
jointly. A single map is computed simultaneously using the observations of
all the robots.

The work exposed in [19] can be classified in the first group. The idea here
is that each robot builds an own map, and, at the same time continuously
attempts to localize in the maps built by other robots using particle filters.
The approach can cope with the situation where the initial locations of the
robots are unknown, solving the data association problem with a rendez-vous
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technique. However, the fusion of the individual maps is computationally ex-
pensive, since K2 particle filters must be maintained for a team of K robots.

The approach presented in [4] can be classified in the second group. It uses
an extended Kalman filter (EKF) to estimate a state vector formed by the
poses of all the vehicles and a set of 2D landmarks. With this extension,
the robots obtain observations and construct a single unified map using the
update equations of the classical EKF [3]. The initial positions of the vehicles
must be known in advance and the data association is assumed to be known.
In addition, the gain in performance when using multiple vehicles is proved
theoretically within this context. In this case, the main drawback stems from
the fact that a single hypothesis over the robot pose is maintained. If false
data associations are made the whole EKF may diverge [14].

In [16] stereo vision is used to extract 3D visual landmarks from the environ-
ment. During exploration, the robot extracts SIFT (Scale Invariant Feature
Transform) features from stereo images and calculates relative measurements
to them. Landmarks are then integrated in the map with an Kalman Filter
associated to each one. However, this approach does not manage the uncer-
tainty associated with robot motion, and only one hypothesis over the pose
of the robot is maintained. Consequently it may fail in the presence of large
odometric errors (e.g. while closing a loop). In [5] a Rao-Blackwellized parti-
cle filter is used to estimate simultaneously the map and the path of a single
robot exploring the environment. In the mentioned work, SIFT features are
used too as landmarks in the environment and extracted using a stereo pair
of cameras.

3 Multi-robot visual 3D SLAM

In this section, we describe our approach to the SLAM problem in the case
where a team of robots explore simultaneously the environment. SLAM is
considered to be a complex task due to the mutual dependency between the
map of the environment and the pose of the robot. If we make an error in the
estimation of the pose, this induces an error in the estimation of the map and
viceversa. The robots share the observations performed over the landmarks
and create a common map of the environment. The solution presented here
is based, in essence, on a Rao-Blackwellized particle filter (RBPF), proposed
initially by Murphy [13] and commonly referred as FastSLAM in the SLAM
community [11]. Basically, a Rao-Blackwellized particle filter combines a rep-
resentation of the pose by means of particles with a closed estimation of some
variables.

In order to build the map, we assume that the robots are equipped with a
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stereo camera system, which enables them to obtain relative measurements
from landmarks that are detected in the environment. In addition, we assume
that a descriptor associated to the landmark can be obtained, based on its
visual appearance. We also consider that the robots are able to communicate
among themselves and with a central agent in the system. In addition, we
consider that the relative starting position of the robots is approximately
known in advance.

For simplicity, we first start our explanation assuming that a single robot ex-
plores the environment while it observes visual landmarks. At time t the robot
obtains an observation zt, constituted by zt = (vt, dt), where vt = (Xc, Yc, Zc)
is a three dimensional vector relative to the left camera reference frame and
dt is the visual descriptor associated to the landmark. The map L is repre-
sented by a collection of N landmarks L = {l1, l2, ..., lN}. Each landmark is
described as: lk = {µk, Σk, dk}, where µk = (Xk, Yk, Zk) is a vector describing
the position of the landmark referred to a global reference frame, with associ-
ated covariance matrix Σk. In addition, each landmark lk is associated with a
descriptor dk that partially differentiates it from others. This map representa-
tion is compact and has been used to effectively localize a robot in unmodified
environments [6].

Following the usual nomenclature in Rao-Blackwellized SLAM, we denote the
robot pose at time t as xt and the movement of the robot at time t as ut. On
the other hand, the robot path until time t is referred as xt = {x1, x2, . . . , xt},
the set of observations made by the robot until time t will be designated
zt = {z1, z2, . . . , zt} and the set of actions ut = {u1, u2, . . . , ut}. We formulate
the SLAM problem as that of determining the location of all landmarks in the
map L and robot poses xt from a set of measurements zt and robot actions
ut. Thus it can be stated as the estimation of the posterior:

p(xt, L|zt, ut, ct) (1)

where ct designates the set of data associations performed until time t, ct =
{c1, c2, . . . , ct}. While exploring a particular environment, the robot has to
determine whether a particular observation zt = (vt, dt) corresponds to a pre-
viously mapped landmark or to a new one. Given that, at time t the map
is formed by N landmarks, this correspondence is represented by ct, where
ct ∈ [1 . . . N ], meaning that the observation zt corresponds to the landmark
ct in the map. When no correspondence is found we denote it as ct = N + 1,
indicating that it is a new landmark. For the moment, we consider this corre-
spondence as known.

The SLAM problem can be separated into two parts:

i The estimation of the trajectory of the robot.
ii The estimation of the map by means of a series of measurements.
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However, the two facets can be separated and, if somehow we could know
the trajectory of the robot in the environment, then the estimation of the
map would be trivial. This conditional independence property of the SLAM
problem implies that the posterior (1) can be factored as [11]:

p(xt, L|zt, ut, ct) = p(xt|zt, ut, ct)
N∏

k=1

p(lk|xt, zt, ut, ct) (2)

This equation states that the full SLAM posterior is decomposed into two
parts: one estimation over robot paths, and N independent estimators over
landmark positions, each conditioned to the path estimate. We approximate
p(xt|zt, ut, ct) using a set of M particles, each particle having N independent
landmark estimators (implemented as EKFs), one for each landmark in the
map. Each particle is thus defined as:

S
[m]
t = {xt,[m], µ

[m]
t,1 , Σ

[m]
t,1 , d

[m]
1 , . . . , µ

[m]
t,N , Σ

[m]
t,N , d

[m]
N }, (3)

where µ
[m]
t,k is the best estimation at time t for the position of landmark lk based

on the path of the particle m and Σ
[m]
t,k is the associated covariance matrix.

The visual descriptor associated to the landmark j is represented by d
[m]
j . The

particle set St = {S[1]
t , S

[2]
t , . . . , S

[M ]
t } is calculated incrementally from the set

St−1 at time t − 1 and the robot control ut. Thus, each particle is sampled

from a proposal distribution x
[m]
t ∼ p(xt|xt−1, ut) that models the noise in the

odometry of the robots. Next, and following the approach of [11], each particle
is then assigned a weight according to:

ω
[m]
t =

1√
|2πZct|

e{−
1
2
(vt−v̂t,ct )

T [Zct ]
−1(vt−v̂t,ct )} (4)

where vt is the actual measurement and v̂t,ct is the predicted measurement

for the landmark ct based on the pose x
[m]
t . The matrix Zct is the covariance

matrix associated with the innovation (vt − v̂t,ct). Note that we implicitly
assume that each measurement vt has been associated to the landmark ct

of the map. This problem is, in general, hard to solve, since similar-looking
landmarks may exist. In Section 5 we describe our approach to this problem. In
the case that B observations from different landmarks exist at a time t, that is
zt = {zt,1, zt,2, . . . , zt,B}, we calculate the total weight assigned to the particle

as: ω
[m]
t =

∏B
i=1 ω

[m]
t,i , where w

[m]
t,i is the weight associated to the observation

zt,i, computed using Equation (4).

In the following, we assume that a team of K robots explores the environ-
ment. Our objective here is to jointly estimate the paths followed by the
robots and the map. At a time step t the robot 〈i〉 is at pose xt,〈i〉 and per-
forms a single observation zt,〈i〉 = {vt,〈i〉, dt,〈i〉}. We denote the path of the
robot 〈i〉 until time t as xt

〈i〉 = {x1,〈i〉, x2,〈i〉, . . . , xt,〈i〉}. For simplicity, we refer
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to xt
〈1:K〉 = {xt

〈1〉, x
t
〈2〉, . . . , x

t
〈K〉} to the set of robot paths in the team until

time t. Analogously, we denote ut
〈1:K〉 = {ut

〈1〉, u
t
〈2〉, . . . , u

t
〈K〉} the set of actions

performed by the robots and zt
〈1:K〉 = {zt

〈1〉, z
t
〈2〉, . . . , z

t
〈K〉} refers to the set of

observations performed by the robot team until time t. Similarly to the case
of a single robot, the data association variable will be denoted as ct, which
indicates that the observation zt,〈i〉 is associated to the landmark ct in the
map. It is worth noting here that we are estimating a map common to all the
robots, in consequence the observation is associated to a landmark in the map
independently of the robot that observed it. The data association until time
t is referred as ct = {c1, c2, . . . , ct}. In consequence, the multi-robot SLAM
problem can be stated as the estimation of the following probability function:

p(xt
〈1:K〉, L|zt

〈1:K〉, u
t
〈1:K〉, c

t) =

p(xt
〈1:K〉|zt

〈1:K〉, u
t
〈1:K〉, c

t)
N∏

k=1

p(lk|xt
〈1:K〉, z

t
〈1:K〉, u

t
〈1:K〉, c

t) (5)

This equation proposes a manner to estimate a group of K paths xt
〈1:K〉 and

a map L conditioned to the case that the robots have performed a number of
movements ut

〈1:K〉 and a series of observations zt
〈1:K〉 associated to landmarks

in the map ct. In consequence, analogously to Equation (2), Equation (5) ex-
presses that we can separate the estimation of the map and the estimation of
K different paths into two parts: The function p(xt

〈1:K〉|zt
〈1:K〉, u

t
〈1:K〉, c

t) is esti-
mated using a particle filter, while the map is estimated using N independent
estimations conditioned to the paths xt

〈1:K〉. As a result, we are decompos-
ing the SLAM problem into two different parts: A localization problem of
K robots in an environment and a series of individual landmark estimations
conditioned to robot paths xt

〈1:K〉. In order to achieve this, each one of the M
particles in the filter is accompanied with N independent estimators for each
one of the landmarks, implemented as EKFs. In our case, each of the Kalman
Filters will be conditioned to the K paths of the robot team. In consequence,
each particle is represented as:

S
[m]
t = {xt,[m]

〈1:K〉, µ
[m]
1,t , Σ

[m]
1,t , d

[m]
1 , · · · , µ

[m]
N,t, Σ

[m]
N,t, d

[m]
N } (6)

The fundamental difference compared to the particle defined in (3) is that,
in this case, the state that we would like to estimate is composed by the
pose (x, y, θ) of K robots, thus xt,〈1:K〉 = {xt,〈1〉, xt,〈2〉, · · · , xt,〈K〉}. As a result,
we propose a joint estimation over a path state of dimension 3K. According
to [21], the number of particles needed to obtain a good estimation increases
exponentially with the dimension of the state. However, the results that we
present here show that the approach works perfectly for robot teams of 2–3
members using a reasonable number of particles. In the case presented, the
same map is shared by all the robots, which means that an observation per-
formed by a particular robot affects the map of the whole robot team. In conse-
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Table 1
Particle set St. Each particle is accompanied by N Kalman Filters.

Particle 1 {(x, y, θ)〈1〉, · · · , (x, y, θ)〈K〉}[1] µ
[1]
1 Σ

[1]
1 d

[1]
1 . . . µ

[1]
N Σ

[1]
N d

[1]
N

.

.

.

Particle M {(x, y, θ)〈1〉, · · · , (x, y, θ)〈K〉}[M ] µ
[M ]
1 Σ

[M ]
1 d

[M ]
1 . . . µ

[M ]
N Σ

[M ]
N d

[M ]
N

quence, one member of the team may observe a landmark previously mapped
by a different robot and update its estimate. In addition, this means that a
robot does not need to explicitly close a loop in order to reduce the uncer-
tainty in its pose (i.e. return to a previously mapped area). A robot can reduce
the uncertainty in its pose when it observes landmarks previously mapped by
other robots. The structure of the particle defined in (6) is clearly explained
in Table 1. To sum up, we propose a method based on a Rao-Blackwellized
particle filter for the case where a robot team cooperates to build a map of a
given environment. The algorithm can be decomposed in 4 basic steps:

• Generate a new particle set based on the prior set.
• Update the estimation of each landmark based on the observations.
• Calculate a weight for each particle.
• Perform a resampling based on the weight of each particle.

In order to clarify the ideas presented here we describe the whole process in
Algorithm 1, which considers the case in which 3 robots explore simultaneously
the environment.

3.1 Generating a new particle set

The first step is to generate a new set of hypothesis St based on the set St−1.
That means that we obtain a new particle set over the robot poses xt,〈1:K〉.

That is, we obtain a new pose x
[m]
t,〈i〉 for each of the robots by sampling from a

motion model p(xt|xt−1, ut):

x
[m]
t,〈i〉 ∼ p(xt,〈i〉|xt−1,〈i〉, ut,〈i〉) (7)

The function p(xt,〈i〉|xt−1,〈i〉, ut) defines the movement model for the mobile
agent. We apply this movement model to each of the K poses of the particle
separately, based on the movement performed by the 〈i〉 robot. Figure 1 shows
the application of Equation (7). The solid lines represent the true movements
performed by the robots while the dotted lines correspond to the odometry
readings. In the beginning of the movements, all the particles concentrate on
the origin. After applying the movement model we obtain a set of particle
clouds that represent the probability over the poses of the robots at each
time step. In this way, non-linear motion models can be easily represented, as
opposed to the linearization required by EKF-SLAM approaches [3].
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Fig. 1. The figure shows a new set of particles generated by sampling from the
motion model.

3.2 Landmark estimation

Updating each landmark estimate is performed based on the pose of the 〈i〉
robot that performed the observation zt,〈i〉 = {vt,〈i〉, dt,〈i〉} with data association
ct. Updating each landmark lk is performed independently, using the standard
EKF equations detailed below:

v̂t,〈i〉 = g(x
[m]
t,〈i〉, µ

[m]
ct,t−1) (8)

Glct
=∇lct

g(xt, lct)xt=x
[m]

t,〈i〉;lct=µ
[m]
ct,t−1

(9)

Zct,t = Glct
Σ

[m]
ct,t−1G

T
lct

+ Rt (10)

Kt = Σ
[m]
ct,t−1G

T
lct,〈i〉

Z−1
ct,t (11)

µ
[m]
ct,t = µ

[m]
ct,t−1 + Kt(vt,〈i〉 − v̂t,〈i〉) (12)

Σ
[m]
ct,,t = (I −KtGlct

)Σ
[m]
ct,t−1 (13)

where v̂t,〈i〉 is the prediction for the current measurement vt,〈i〉 assuming that
it has been associated with landmark ct in the map . The observation model
g(xt, lct) is linearly approximated by the Jacobian matrix Glct

. It is assumed
here that the noise in the observation is Gaussian and can be modeled with the
covariance matrix Rt. Equation (12) represents the update of the estimation

of the landmark ct: µ
[m]
ct,t−1 in terms of the innovation v = (vt,〈i〉− v̂t,〈i〉). Finally,

Equation (13) updates the covariance matrix Σ
[m]
ct,t, which is associated to the m

particle and the landmark ct. Updating each EKF requires a constant time per
landmark, since the dimensions of each one are 3× 3. Note that we implicitly
assume that the observation zt,〈i〉 corresponds to the landmark lct in the map.
By now we assume this correspondence to be known. Later, in Section 5 we
deal with this problem with more detail.

The matrix Rt associated with the noise in the observation is modeled using
the equations of a standard stereo pair of cameras (assuming pin-hole cameras
and parallel optical axis of both cameras). The 3D coordinates of a point in
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the space relative to the left camera reference system can be calculated as:

Xr =
I(c− Cx)

d
, Y r =

I(Cy − r)

d
, Zr =

fI

d
(14)

where, (r, c) are the row and column of the projected 3D point in the left
image. Correspondingly, the same point is projected in (r, c + d) in the right
image, being d the disparity associated to that point. The parameter I is
named baseline, and corresponds to the horizontal separation of both cameras.
The parameters Cx and Cy refer to the intersection of the optical axis with the
image plane in both cameras and f is the focal distance of the cameras. We can
calculate the covariances associated to a relative measurement (Xr, Y r, Zr)
supposing a linear error propagation:

σ2
Xr =

I2σ2
c

d2
+

I2(c− Cx)
2σ2

d

d4
, σ2

Y r =
I2σ2

r

d2
+

I2(Cy − r)2σ2
d

d4
, σ2

Zr =
f 2I2σ2

d

d4

(15)

This model has previously used at a visual SLAM context in [16]. In the
experiments we have used σr = σc = 10 pixels and σd = 0.5, which produce
typical errors in a common stereo camera. The noise matrix Rt is computed
as Rt = diag(σ2

Xr , σ2
Y r , σ2

Zr).

3.3 Assigning a weight to each particle

The set of particles generated by the movement model are distributed accord-
ing to p(xt

〈1:K〉|zt−1
〈1:K〉, u

t
〈1:K〉, c

t−1
〈1:K〉), since the lasts observations zt,〈1:K〉 obtained

by the robots have not been included in the filter. This distribution is com-
monly known as proposal distribution. However, we would like to estimate
the posterior p(xt

〈1:K〉, L|zt
〈1:K〉, u

t
〈1:K〉, c

t
〈1:K〉) which includes all the information

from odometry and sensors until time t, generally stated as the target dis-
tribution. This difference is corrected with a process generally called sample
importance resampling (SIR). Basically, a weight is assigned to each parti-
cle depending on the the quality that the current observation and the map
matches. Following, a new set of particles St is created by sampling from St−1.
Each particle is included in the new set with probability proportional to its
weight. During the resampling process, particles with low weight are normally
replaced with others with a higher weight. Assuming that a team of K robots
exist and each one performs a single measurement zt,〈i〉 with data association

ct. We compute, the weight ω
[m]
t,〈i〉 associated with the particle m and the robot

〈i〉 as:

ω
[m]
t,〈i〉 =

1√
|2πZct|

e{−
1
2
(vt,〈i〉−v̂t,ct )

T [Zct ]
−1(vt,〈i〉−v̂t,ct )} (16)
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In consequence, for each particle S
[m]
t defined in Equation (6) a number of

K weights ωt,〈i〉 = {ωt,〈1〉 · · ·ωt,〈K〉} are calculated. Since we are estimating
the joint probability over the robot paths, the total weight associated to the
particle S

[m]
t must be calculated by multiplying the weights associated to the

K robots: ω
[m]
t =

∏K
i=1 ω

[m]
t,〈i〉. Next, the weights are normalized to approximate

a probability density function
∑M

i=1 ω
[i]
t = 1. The same procedure can be ex-

tended to the case where each of the vehicles obtains a set of B observations
zt,〈i〉 = {zt,〈i〉,1, zt,〈i〉,2, . . . , zt,〈i〉,B}. This can be achieved by calculating a weight
for each of the observations using Equation (16) and then multiplying the B
results to calculate ωt,〈i〉.

3.4 Path and map estimation

The algorithm we have just described, maintains a set of particles that rep-
resent a set of plausible paths that the robot team may follow. Conditioned
to these paths, a set of three dimensional landmarks are estimated, each one
represented by a Kalman filter. Finally, we need to choose the path and the
map that best represent the true trajectories and map. In order to do this,
we maintain a logarithmic sum over the global weights of the particles. In
consequence, we choose the best particle as the one that maximizes the sum:

m̂ = argmax
m

A∑

t=1

log(w
[m]
t ) (17)

4 Visual landmarks

We define visual landmark as a point in space that can be easily detected from
different distances and viewing angles by means of a vision sensor. Corners
in images are typically good candidates to be employed as landmarks for
SLAM tasks, since they are stable and can typically be detected from different
viewpoints.

Solving the SLAM problem with a landmark oriented approach involves two
main processes: The detection, that enables the landmark to be detected from
a set of poses in the environment, and the description of the landmark, that
aims at representing the landmark based on its visual appearance. The de-
scriptor enables the robot to recognize a particular landmark in the map. In
the case of visual landmarks, we aim at detecting some points in the images
that are highly salient, and can easily be detected from different distances
and viewing angles. The description of the visual landmarks is based on a
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Algorithm 1 Summary of the proposed algorithm.
1: S = ∅
2: [zt,〈1〉, zt,〈2〉, zt,〈3〉] = ObtainObservations()

3: InitialiseMap(S, x0,〈1:3〉, zt,〈1:3〉)
4: for t = 1 to numMovements do
5: [zt,〈1〉, zt,〈2〉, zt,〈3〉] = ObtainObservations()

6: [S, ωt,〈1〉] = FastSLAMMR(S, zt,〈1〉, Rt, ut,〈1〉)
7: [S, ωt,〈2〉] = FastSLAMMR(S, zt,〈2〉, Rt, ut,〈2〉)
8: [S, ωt,〈3〉] = FastSLAMMR(S, zt,〈3〉, Rt, ut,〈3〉)
9: ωt = ωt,〈1〉ωt,〈2〉ωt,〈3〉

10: S = ImportanceResampling(S, ωt) //Sample randomly from S according to ω
[m]
t

11: end for

function [St] = FastSLAMMR(St−1, zt,〈i〉, Rt, ut,〈i〉)
12: St = ∅
13: for m = 1 to M {For every particle} do

14: x
[m]

t,〈i〉 ∼ p(xt,〈i〉|xt−1,〈i〉, ut,〈i〉)

15: for n = 1 to N
[m]
t−1 //Loop over all possible data associations do

16: v̂t,〈i〉 = g(x
[m]

t,〈i〉, µ
[m]
n,t−1)

17: Gln = ∇lct
g(xt, ln)

xt,〈i〉=x
[m]
t,〈i〉;lct=µ

[m]
ct,t−1

18: Zn,t = GlnΣ
[m]
n,t−1GT

ln
+ Rt

19: D(n) = (vt,〈i〉 − v̂t,〈i〉)T [Zn,t]−1(vt,〈i〉 − ẑt,〈i〉)
20: E(n) = (dt,〈i〉 − dn)T (dt,〈i〉 − dn)

21: end for
22: D(N

[m]
t−1 + 1) = D0

23: j = find(D ≤ D0) {Find candidates below D0}
24: ct = argminj E(n) {Find minimum among candidates}
25: if E(ct) > E0 // Create a new landmark? then

26: ct = N
[m]
t−1 + 1

27: end if
28: if ct = N

[m]
t−1 + 1 //New landmark then

29: N
[m]
t = N

[m]
t−1 + 1

30: µ
[m]
ct,t = g−1(x

[m]

t,〈i〉, zt,〈i〉)

31: Σ
[m]
ct,t = GT

lct
R−1

t Glct

32: ω
[m]
t = p0

33: else
34: N

[m]
t = N

[m]
t−1 //Old landmark

35: Kt = Σ
[m]
ct,t−1GT

Lct
Z−1

ct,t

36: µ
[m]
ct,t = µ

[m]
ct,t−1 + Kt(vt,〈i〉 − v̂t,〈i〉)

37: Σ
[m]
ct,t = (I −KtGlct

)Σ
[m]
ct,t−1

38: end if

39: ω
[m]

t,〈i〉 = 1√
|2πZct |

e{−
1
2 (vt,〈i〉−v̂t,ct )T [Zct ]−1(vt,〈i〉−v̂t,ct )}

40: add {x[m]

t,〈i〉, N
[m]
t , µ

[m]
1,t , Σ

[m]
1,t , d

[m]
1,t , · · · , µ

[m]

N
[m]
t

,t
, Σ

[m]

N
[m]
t

,t
, d

[m]

N
[m]
t

,t
, ω

[m]
t } to St

41: end for
42: return St

sub-image centered at the detected point. The case of visual SLAM is partic-
ularly difficult, since:

i The landmarks cannot always be detected from different viewpoints. In con-
sequence, it is difficult to re-detect previously mapped landmarks.

ii The description of the points must be invariant to changes in viewing dis-
tance (scale) and viewing angle. To achieve an invariant description is par-
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ticularly complex in the case of visual landmarks, since the appearance of
a point in space varies greatly with viewpoint changes. In consequence, the
data association problem becomes hard to solve.

To date, different detectors and descriptors have been used for mapping and
localization using monocular or stereo vision, such as SIFT [16,5], the Harris
corner detector [2], Harris-Laplace [7] or SURF [12]. SIFT and SURF com-
bine a detection and description method. In particular, SIFT (Scale Invariant
Feature Transform) features were developed for image feature generation, and
used initially in object recognition applications (see for example [8] and [9]).
SIFT features combine a method to extract stable locations in images and
a description that enables to identify those points. First, SIFT features are
located at maxima and minima of a difference of Gaussian function applied
in scale space. Next, each SIFT location is associated to a descriptor, com-
puted using the image information at each location and scale. The descriptor
provides invariance to image translation, scaling, rotation and is only par-
tially invariant to illumination changes and affine projection. The resulting
descriptor is of dimension 128 and enables the same points in the space to be
recognized from different viewpoints, which may occur while the robot moves
around its workplace. Lately, SIFT features have been used in robotic appli-
cations, showing its suitability for localization and SLAM tasks ([16,17,6,5]).
In a prior work we performed an evaluation over different detection [10] and
description [1] methods and their suitability for visual SLAM.

5 Data association

While a robot explores the environment it must decide whether the observation
zt,〈i〉 = (vt,〈i〉, dt,〈i〉) corresponds to a previously mapped landmark or to a
different landmark. This concept is shown in Figure 2. Marked with stars is the
position of the two landmarks, with the uncertainty depicted with an ellipse.
Next, the robot obtains a measurement vt,〈i〉 shown with dashed line, with an
uncertainty denoted by its associated ellipse. In addition, and since we are
using a vision sensor, a descriptor dt,〈i〉 describes the visual appearance of the
point in space. In this case, the robot must decide whether the measurement
corresponds to landmark θ1, landmark θ2 or it is a new landmark. In [11] a
Mahalanobis distance function is computed to associate each measurement to
a landmark in the map. Thus, the distance D is computed for all the landmarks
in the map:

D = (vt,〈i〉 − v̂t,ct)
T [Zct ]

−1(vt,〈i〉 − v̂t,ct) (18)

The measurement vt,〈i〉 is associated with the landmark ct in the map that
minimizes D. If the minimum value surpasses a pre-defined threshold, a new
landmark is created.

15



Fig. 2. The figure describes the data association problem in the context of visual
landmarks.

To work properly, the previous solution needs the landmarks to be placed
sufficiently apart from each other, in order to avoid false data associations.
However, normally, this is not the case in visual SLAM, since the landmarks
may be placed nearby. As stated in [14] the solution is not optimal, since wrong
data associations will be made. As depicted in Figure 2, we propose here to
improve the data association process by incorporating the visual description
of the landmark. In our case, we will employ a SIFT descriptor associated
to each landmark in the map. To do this, we first compute distance D for
all the landmarks in the map and select those that are below a threshold D0

as candidates. Next, given a SIFT descriptor as observed by the robot dt,〈i〉
and a SIFT descriptor dj associated to a landmark in the map, we compute a
squared Euclidean distance function:

E = (dt,〈i〉 − dj)(dt,〈i〉 − dj)
T (19)

We compute the distance E within the group of candidates and select the
landmark in the map that minimizes E. Whenever the distance E is be-
low a threshold E0 the observation is associated with the landmark. On the
other hand, a new landmark is created whenever the distance E exceeds a
pre-defined threshold (selected experimentally), since the current observation
cannot be correctly explained by any of the landmarks in the map up to now.

The data association is performed independently for each particle, and this
means that different particles would make different data associations. In ad-
dition, the method presented is simple, since it needs to be computed for
each particle. In a previous work [5], we used this approach in the case of
visual SLAM with a single robot. The experimental results showed that the
high specificity of the SIFT descriptors allowed to build a precise map of the
environment.
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6 Simulation environment

The main reason that motivated to perform a series of experiments using
simulated data is that this enables to assess the validity of the presented
algorithm. In this case, the map and the true path of the robots is known in
advance, and this enables us to evaluate the precision of the approach when
varying some of the parameters in the Rao-Blackwellized filter. In this way,
we can evaluate the algorithm with different number of particles and analyze
the effect of adding more robots to the precision of the map and the estimated
paths.

We simulate an indoor environment and a group of robots that navigate
through it. The simulations were carried out using Matlab. We assume that
the mobile agents move around the space simultaneously, they find 3D visual
landmarks and obtain relative observations to them, consisting of a 3D rela-
tive measurement and a visual descriptor for each landmark. Figure 3 shows a
3D view of the simulated environment. The position of each landmark is indi-
cated with an asterisk. In order to simulate a typical indoor environment, the
landmarks have been placed over planar regions, that simulate walls which
restrict the visibility of the points (i.e. a robot cannot observe a landmark
through a wall). We consider that there is a SIFT descriptor associated to
each landmark in the map. To do this, we previously captured a set of images
from an office environment and obtained a set of SIFT descriptors, which were
stored in a database. Next, we randomly associated each landmark to one of
the SIFT descriptors. The size of the environment is 30× 30× 2 meters, and
there exist two loops inside.

The process of observing a visual landmark is simulated in the following way:
we consider that a robot is able to observe a landmark in the environment
when it lies in the field of view of the stereo cameras and the relative distance
is below a threshold dmax. As previously said, an observation is constituted by
zt,〈i〉 = (vt,〈i〉, dt,〈i〉), where vt,〈i〉 = (Xr, Yr, Zr) is a relative measurement and
dt,〈i〉 is a SIFT descriptor associated to the point. When a robot observes a
landmark, we compute vt,〈i〉 using Equations (14) and add gaussian noise to
the measurement as computed by Equations (15). To simulate the process of
observing a landmark from different viewpoints, we add gaussian noise to the
descriptor dt,〈i〉 and study the effects of this variations in the results.

Given an observation zt,〈i〉 = (vt,〈i〉, dt,〈i〉) obtained by one of the robots, the
data association is solved as explained in Section 5, thus assigning the obser-
vation zt,〈i〉 = (vt,〈i〉, dt,〈i〉) to the landmark θj in the map, or creating a new
landmark.

Once the simulation is finished, the path st estimated is compared with the
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true path and an RMS error is computed with the differences along the path.
Analogously, the true map is compared with the map of the most probable
particle, as determined by Equation (17) and a RMS error is computed in base
of the Euclidean distance between the true an estimated path. The generation
of a new set of particles creates a random set of new poses by sampling from
the motion model stated in Equation (7). In consequence, different results
may be obtained when running the simulation repeatedly with the same data.
In consequence, the simulations are repeated a number of times, computing a
mean value and 2σ intervals.

7 Results

SLAM solutions aim at building a map, given a set of movements performed
and observations obtained by the robots. However, SLAM approaches do not
consider the problem of computing the trajectory of the robots, e.g. in or-
der to minimize the time needed to explore the environment. In particular,
this is normally considered a different problem, denoted as Exploration. In
the simulated experiments we consider that the robots are able to explore
the environment in an efficient manner. That means that, if a robot needs T
movements to explore the whole environment, we consider that each one of
the K robots require T/K movements to achieve the exploration of the en-
vironment. In other words, the total distance traveled with only one robot is
divided along the group so that every robot traverses the same distance. The
paths followed by the robots were set by hand, considering this requirement.
In addition, different paths were used in the experiments, with variations in
the initial position of the robots. During the simulation, the only information
that the robots can use to derive its position is the noisy odometry and the
measurements performed over the landmarks in the map.

In Figure 3 we show the results of a particular simulation conducted with a
team of 3 robots. Figure 3(a) shows the environment and the position of the
robots. The true position of each landmark is indicated with and asterisk,
whereas the observations obtained by the robots are designated with dashed
lines. Figure 3(b) shows the simulation at a particular step. The true path
followed by the robots is shown with a solid line. Using Equation (7) a noisy
odometry is simulated, which is shown as a dashed line. The noise parame-
ters used in the odometry have values that resemble the noise in real robots
from our laboratory. In the same figure, we present the best estimation over
the paths followed by the robots, denoted with squares. In addition, the un-
certainty over the pose of each one of the robots is presented with a set of
particles. In Figure 4(a) we show the difference between the estimated and
the true poses during all the movements performed by the robots. In Fig-
ure 4(b) we show the error between the odometry and the true poses for all
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Fig. 3. Figure (a) shows the simulated environment. Figure (b) shows the true
path followed by the robots (continuous line) the odometry (dashed line) and the
estimated paths (marked with squares).
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Fig. 4. Fig. (a) shows the error between the estimated and the true pose (x, y, θ)
for each of the movements. Fig. (b) shows the error between the odometry and the
true pose. In both figures, the first robot is indicated with a continuous line, the
second with a dashed line, and the third is indicated with a dash-dot line.

the robots. We can clearly see that the error in odometry grows without bound
and cannot be directly used to estimate the map. It can be clearly seen that
the error in the estimated path is reduced significantly when compared with
the odometry.

We conducted a series of experiments and evaluated the results when vary-
ing the parameters used by the SLAM algorithm to estimate the map and
the paths. The most important parameters that were studied are gathered
at Table 2. The same simulations were performed using different number of
robots.

First, we performed a series of simulations with different number M of parti-
cles. We consider that each robot obtains B measurements at each simulation
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Table 2
Most important parameters studied in the simulations

M = 500 number of particles used in the filter

B = 15 number of observations integrated at each simulation step.

dmax = 10 m maximum distance at which the observations are made.

σd = 0.1 pix standard deviation in the disparity computation.

σdt = 0.01 standard deviation of the noise introduced in the descriptor.

step, which are integrated in the Rao-Blackwellized filter. As a result of each
simulation, we obtain a RMS error over the robot paths and the map. The
RMS error in position is computed with respect to the true path. The same
experiment was repeated several times for each value of M , calculating a mean
value and a standard deviation over the results for each M . Different trajecto-
ries were performed by the robots, considering different starting positions in
the map. When varying M the rest of parameters remain constant, with the
values indicated in Table 2. The values that appear in the table are reasonable
and correspond to parameters used when building a visual map with a single
robot using real data [5]. Figure 5(a) shows the RMS error in the estimated
paths with error bars indicating 2σ intervals, whereas Figure 5(b) presents
the error in the map. Both, Figure 5(a) and 5(b) present the results when 1,
2 or 3 robots are used and follow a similar trend. In general, for any number
of robots deployed, we can clearly observe that the error in the estimation
decreases when the number of particles increases. This result was expected,
since the function p(xt

〈1:K〉, L|zt
〈1:K〉, u

t
〈1:K〉, c

t) is approximated with more pre-
cision when the number of particles M is large. The state to estimate is of
dimension 3K, being K the number of robots. According to [21] in a general
case, the number of particles needed to obtain an accurate estimation grows
exponentially with the dimension of the state. As a result, we should expect
that the RMS error when using 3 robots would be always greater than the
error obtained with one robot, since more particles are needed to accurately
estimate 3 robot paths. However, the results demonstrate that for the same
number of particles, more accurate results are obtained when using more ro-
bots. For example, Figure 5(b) demonstrates that the map is more accurately
estimated when the number of robots increases. This result can be explained
in the following manner: when one robot explores the environment on its own,
it must return to previously explored places in order to reduce the uncertainty
over its pose. In a typical environment, as the one simulated, the robot needs
to travel a long distance in order to re-visit previously explored places (i.e.
close a loop) and accumulates a high uncertainty. This normally induces big
errors in the estimation of the path and requires a big number of particles
for an accurate estimation. In the same environment, when more robots are
used, it occurs frequently that one of the robots observes landmarks observed
previously by other robots. In the algorithm proposed, this has the same ef-
fect as if the robot observed landmarks detected before and the uncertainty is
maintained low. As a consequence, since the uncertainty of each robot is low,
it can be represented using less particles. To sum up, for a given number of
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Fig. 5. Fig. (a) shows the root mean square (RMS) error in the
estimated path of the robots when varying the number of particles
M = {1 10 50 100 200 300 400 500 1000 1500 2000}. Fig. (b) shows the RMS
error in the estimated map when varying the number of particles M . The error bars
are defined as two times the standard deviation. We show simultaneously results
with one robot (©), two robots (¤) and three robots (4).

particles, the map can be estimated with comparable precision using 1, 2 or
3 robots. The time needed to explore the environment is obviously reduced
when more robots are used.

During the simulations, we assumed that the robot could detect a landmark
when it was placed at a distance below dmax and inside the field of view of the
cameras. We performed different simulations changing the maximum detection
distance dmax while maintaining constant the rest of parameters shown in
Table 2. The results are presented in Figure 6(a) and 6(b). It can be observed
that the localization error decreases when the maximum distance increases.
This result can be explained in the following way: when the robot observes
landmarks only at a close distance, it continuously explores new space, and
the uncertainty over its pose increases rapidly. On the contrary, when the
observation distance is large, the robot maintains its localization inside its
local map, and its uncertainty remains low. When using more robots, a bigger
observation distance dmax implies that with more probability a robot may
be able to observe landmarks detected by other robots, thus improving the
localization and the map, as previously justified.

We have also studied the effects on the map contruction that are produced
by adding noise to the visual descriptor. As explained in Section 6 each land-
mark in the map is associated with a SIFT descriptor. Once the robot ob-
serves a landmark, it obtains an observation zt,〈i〉 = (vt,〈i〉, dt,〈i〉). The rel-
ative measurement is corrupted with a gaussian noise defined by N(0, Rt)
using Equations (15), whereas a descriptor dt,〈i〉 is associated considering
dt,〈i〉 = dj + N(0, σ2

dt
), where dj is the SIFT descriptor of the landmark θj

in the map and N(0, σ2
dt

) represents a 128-dimensional vector of uncorrelated
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Fig. 6. Figure (a) shows the root mean square error (RMS) computed over the
estimated path computed for different values of dmax. Figure (b) shows the RMS
error computed between the real and the estimated map when the distance dmax is
changed. The error bars are defined as two times the standard deviation.
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Fig. 7. Figure (a) shows the RMS error computed over the estimated path when noise
is added to the visual descriptor σdesc. Figure (b) shows the RMS error computed
between the real and the estimated map. We show simultaneously results with one
robot (©), two robots (¤) and three robots (4).

gaussian noise with variance σ2
dt

. As explained in Section 5 the data associa-
tion makes use of the descriptor associated to each landmark. In consequence,
adding more noise to the observed descriptor implies that more false data
associations will be produced, and this affects negatively the quality of the
results. We performed a series of simulations increasing the noise added to the
descriptor while maintaining the rest of parameters constant (with the values
shown in Table 2). The results are presented in Figure 7. It can be noticed
that, as the noise in the descriptor increases, false data associations are likely
to occur, and the results get worse. When using more robots, the number of
observations integrated is greater, and this fact makes the process more robust
to noise.

Next, we present the influence in the results when a different number of obser-
vations are integrated at each iteration of the algorithm. At each simulation
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Fig. 8. Fig. (a) shows the root mean square (RMS) error in the estimated path of
the robots when varying the number of observations integrated at each iteration
of the algorithm B = {0 1 5 10 15 20 25}. Fig. (b) shows the RMS error in the
estimated map when varying the number of particles M . The error bars are defined
as two times the standard deviation. We show simultaneously results with one robot
(©), two robots (¤) and three robots (4).

we used the parameters shown in Table 2 and obtained different results when
changing B. The results are presented in Figure 8. Figure 8(a) present the
RMS error in position computed for the paths and Figure 8(b) shows the
RMS error in the map. It can be noticed that the results in the estimation of
the robot paths and the map improve when more observations are integrated
at each time step. In addition, the results exhibit the same trend as observed
in the experiments previously presented.

Finally, we compare the processing time needed at each iteration of the algo-
rithm when using a different number of robots. To do this, we performed the
exploration using different number of robots and measured the time needed
at each iteration. The time needed at each iteration of the algorithm depends
on a series of parameters, basically the number of particles M used, the num-
ber of observations B integrated at each time step. However, this time is not
constant and increases with the number of landmarks that exist in the map:
with more landmarks in the map, finding the correct data association be-
comes computationally expensive. Figure 9(a) presents the mean time needed
to process the observations at each iteration of the algorithm, using a different
number of particles used in the filter and considering that each of the robots
integrates B measurements. It can be seen that, as the number of particles
M increases, the time needed to process the observations grows exponentially,
and is significantly greater when using 2 or 3 robots.

In a real exploration situation, when the robots navigate through the environ-
ment, the observations must be processed within time constraints. First, the
observations must be integrated in the map. Second, based on this map, the
exploration algorithm plans the next movement for each robot. If the process-
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Fig. 9. Figure (a) and (b) shows the mean computation time at
each iteration of the algorithm for different number of particles
M = {1 10 50 100 200 300 400 500 1000 1500 2000}. Figure (c)shows the
RMS error in the map when B/K observations are used.

ing time is too high, then the robots would need to stop their movements and
wait until the new observations have been integrated in the filter. In order to
decrease the computational cost, we can reduce the number of observations
that each robot introduces at each iteration of the algorithm. We consider
that each robot obtains B/K observations. That is, when using one robot,
we integrate B = 15 observations and when using three robots, we integrate
B = 5 observations. In Figure 9(b) we present the mean processing time if
the robots perform B/K observations at each iteration of the algorithm. As
can be seen in the figure, the processing time in the case of 1, 2 or 3 robots
is similar, for any number of particles. In this case, the total number of ob-
servations integrated in the filter is the same for the case of 1, 2 or 3 robots.
With this restriction, we evaluated the error in the map, which is shown in
Figure 9(c). It can be observed that the results are similar to the presented
in Figure 5(b), since the estimation of the map and the paths improves when
more robots are used. As a consequence, we can reduce the computational
cost of the algorithm by integrating less observations by each robot and still
obtain comparable good results.

24



8 Conclusion

We have presented an approach to visual SLAM that builds a 3D map of
the environment using a team of cooperative robots. We consider that the
robots are equipped with a stereo heads that allow to perform observations
over visual landmarks, each one consisting of a relative measurement and a
visual descriptor. The approach builds a unique map of the environment that
is shared by all the robots in the team, using a Rao-Blackwellized particle
filter to estimate both the map and the trajectories of the robots. The data
association problem is solved using the relative measurements obtained by the
robots and comparing the visual descriptor. With this strategy we have found
that the number of false correspondences is low, thus allowing to obtain good
estimations of the map and the path.

We have tested the validness of the approach by means of simulations. For
this purpose, an indoor environment has been simulated. We used a noise
model to represent the relative measurements obtained by the stereo cameras
and used typical values for the noise in the odometry model, as estimated in
real robots in our laboratory. In the experiments we assumed that the robots
were able to explore the environment efficiently, thus we compare the case in
which the total distance traveled by one robot to explore the environment is
divided uniformly along the team members. A great number of simulations
have been performed, that precisely resemble real exploring situation. The
simulations allowed us to test the approach under different conditions, by
changing the parameters of the Rao-Blackwellized particle filter. We could also
evaluate the algorithm when the descriptor associated to a visual landmarks
was corrupted with noise, and evaluated its effects on the results. With this
procedure we could emulate the effects of observing a landmark from different
viewpoints. The results presented show that the algorithm is robust to false
data associations, and is able to produce a good solution with a wide range of
parameter settings.

In the presented approach, the dimension of the state to estimate grows with
the number of robots. In principle, the number of particles needed to obtain
a good estimation grows exponentially with the dimension of the state to
estimate. Under typical conditions we show that using the same number of
particles M , the precision of the map estimated using a single robot is similar
to the precision obtained using 2 or 3 robots. In addition, the results show that,
when more robots are used, a precise map can be obtained without increasing
the computational cost of the method. As a consequence, since more robots
exist in the environment, the time needed to explore the environment will be
reduced significantly, whereas the computational cost is not increased.

As a conclusion, under the assumptions considered, we have demonstrated that
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the proposed SLAM algorithm is suitable for small groups of robots exploring a
given environment and obtaining observations over visual landmarks. We show
that precise results can be obtained, without increasing the computational cost
considerably.

As a future work, we plan to validate the simulations by using experimental
data obtained by real robots and natural landmarks occurring in the environ-
ment. We further plan to use the mutual observations of the team, that is,
when a robot observes the relative position of another member in the team.
We expect that this information will lead to further improve the results.
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degree in Telecommunications Engineering at the Miguel
Hernández University (UMH), Elche, Spain. During 2006,
he worked as a researcher at the Computer Science and
Communications department, at Murcia University. Since
2007 he is involved in research projects at the Systems
Engineering department at the UMH. Currently, his re-
search interests focus on mobile robotics, exploration and
computer vision.

27



References

[1] M. Ballesta, O. Mart́ınez-Mozos, A. Gil and O. Reinoso. A Comparison of Local
Descriptors for Visual SLAM. In Proceedings of the Workshop on Robotics and
Mathematics (RoboMat 2007), 2007.

[2] A.J. Davison. Real-time simultaneous localisation and mapping with a single
camera. Proc. of the Int. Conf. on Computer Vision (ICCV), 2003.

[3] M. W. M. Gamini Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte, and
M. Csorba. A solution to the simultaneous localization and map building
(SLAM) problem. IEEE Transactions on Robotics and Automation (ICRA),
17, 2001.

[4] J.W. Fenwick, P.M. Newman, and J.J. Leonard. Cooperative concurrent
mapping and localization. IEEE Int. Conf. on Robotics and Automation
(ICRA), pages 1810–1817, 2002.

[5] A. Gil, O. Reinoso, O. Mart́ınez-Mozos, C. Stachniss and W. Burgard.
Improving data association in vision-based SLAM. In Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), China, 2006.

[6] A. Gil, O. Reinoso, M. A. Vicente, C. Fernández and L. Payá. Monte
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