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Abstract 

Computing the localization of a robot in an environment is an essential task when the robot has to 
carry out an autonomous task in that environment. In the scientific literature we can find many 
methods, and one of the most extended currently is Monte Carlo Localization algorithm. On the other 
hand in this kind of applications, the appearance-based approach has attracted the interest of 
researchers recently due to its simplicity and robustness. 

In this work, we present a tool we developed to be used in a robotics subject. It provides the students 
an intuitive platform to test the Monte Carlo Localization algorithms when working with some set of 
omnidirectional images captured in real environments and with an appearance-based descriptor. This 
tool is very useful to provide real data and to facilitate some mechanisms to understand this 
probabilistic localization algorithm. 

Keywords: Mobile robotics, omnidirectional images, Monte-Carlo localization.  

1 INTRODUCTION 

Finding the location of the robot is a key issue in the field of mobile robotics. The knowledge of its 
position in the space is crucial for an autonomous agent, since the pose is needed for a precise 
navigation. During the last decades the Monte Carlo algorithm has been extensively used in 
localization tasks in the field of mobile robotics, demonstrating both a large degree of robustness and 
efficiency ([1], [2], [3]). The different approaches of Monte Carlo localization methods presented to 
date differ depending on the sensor installed on the robot. For example in [3] a laser range sensor is 
used to localize the robot in the environment. The differences between the expected and the current 
laser measurements are used to weight the particles and discard the most unlikely ones. In [1], a 
camera pointing to the ceiling of the environment was used. The Monte Carlo algorithm compared the 
brightness in the center of the images with an image of the ceiling as seen from below. The difference 
between the expected and actual illumination was used to weight the particles and estimate the 
position of the robot. In [2] a stereo camera system is used to obtain observations from a set of point 
features in the environment. The observed distance computed from the stereo images is used to refine 
the robot location in the map. 

In this paper we study the case of robot localization using omnidirectional images. A Monte-Carlo 
method is deployed to find the pose of the robot in a map. In particular, we have developed a software 
tool that is intended for teaching purposes. This tool allows the students to test different weight 
methods in the Monte-Carlo algorithm, along with different strategies in relation with the data 
association method. The main motivation for using the omnidirectional images that a camera installed 
on a robotic platform is its low cost, weight and moderated power consumption and due to the fact that 
these cameras are able to provide a high quantity of information. In this paper, we consider that the 
camera is installed at a fixed orientation with respect to the robot and pointing upwards in direction to 
an omnidirectional mirror. We also assume that the movement of the robot is restricted to a plane. In 
this case, a rotation of the robot corresponds approximately to a shift in the columns of the panoramic 
image. 

To date, researchers have proposed different solutions for the localization problem using 
omnidirectional images. These solutions can be divided into two main groups: feature-based solutions, 
in which a number of significant points from each omnidirectional image are extracted, and next, each 
point in the image is described using an invariant descriptor (for example [4] uses omnidirectional 
images to find the location of the robot in a given map, using SURF features [5]), and appearance-
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based solutions, in which the whole appearance of the image is represented by a single descriptor 
([6], [7]). 

In a prior work [8], the results showed that appearance-based solutions are a good choice in 
combination with Monte Carlo methods. However, the weight methods used can lead to non-optimal 
results, since there exist several methods to obtain the localization of the robot based on an 
observation function. With this motivation, in this paper we present an educational tool that is intended 
to be used in the teaching of mobile robotics and, in particular, Monte Carlo methods. The tool 
presented here allows the student to assess different methods that allow to compute a weight for each 
particle and carry out a comparison in terms of the error in localization. Some of the methods included 
in the tool have been used in the past for localization tasks using particle filters (e.g. [9]), but, in 
addition, we present some own techniques [8] that in some cases are able to provide also good results 
in terms of accuracy. Thanks to this easy-to-use platform, students can understand the fundamentals 
of this method and make a comparison between different approaches. 

The tool presented here assumes that a grid represents the map, where several omnidirectional 
images are taken at certain positions of the environment. This approach differs form the proposed by 
other authors, who represent the environment by taking images during a fixed trajectory of the robot 
[9]. The grid-approach, however, is considered as a more complete representation of the environment. 
Second, the educational tool described here permits testing different weight methods that allow to 
localize the robot using a particle filter, as well as different ways to perform the data association in the 
suggested map. 

In this map, each omnidirectional image is described by a single Fourier descriptor that represents the 
appearance with invariance to the rotation. This descriptor has been chosen based on a prior work 
[10], in which the Fourier descriptor allowed a fast comparison between the current image and the 
map by means of a vector distance measurement. In addition, we found [10] that the processing time 
needed to compute the Fourier transform is comparable to common feature extraction and description 
methods. 

The rest of the paper is organized as follows: section 2 describes the Fourier transform used in the 
context of omnidirectional images. Next, section 3 describes the Monte-Carlo algorithm and its 
application to the problem of localization in mobile robotics. Following, section 4 presents the weight 
methods that have been included in the educational application and can be tested to study different 
ways to include the likelihood of observations during Monte Carlo localization. Section 5 describes the 
appearance and utilisation of the educational tool and presents some initial results obtained. Finally, 
section 6 exposes the main conclusions and proposes future work. 

2 FOURIER SIGNATURE WITH OMNIDIRECTIONAL IMAGES 

To date, different description methods have been used in the context of omnidirectional robot vision. In 
this work, we make use of Fourier-based techniques. Given an omnidirectional image  with  

rows and columns, we can obtain the most relevant information from the image by means of the 

Discrete Fourier Transform. In order to do so, there are several possibilities, such as to implement the 
2D Discrete Fourier Transform [10], the Spherical Fourier Transform of omnidirectional images [11] or 
the Fourier Signature of the panoramic image [6]. The Fourier signature exploits better the invariance 
to ground-plane rotations in panoramic images [10]. The most important information is concentrated in 
the low frequency components of each row, so we can work only with the information from the  first 
columns in the Signature. Also, this feature presents rotational invariance. It is possible to prove that if 
each row of the original image is represented by the sequence  and each row of the rotated image 

by   (being  the amount of shift), when the Fourier Transform of the shifted sequence is 

computed, we obtain the same amplitudes  than in the non-shifted sequence, and there is only a 
phase change, proportional to the amount of shift , as described in the following equation: 

      (1)  
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3 MONTE CARLO LOCALIZATION 

In robot localization we are interested in the estimation of the pose of the vehicle (typically, the state 
) at time  using a set of measurements  from the environment (in our 

case, the Fourier Signatures of the omnidirectional images) and the movements  of 
the robot. In Monte Carlo Localization (MCL), the probability density function  is 

represented by a set of M random samples  extracted from it, named particles. 

Each particle can be understood as a hypothesis of the true state of the robot . The 
weight of each sample (particle) determines the importance of the particle. The set of samples defines 
a discrete probability function that approximates the continuous belief. 

The initial set of particles represents the initial knowledge  about the state of the mobile robot on 
the map. When we use a particle filter algorithm, in global localization, the initial belief is a set of poses 
drawn according to a uniform distribution over the robot’s map. If the initial pose is partially known up 
to some small margin of error (local localization), the initial belief is represented by a set of samples 
drawn from a narrow Gaussian centered at the known starting pose of the mobile robot. The Monte 
Carlo Localization algorithm is described briefly in the next lines, and consists of two phases: 

• Prediction Phase: At time  a set of particles  is generated based on the set of particles 

 and a control signal . This step uses the motion model . In order to 

represent this probability function, the movement  is applied to each particle while adding a 
pre-defined quantity of noise. As a result, the new set of particles  represents the density 

. 

• Update Phase: In this second phase, the observation  obtained by the robot is used to 

compute a weight  for each particle in the set . This weight represents the observation 

model  and is computed as . In this paper we propose different 
methods for the computation of this weight that will be described in Section 4. The weights are 

normalized so that . As a result, we obtain a set of particles accompanied by a 

weight .  

The resulting set  is calculated by resampling with replacement from the set , where the prob- 

ability of resampling each particle is proportional to its importance weight . Finally, the distribution 
 is represented by the set . 

4 WEIGHT METHODS 

As described in the previous section, the Monte Carlo Algorithm introduces the current observation  

of the robot by means of computing a weight  for each particle and performing a resampling 
process. In this section, we describe different strategies for the computation of the weights. These 
weights have been included in the educational tool. The student may repeat every localization 
experiment while using different weighting methods and compare the results in terms of mean 
localization error or convergence speed. 

We consider that our map is formed by a set of  bi-dimensional landmarks , forming 

a grid in the environment with a particular resolution. Each landmark  has an omnidirectional image 

 associated and a Fourier descriptor  that describes the global appearance of the image, thus 

. Next, we describe the localization method proposed. We consider that at time 

 the robot captured an image and computed the Fourier descriptor . Using this Fourier descriptor 

we compare the descriptor  with the rest of descriptors  and find the  landmarks in 

the map that are closest in appearance with the current image . In this sense, we allow the 
correspondence of the current observation to several landmarks in the map. We consider that this is a 
special case of the data association problem. In addition, this correspondence benefits the localization 
algorithm, since it may restrict the computation of the observation model to a reduced set of 
landmarks, thus reducing the computational effort. The students can obtain results when varying this 
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parameter in order to assess its influence. In addition the selection of  landmarks in terms of 
appearance will allow us to evaluate the importance of the description method used.  

We base the localization of the robot on the Monte Carlo algorithm explained in the previous section. 

Next, we propose several methods that allow to compute the weight of each particle , 
thus providing different observation models: 

Weight Method 1 (W1): product of gaussians centered on each image landmark considering the 
distance to the descriptor.  

  (4) 

where,  is the difference between the position of the landmark   and the 

position  of the particle . The matrix  is a diagonal matrix . The variance 

 is chosen experimentally in order to minimize the error in the localization and the students cannot 
change its value in the tool. We recall that the product of gaussian distributions is also a gaussian. The 
results demonstrate that this method tends to center the particles rapidly near the true robot pose, 
however, it suffers from some problems when the data association phase fails (e.g. the selected 
landmark  lies far away from the actual robot pose). 

Weight Method 2 (W2): Sum of gaussians centered on each image landmark. 

  (5) 

where  and matrix  is analogous to the matrix defined in W1 and its values were also selected 

experimentally.  In this case, the observation model  is not gaussian, since it is formed by a 
sum of gaussians, being thus multi-modal. As we will show in the experimental results, this method is 
less sensitive to errors in data association whereas it is able to achieve nice localization results. 

Weight method 3 (W3): sum of gaussians centered on each image landmark and considering the 
difference in the descriptors. 

  (6) 

where  and  have been defined in the previous methods and  defines the 

difference between the module of the Fourier descriptor associated to the current image observed and 
the module of the descriptor associated to the landmark . The descriptors are normalized so that the 

summation of the euclidean distance of the current descriptor  to the rest of the  associations 

equals one, . The matrix  is an  matrix, being  the length of the 

Fourier descriptor. The main difference of this method with respect to W2 is the consideration of the 
difference in the descriptor in the observation model . This fact generally gives higher 
weights to particles situated near a landmark that is close in appearance to the current observation. 

Weight method 4 (W4): product of gaussians centered on each image landmark and considering the 
difference in the descriptors. 

  (7) 

where , ,  and  have been defined in the previous methods. This method is similar to 

method W1 but considering the effect of the similarity in the description when computing the weight. 
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Weight method 5 (W5): sum of gaussians centered on each landmark position and considering the 
difference in the descriptors as well as the orientation of the landmarks (images). 

  (8) 

where , ,  and  have been defined in the previous methods.  The variable  

computes the difference between the expected orientation  and  the orientation of the particle. 

Given the current descriptor  and the descriptor  the orientation  can be computed from 

equation 1. In this case, and since the map is known, the orientation of all the landmarks (images) in 

the map is known in advance. The matrix  is selected experimentally and the students cannot 
change its value. 

Weight method 6 (W6): product of gaussians centered on each landmark position and considering 
the difference in the descriptors as well as the orientation of the landmarks (images). 

  (9) 

where , , , ,  and  have been defined in the previous methods. This method is 

similar to the W5, but considering the product of the gaussian distributions. 

Weight method 7 (W7): gaussian distribution at the center of mass of a discrete particle system. This 
method is inspired in a system of particles, each one having a mass related to the similarity with the 
current descriptor  observed by the robot. The weight for each particle is computed as: 

  (10) 

where  computes the difference between the position of the particle  and the center 

of mass computed as: 

  (11) 

where the virtual mass  is computed as . The masses  are normalized 

so that . The covariance matrix  is computed as the covariance associated to . 

Weight method 8 (W8): gaussian distribution at the center of a spring-mass system. This method is 
inspired by a spring-mass system [6]. The constant of each spring is related to the similarity in the 
description, thus, landmarks more similar to the current observation try to atract the mass more tightly. 
To simplify the calculations,  is equal to 1 for all the mass of the system. The weight for each 

particle is computed as: 

  (12) 

where  computes the difference between the position of the particle  and the center 

 of a spring-mass system. In this case, the matrix  is computed as the covariance associated to 
. 

Weight method 9 (W9): triangular distribution. This method is inspired in the weight function 
introduced by [9]. The weight for each particle is computed as: 

  (13) 
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where  and    computes the difference between the position 

of the particle  and the landmark .  is the metric distance between the farthest landmark and 
the position of the particle . This weight method represents a triangular distribution centered on each 
landmark as to the appearance of each acquired image.  

As we show in section 6, using the developed tool, students can compare the performance of these 
weight methods in a quite intuitive way an all the results and evolution of the process are shown 
graphically. 

5 DESCRIPTION OF THE EXPERIMENTS 

5.1 Database creation 

To build the databases we have included in the tool, we have used a Pionner P3-AT robot (fig.1a) that 
is equipped with a catadioptric system (fig. 1b). The catadioptric system consists on a forward-looking 
camera and a parabolic mirror that provides omnidirectional images of the environment. The 
omnidirectional images are transformed to panoramic images with a size of 64x256 pixels to work with 
this information in an efficient way (fig. 1c). 

 

Fig. 1. (a) Pioneer P3-AT robot, (b) catadioptric system and (c) omnidirectional and panoramic image 

 

 

Fig. 2. Bird eye’s view of the grid used to build the map, with two examples of panoramic images 

 

We have captured a set of omnidirectional images on a pre-defined 10x10 cm grid in a corridor (an 
indoor environment). We have taken a total number of 131 images (21 images in x-axis and 11 
images in y-axis). To build the map, we only used a pre-defined 20x20 cm grid of these images, with a 
total number of 66 images (11 images in x-axis and 6 images in y-axis), one in two images (the rest 
images will be used in a later phase to test the localization algorithms). We can see a bird’s eye view 
of the grid used to build the map and two examples of panoramic images on fig. 2. 
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5.2 Localization of the robot with MCL 

With the complete set of images described in the section 5.1, we have build 6 different paths to 
simulate the robot movement on map. The objective of this section is to describe how to compute the 
localization of the robot when it moves on the different paths. It must be carried out just comparing the 
visual information with the information in the map and with a Monte Carlo Localization algorithm. This 
process is carried out in the following way: 

5.2.1 Fourier signature 

To compute the localization of the robot for each image of the path, we compute the difference 
between the appearance of this image with respect to the appearance of the map images. With this 
aim, we use the euclidean distance between the Fourier signatures. If  is the Fourier signature of 

the image  and  is the Fourier signature of the image , then the distance between 

scenes  and  is: 

 

5.2.2 Monte Carlo algorithm 

Once we have obtained the euclidean distance between the images, we use these distances to 
compute the weight of the particles of the particle filter. The process employed is the process 
explained in the section 3. 

6 DESCRIPTION OF THE TOOL 

In this section we present a detailed description of the operation of our application. The simplicity of 
use is the general philosophy while designing this tool, trying to guide the user during the whole 
process and taking into account the fact that the user may not be an expert in the robotics field. The 
main objective was to provide the students with a set of weight methods to understand and to test the 
validity of appearance-based Monte Carlo localization and the necessary tools to put them into 
practice and to make a critical comparison of the performance of them in a real environment. 

6.1 User’s manual 

We have developed the application using MATLAB [12]. The application must be launched from this 
program so the student has to run first MATLAB in his computer. When the user runs the tool a 
graphical interface appears where the students can carry out all the necessary operations. We can 
see the appearance of this graphical interface during an experiment in fig. 3. In general, this figure 
shows all the necessary options to perform the Monte Carlo Localization process (in an interactive 
way), a bird’s eye view of the map, the particles set, the particles center, the odometry travelled path, 
the real travelled path and the actual real pose of the robot. All these data are updated step by step so 
that student can understand the process. 

Hereafter we describe the steps to be completed during a typical sequence of use of the tool and the 
different options it offers to the students. The first step consists in configuring the parameters of the 
movement of the robot.  This step, on the one hand, allow us to simulate the errors that occur in the 
robot's odometry, and on the other hand, permits choosing between different possible routes and the 
distance travelled in each movement (fig. 4). When we want to configure the odometry error, we have 
to configure the parameters alpha. These parameters correspond to the variances of the Gaussian 
errors that are involved in the odometry simulation. When we modify these parameters alpha, we can 
see how the movement of the particles change (fig. 5). 

In the second step of the experiment, the student has to choose the parameters related to the Monte 
Carlo Filter. First, the user has to choose the number of the particles used to do the experiment. With 
this parameter the student will be able to understand the importance of the number of particles 
(hypotheses) in a Monte Carlo Localization process, and the necessity to find an appropriate number 
of samples for the localization to work correctly. Secondly, the user has to choose among the eight 
different types of weight that we have proposed in section 4. The user can see the performance of the 
localization under the different methods. After that, the student can choose the number of associations 
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the robot must realize to compute the weight of the particles of the system. This parameter ( ) will 
influence the localization process; if this parameter takes a relatively low value, the error in localization 
remains small, but as the number of associations increases, the error in the location is small in the 
sum-of-gaussian methods, but increases rapidly in the product of gaussian methods (W2, W4 and 
W6). Finally, the user can select if the localization will be local o global. 

Once all the parameters have been selected, the student will press the ‘Start’ button to begin the 
localization process. Along the process, the students can see the Monte Carlo algorithm performance. 
The user can observe the simulated odometry (yellow line in fig. 3), the real path (red line in fig. 3), the 
particle movement (blue points in fig. 3), associated the landmarks (green circles in fig. 3) and the 
center of the particle population (pink circle in fig. 3). In addition the student will see the error in the 
location and dispersion of particles for each step or movement (fig. 6). Finally, the user can pause the 
process by pressing the ‘Stop’ button and later continue with it by pressing the ‘Continue’ button, or 
reset the process by clicking on the ‘Reset’ button. 

 

 

Fig. 3. Appearance of the graphical interface of the application 

 

 

Fig. 4. (a) Path the user can choose and (b) distance for each movement the user can choose to do 
the experiment 
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Fig. 5. Two examples of an odometry simulation for (a) non-homogeneous alpha parameters and (b) 
homogeneous alpha parameters 

 

 

Fig. 6. Example of location error and particles dispersion graph 

 

7 CONCLUSION 

This work presents a software tool we have implemented to be used in a robotics and computer vision 
subject in the doctorate studies. With this tool, the students can fully understand the appearance-
based approach in robotics Monte Carlo localization, with the next features. 

1. We have included a database with panoramic images (grey-scale) of an environment. This 
database is used to build the map of the environment and to make the different types of 
possible paths. 

2. The student can select the value of the errors to simulate the robot’s odometry (alpha1, 
alpha2, alpha3, alpha4). 

3. The user is allowed to choose among 6 different paths and he can choose the distance 
travelled for each movement (gait). 

4. It is possible to select the number of the particles to do the experiment and the weight method 
employed to resample the particles. In addition the student can choose the number of 
associated landmark. 

5. Moreover, the user can decide to carry out a global localization (unknown initial pose) or a 
local localization (known initial pose). 

6. The tool is fully interactive. Once the localization process is finished, several graphical 
representations of the data can be showed to know the degree of accuracy of the method 
used. This allows the students to perform a comparative study of the weight methods. 
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This tool has demonstrated to be very useful for the students to fully understand the MCL appearance- 
based method and other basic computer vision concepts. The students distinguish the different 
parameters to be configured so that the method works correctly. They learn the odometry problems 
when the robot moves around the environment and how it is possible to solve these problem by 
means of a Monte Carlo algorithm. Once the practical sessions have been completed, the student is 
capable to develop more complex algorithms to control the movements of a robot using this approach. 
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