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Building Visual Maps with a Team of Mobile Robots
Mónica Ballesta, Arturo Gil, Óscar Reinoso and Luis Payá

Miguel Hernández University
Elche

1. Introduction

This paper tackles the problem of Simultaneous Localization and Map Building (SLAM)
carried out by a team of robots. Particularly these robots build landmark-based maps
by extracting interest points from the environment. These points are characterized by a
local descriptor and a 3D position on the environment, constituting the visual landmarks.
In this approach we consider the situation in which the robots start their mapping task
independently. That is to say, the path followed by the robots and the observations are
estimated independently. After a while, there is a set of independent local maps that can be
fused in order to obtain a global map. For that reason, we have also solved the problem of
aligning and fusing visual maps. Finally, once a global map is obtained, the robots continue
the map building task jointly. Regarding the sensors used in order to extract information
from the environment, some authors use range sensors such as SONAR (Wijk & Christensen,
2000; Kwak et al., 2008) or LASER (Leonard & Durrant-Whyte, 1991; Thrun, 2001). However,
in the last years, there is a great interest on using cameras as sensors. This approach is
denoted as visual SLAM (Valls-Miró et al., 2006). The cameras are less expensive than laser
and offer a higher amount of information from the environment. This advantage makes
it possible to incorporate additional applications to the robot, such as face recognititon.
Additionally, 3D information can be obtained from the environment when using stereo vision
(Murray & Little, 2000; Gil, Reinoso, Fernández, Vicente, Rottmann &Martı́nez-Mozos,
2006). Most approaches using visual information are landmark-based. A process
to extract these visual features with accuracy is required. In these sense, several
detection and description methods appear in the literature such as the Harris
Corner Detector (Davison & Murray, 2002), Harris-Laplace (Jensfelt et al., 2006), SIFT
(Gil, Reinoso, Martı́nez-Mozos, Stachniss & Burgard, 2006; Little et al., 2002) and SURF
(Murillo et al., 2007). In (Gil et al., 2009; Ballesta, Gil, Reinoso & Úbeda, 2010) we performed
an evaluation comparing several detection and description methods in order to obtain the
most suitable feature extractor for visual SLAM. As a result, we obtained that the Harris
Corner Detector in combination with the u-SURF descriptor satisfied our requirements
in visual SLAM. The task of building a map of the environment while simultaneously
localizing in it can be performed by a single robot. However, it will be carried out with
more efficiency if there is a team of robots which collaborates in this task. This approach
is denoted as multi-robot SLAM (Konolige et al., 2003). In this field, two main solutions
can be found. On the one hand, in some proposals the robots build a unique global map
(Gil, Reinoso, Martı́nez-Mozos, Stachniss & Burgard, 2006; Fenwick et al., 2002). In this case,
the exploration task can be performed more efficiently since the robots have a global notion

6



2 Multi-Robot Systems, Trends and Development

of the environment. However, the initital pose of the robots must be known, which may
not be possible in practice. On the other hand, some authors present the approach in which
each robot builds its own map indepentently (Roumeliotis & Bekey, 2002; Stewart et al., 2003;
Zhou & Roumeliotis, 2006). In this case, it is not necessary to know the initial positions of
the robots. Nevertheless, a process of merging the data of the different robots is needed. In
the situation that we set out, the robots start from different positions and build their maps
independently. Therefore, the initial position of the robots is unknown. After a while, these
independent local maps can be fused into a global map. Before fusing the local maps, the
transformation that relates the different reference systems of the robots should be computed.
This previous step is called map alignment. Then, once the relative positions of the robots
is known and the maps can be expressed in the same reference sytem, the maps are fused
into a global map. After solving the alignment problem, we propose that the robots continue
their navigation tasks jointly. To sum up, the robots initially build their maps independently
and then, once they manage to align and fuse their maps, the continue the map building
together. In order to build the map, we propose a Rao-Blackwellized particle filter, firstly
for a single robot and then extended to the multi-robot case. The paper is structured into
three parts according to the approach proposed. First, in Section 2 we concentrate on the
independent stage of the proposal, i.e., there is a team or robots that begins tis navigation
tasks independently. In this case, we describe the particle filter used to solve the SLAM
problem (Section 2.2). Logically, since the robots act indepdendently, the algorithm has been
implemented for a single robot. Secondly, we concentrate in the fusion stage in Section 3. At
this moment there is a set of local maps, independently built, that have to be aligned and
merged into a global map. Finally, the third stage consist of the multi-robot map building
(Section 4). After the fusion stage, the robots build together the map of the environment. In
this case, the estimate of the map and the paths is performed jointly. For this purpose, we
propose an extension of the previous particle filter to the multi-robot case. Finally, we present
some experiments that validate the proposal (Section 5) and the main conclusions in Section 6.

2. Independent map building

In the first stage of the approach presented in this paper, there is a team of robots in which
each one builds its map independently. The map building is performed by means of a
Rao-Blackwellized particle filter, knownwith the general term FastSLAM (Montemerlo, 2003).
The robots may start at different positions and they have no knowledge about their relative
poses. After a while, the robots will have built several local maps that can be fused into a
global map. This is done even if the relative initial positions of the robots are unknown. In
addition, the robots compare their maps and compute the relative position between them,
based on the descriptor simmilarity of the landmarks. In the following, we describe, in detail,
the steps of the FastSLAM algorithm used by each robot independently. Then we focus on
the map alignment step in which the relative position of the robots is obtained. Finally, it is
explained how the local maps are fused into a global one.

2.1 Visual landmarks
In this paper we focus on a visual SLAM approach. Particularly, the robots observe distinctive
points in the environment. These points are then located in a global reference system. In
this case, the reference system of each robot is located in its initial position. The process of
obtaining distinctive points from the environment is tackled by a feature extractor, i.e., the
combination of a detector and a descriptor, that obtains suitable features. At the detection
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stage, it is desirable that the points can be detected from different viewpoints, due to the fact
that the robots, while navigating, will observe the same from different position. As a result
of a previous work (Gil et al., 2008), the Harris Corner detector (Harris & Stephens, 1998) was
selected as the most suitable for this kind of maps, since it extracts stable points. Then, the
description stage is also crucial for the extraction of good visual features. It is very important
that the points are distinguishable enough, since this influences in the solution of the data
association problem. When a robot performs an observation, it should be able to distinguish
whether it is a new landmark or a landmark that was previously integrated in the map. This
aspect was also studied in (Gil et al., 2008) and the u-SURF descriptor was the best choice
(Bay et al., 2006).

2.2 3D visual fastSLAM
Initially, as the robots builds the maps independently, each one uses an independent particle
filter. Then, after fusing the local maps, the robots continue the map building by means
of a joint particle filter. In this section, we concentrate on the first case, i.e., FastSLAM
for a single robot. In order to build the map, each robot is equiped with a stereo camera
system, which enables them to obtain relative measurements to landmarks detected in the
environment. In addition, these landmarks are characterized by means of a descriptor using
visual information. In this context, each robot explores the environment while it observes
visual landmarks. At time t the robot performs an observation zt = (vt,dt), where vt =
(Xc,Yc,Zc) is three dimensional vector relative to the left camera reference frame and dt is
the visual descriptor associated to the landmark. The map L is represented by a collection
of N landmarks L = {l1, l2, . . . , lN}. Each landmark is represented as: lk = {µk,Σk,dk}, where
µk = (Xk,Yk,Zk) is a vector describing the position of the landmark red to a global reference
frame, with associated covariance matrix Σk. Furthermore, each landmark lk is differentiated
from others by means of a descriptor dk. The robot pose at time t is denoted as xt and
movement of the robot at time t as ut. On the other hand, xt = {x1,x2, . . . ,xt} represents the
robot path until time t, zt = {z1,z2, . . . ,zt} is the set of observations made by the robot until
time t and the set of actions ut = {u1,u2, . . . ,ut}. The solution to the SLAM problem consists
in determining the location of the landmarks in the map L and the robot poses xt from a set
of measurements zt and robot actions ut. The set of data association performed until time
t is denoted as ct = {c1, c2, . . . , ct}. Each time the robot performs an observation, it has to
determine whether this observation corresponds to a landmark previously incorporated in
the map (ct ∈ [1 . . .N]) or to a new one (ct = N+ 1). The main idea of the FastSLAM algorithm
is that the SLAM problem can be separated into two main subproblems: the estimate of the
trayectory of the robot and the estimate of the map (Montemerlo & Thrun, 2003). This can be
expressed as:

p(xt ,L|zt,ut, ct) = p(xt |zt,ut, ct)
N

∏
k=1

p(lk|xt,zt,ut, ct) (1)

This equation states that the SLAM posterior is decomposed into two parts: the estimate of
the robot path and N independent estimators of the landmark positions, each conditioned
to the path estimate. We approximate p(xt|zt,ut, ct) by means of a set of M particles. Thus,
each particle has N independent landmark estimators (implemented as EKFs), one for each
landmark. Each particle is therefore defined as:

S
[m]
t = {xt,[m],µ

[m]
t,1 ,Σ

[m]
t,1 ,d

[m]
1 , . . . ,mu

[m]
t,N,Σ

[m]
t,N ,d

[m]
N }, (2)
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where µ
[m]
t,k is the best estimation at time t for the position of landmark lk based on the path

of the particle m and Σ
[m]
t,k the associated covariance matrix. The visual descriptor associated

to the landmark j is represented by d
[m]
j . The particle set St = {S[1]t ,S

[2]
t , . . . ,S

[M]
t } is calculated

incrementally from the set St−1 in time t− 1 and the control ut. Each particle is sampled from a

proposal distribution x
[m]
t ∼ p(xt |xt−1,ut) that models the noise in the odometry of the robot.

Then, a weight is assigned to each particle according to (Montemerlo & Thrun, 2003):

ω
[m]
t =

1
√

|2πZct |
e{−

1
2 (vt−v̂t,ct )

T[Zct ]
−1(vt−v̂t,ct)} (3)

where vt is the actual measurement and v̂t,ct is the predicted measurement for the landmark

ct based on the pose x
[m]
t . The matrix Zct is the covariance matrix associated with the

innovation (vt − v̂t,ct). Note that it is assumed that each measurement vt has been associated
to the landmark ct of the map. In short, the algorithm proposed in this paper is based on
a Rao-Blackwellized particle filter that enables the robot to build a map and localize in an
environment by means of the detection of three dimensional visual features. This algoritm
can be decomposed in four basic steps:

a. Generating a new particle set.

b. Updating the estimate of the landmarks based on the observations.

c. Calculating a weight for each particle.

d. Resampling based on the weight of each particle.

In the following, we describe the previous steps of the FastSLAM algorithm.

2.2.1 New particle set generation
In the first step a new set of hypothesis St is obtained based on teh set St−1. That is to say, we

obtain a new pose x
[m]
t for the robot by sampling from a motion model:

x
[m]
t ∼ p(xt |xt−1,ut), (4)

where p(xt |xt−1,ut) defines the movement model of the robot. This movement model is
applied to each of the poses of each particle separately, based on the movement performed
by the robot. Figure 1 shows the application of Equation 4. The figures show the path of
three robots that work independently. Solid lines represent the real path followed by the
robots, whereas dashed lines represent the odometry readings. It can be observed that, at the
begining, all the particles are concentrated on the same point. After applying the movement
model, we obtain a set of particle clouds that represent the probability of the pose of each
robot at each time step.

2.2.2 Landmark estimate
The landmark update is performed based on the pose of the robot that performed the
observation zt = {vt,dt} with data association ct. This is done independently for each
landmark lk by means of the standard EKF equations presented below:
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Fig. 1. The figure shows a new set of particles generated by sampling from the motion model.

v̂t = g(x[m]
t ,µ

[m]
ct,t−1) (5)

Glct
= ∇lct

g(xt, lct)xt=x[m]
t ;lct=µ

[m]
ct,t−1

(6)

Zct,t = Glct
Σ
[m]
ct,t−1G

T
lct
+ Rt (7)

Kt = Σ
[m]
ct,t−1G

T
lct
Z−1
ct,t

(8)

µ
[m]
ct,t

= µ
[m]
ct,t−1 + Kt(vt − v̂t) (9)

Σ
[m]
ct,t

= (I − KtGlct
)Σ[m]

ct,t−1 (10)

where v̂t is the prediction for the current measurement vt assuming that it has been associated
with landmark ct in the map. The observation model g(xt , lct) is linearly approximated by the
Jacobian matrix Glct

. It is assumed here that the noise in the observation is Gaussian and can

be modeled with the covariance matrix Rt. Equation (9) represents the update of the estimate

of the landmark ct : µ
[m]
ct,t−1 based on the innovation v= (vt− v̂t). Finally, Equation (10) updates

the covariance matrix Σ
[m]
ct,t

, which is associated to the m particle and the landmark ct. Note
that we implicitly assume that the observation zt corresponds to the landmark lct in the map.
By now we assume this correspondence to be known.

2.2.3 Asigning weights to the particles and resampling
As seen in Section 4, the set of particles is generated by the movement model and distributed
according to p(xt |xt−1,ut), which is known as proposal distribution. However, our aim is to
estimate the posterior p(xt ,L|zt,ut, ct) which includes all the information from odometry and
sensors until time t. This is known as target distribution. The difference between the proposal
distribution and the target distribution is corrected with a process denoted as importance
resampling (SIR). This process works as follows. A weight is assigned to each particle based
on the quality of the current observation and the map matches. Then, a new set of particles
St is created by sampling from St−1. Each particle is included in the new set with probability
proportional to its weight. Assuming that a robot performs a single measurement zt with

data association ct, the weight w
[m]
t associated with the particle m as:

99Building Visual Maps with a Team of Mobile Robots



6 Multi-Robot Systems, Trends and Development

ω
[m]
t =

1
√

|2πZct |
e{−

1
2 (vt−v̂t,ct )

T[Zct ]
−1(vt−v̂t,ct)} (11)

Then, the weights are normalized to approximate a probability density function ∑
M
i=1 ω

[i]
t = 1.

In this way, the set of particles represent a set of hipothetical paths that the robot may follow.
Conditioned to each path, there is a set of 3D estimated landmarks, each one represented by
a Kalman filter. Finally, in order to choose the path and map that best represents the true
trajectories and environment, a logartihmic sum over the global weights of the particles is
maintained. The most probable particle is selected as follows:

m̂ = argmax
m

A

∑
t=1

log(w[m]
t ) (12)

3. Map fusion

In the previous section we have seen how each robot is able to estimate a map of the
environment by means of a particle filter. This task is initially performed individually. The
result is a set of local maps whose landmarks are red to each robot system. At a specific
moment, the fusion of these local maps into a global map may be required. In this section
we concentrate on the map merging problem. This task is tackled in two subproblems: map
alignment and map merging. These steps are described in detail in the following.

3.1 Map alignment
Aligning two maps means estimating the transformation between those maps. Concretely,
three parameters are computed: a translation in x and y (tx, ty) and a rotation θ. In our
case, each map is refered to the local reference system of the robot, which is located in
its origin. In addition, the maps are landmark-based, thus the alingment is obtained by
looking for correspondences based on the descriptor simmilarity. Afterwards, the landmarks
of different maps can be expressed in the same reference system. In a previous work
(Ballesta, Reinoso, Gil, Payá & Juliá, 2010), we studied, in detail, the problem of aligning three
dimensional landmark-based maps. For this purpose, we compared a set of aligning methods
suitable for this kind of maps. Particularly, we evaluated the following methods: RANSAC
(RANdom SAmple Consensus), SVD (Singular Value Decomposition), ICP (Iterative Closest
Point) and ImpICP (Improved ICP). The last one is an ad-hoc implementation. The experiments
were carried out with simulated data as well as real maps built by the robots. Figures 2(a)
and 2(b) show the results obtained. The experiments consisted of testing the behaviour of
the aligning methods at different stages of the SLAM process. That is to say, initially the
maps are smaller and obtaining the alignment is therefore more difficult. However, as the size
of the maps is bigger, the common landmarks between those maps may increase, and thus
the aligment can be succesfully found. This is represented in the figures that show the error
obtained in the estimate of the aligning parameters. Figure 2(a) shows the error in the estimate
of the translation parameters (tx, ty) when the alignment is obtained. Analogously, Figure 2(b)
show the error in rotation (θ). Paying attetion to both figures, it is noticeable that RANSAC
obtains the best results. The error is practically zero independently of the size of the maps. An
example of the performance of RANSAC is illustrated in Figure 3. This figure shows how the
common landmarks are indentified and matched.

100 Multi-Robot Systems, Trends and Development
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Fig. 2. (a) Traslation error. (b) Rotation error.

3.2 Map merging
In this section we focus on the map merging problem. Once the alignment is performed,
we will have the local maps expressed in the same ence system and the common landmarks
between these maps identified. In this situation the local maps can be merged into a global
one. As described previously, the maps built by the robots consist of a set of landmarks
L = {l1, l2, . . . , lN}. Each landmark lk is defined as lk = {µk,Σk,dk}, where µk = (Xk,Yk,Zk)
represents the position of the landmark by means of a three dimensional vector. Then Σk
and dk are the covariance matrix and the descriptor associated to each landmark. When
merging two maps, the uncertainty in the estimate of the landmarks should be considered.
We therefore propose a Multivariable Stationary Kalman Filter in order to fuse this data. Given
two maps, map1 and map2, and using the nomenclature described previously, the following
formulation is used to merge these maps:

K{i} = Σ1{i} · (Σ1{i} + Σ2{i})
−1 (13)

µG{i} = µ1{i} + K{i} · (µ1{i} − µ2{i}) (14)
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Fig. 4. (a) Position and uncertainty of 3 aligned landmarks from map1 and map2 (b) Same
landmarks after fusion. Uncertainty is represented by an ellipse.

ΣG{i} = (I − K{i}) · µ1{i} (15)

where i is an index (i ∈ {1,N}) that denotes each matched landmark. N is the total number
of matched landmarks between both maps (1 and 2). Ki represents the Kalman gain. µG{i}
indicates the 3D coordinates of landmark i in the global map. This landmark is the result of
matching and merging a common landmark between both local maps, map1 and map2. µ1
are the 3D coordinates of map1 and µ2 the 3D coordinates of map2 expressed in the map1’s
reference system (i.e. after the alignment process). Finally, ΣG,Σ1 and Σ2 are the 3 × 3
covariance matrices, which represent the uncertainty in the location of the landmarks inmapG ,
map1 andmap2 respectively. The covariance matrices ofmap2 (Σ2) have been also transformed
to the map1’s reference system. In Fig. 4, the uncertainty of the landmarks are represented
with an ellipse. It can be observed that in the alignment process, we transform not only the
position of the landmarks but also the error ellipse. This is done by means of a rotation matrix
as follows:

Σ2 = RT · Σ20 · R (16)
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where Σ20 is the covariance matrix of map2 before being aligned with map1. And R is the
transformation matrix which is:

R =





cosθ −sinθ 0
sinθ cosθ 0

0 0 1



 (17)

Finally, as far as the visual descriptor is concerned, we computed the mean between the
descriptors in the local maps and incorporate the resulting descriptor to the global map.

4. Multirobot SLAM

Once the global map is obtained and the relative positions of the robots is known, the SLAM
problem is solved jointly. That is to say, from the fusion of the local maps on, the robots
perform the map building together. To do this, we propose the Rao-Blackwellized Kalman
Filter extended to the multi-robot case. In this sense, the equation of the SLAM posterior is:

p(xt〈1:K〉,L|z
t
〈1:K〉,u

t
〈1:K〉, c

t) =

p(xt〈1:K〉|z
t
〈1:K〉,u

t
〈1:K〉, c

t)
N

∏
k=1

p(lk|xt〈1:K〉,z
t
〈1:K〉,u

t
〈1:K〉, c

t) (18)

This probability function is a way to estimate a set of K paths xt〈1:K〉 and a map L conditioned

to the case in which the robots perform a number of movements ut〈1:K〉 and a series of

observations zt〈1K〉 associated to landmarks in the map ct. As it can be observed this expression

is analogous to the equation 1, so the estimate of the map and the estimate of K paths can be
separated into two parts: p(xt〈1:K〉|z

t
〈1:K〉,u

t
〈1:K〉, c

t), which is estimated using a particle filter

and the map L which is estimated using N independent estimates conditioned to the paths
xt〈1:K〉. Analogously to Equation 2, the estimate of the posterior is done by means of M

particles, each one represented as:

S
[m]
t = {xt,[m]

〈1:K〉,µ
[m]
1,t ,Σ

[m]
1,t ,d

[m]
1 , · · · ,µ[m]

N,t,Σ
[m]
N,t,d

[m]
N } (19)

Unlike the particle defined in (2), in this case the state that we would like to estimate is
composed by the pose (x,y,θ) of K robots, thus xt〈1:K〉 = {xt,〈1〉,xt,〈2〉, · · · ,xt,〈K〉}. As a result,

we propose a joint estimation over a path state of dimension 3K. According to (Thrun et al.,
2005), the number of particles needed to obtain a good estimation increases exponentially with
the dimension of the state. However, the results that we present here show that the approach
works perfectly for robot teams of 2–3 members using a reasonable number of particles. In
the case presented, the same map is shared by all the robots, which means that an observation
performed by a particular robot affects the map of the whole robot team. For example, a
robot does not need to explicitly close a loop to reduce the uncertainty in its pose. On the
contrary, the robot can reduce its uncertainty if it observes landmarks previously seen by other
robots. In consequence, one member of the teammay observe a landmark previouslymapped
by a different robot and update its estimate. The formulation of the multi-robot FastSLAM
algorithm proposed here is presented in algorithm 1.
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Algorithm 1 Summary of the proposed algorithm.

1: S = ∅
2: [zt,〈1〉,zt,〈2〉,zt,〈3〉] = ObtainObservations()
3: InitialiseMap(S,x0,〈1:3〉,zt,〈1:3〉)
4: for t= 1 to numMovements do
5: [zt,〈1〉,zt,〈2〉,zt,〈3〉] = ObtainObservations()
6: [S,ωt,〈1〉] = FastSLAMMR(S,zt,〈1〉,Rt,ut,〈1〉)
7: [S,ωt,〈2〉] = FastSLAMMR(S,zt,〈2〉,Rt,ut,〈2〉)
8: [S,ωt,〈3〉] = FastSLAMMR(S,zt,〈3〉,Rt,ut,〈3〉)
9: ωt = ωt,〈1〉ωt,〈2〉ωt,〈3〉
10: S = ImportanceResampling(S,ωt) //Sample randomly from S according to ω

[m]
t

11: end for

function [St] = FastSLAMMR(St−1,zt,〈i〉,Rt,ut,〈i〉)
12: St = ∅
13: for m = 1 to M {For every particle} do

14: x
[m]
t,〈i〉 ∼ p(xt,〈i〉|xt−1,〈i〉,ut,〈i〉)

15: for n= 1 to N
[m]
t−1 //Loop over all possible data associations do

16: v̂t,〈i〉 = g(x[m]
t,〈i〉,µ

[m]
n,t−1)

17: Gln =∇lct
g(xt, ln)

xt,〈i〉=x
[m]
t,〈i〉;lct=µ

[m]
ct,t−1

18: Zn,t = GlnΣ
[m]
n,t−1G

T
ln
+ Rt

19: D(n) = (vt,〈i〉 − v̂t,〈i〉)
T[Zn,t]−1(vt,〈i〉 − ẑt,〈i〉)

20: E(n) = (dt,〈i〉 − dn)T(dt,〈i〉 − dn)
21: end for
22: D(N [m]

t−1+ 1) = D0

23: j = f ind(D ≤ D0) {Find candidates below D0}
24: ct = argminj E(n) {Find minimum among candidates}

25: if E(ct) > E0 // Create a new landmark? then

26: ct = N
[m]
t−1 + 1

27: end if
28: if ct = N

[m]
t−1 + 1 //New landmark then

29: N
[m]
t = N

[m]
t−1 + 1

30: µ
[m]
ct,t

= g−1(x[m]
t,〈i〉,zt,〈i〉)

31: Σ
[m]
ct ,t

= GT
lct
R−1
t Glct

32: ω
[m]
t = p0

33: else
34: N

[m]
t = N

[m]
t−1 //Old landmark

35: Kt = Σ
[m]
ct,t−1G

T
Lct

Z−1
ct ,t

36: µ
[m]
ct,t

= µ
[m]
ct,t−1 + Kt(vt,〈i〉 − v̂t,〈i〉)

37: Σ
[m]
ct ,t

= (I − KtGlct
)Σ[m]

ct,t−1

38: end if

39: ω
[m]
t,〈i〉 =

1√
|2πZct |

e{−
1
2 (vt,〈i〉−v̂t,ct )

T [Zct ]
−1(vt,〈i〉−v̂t,ct )}

40: add {x[m]
t,〈i〉,N

[m]
t ,µ[m]

1,t ,Σ
[m]
1,t ,d

[m]
1,t , · · · ,µ

[m]

N
[m]
t ,t

,Σ[m]

N
[m]
t ,t

,d[m]

N
[m]
t ,t

,ω[m]
t } to St

41: end for
42: return St
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Fig. 5. Simulated environment. The robots perform observations of simulated landmarks
located in walls. These walls are represented by a line. It can be observed that the walls
restrict the visibility of the visual landmarks placed behind.

5. Experiments

In order to test the SLAM algorithm proposed, we have created a simulated environment as
shown in figure 5. In this figure there are three robots building a map of the environment.
This environment is represented by walls (line) with landmarks randomly located in them.
In the figure we can see which landmarks are the robots currently observing. This is
represented by dashed lines. In the experiments performed we have test the computational
cost of the algorithm as well as the RMS error in the estimate of the error. Regarding the
computational time, two parameteres are mainly influencing: the number of particles used
(M) and the number of observations integrated as each time step (B). In order to decrease the
computational cost, we can reduce the number of observations that each robot reduces at each
iteration of the algorithm. For example, we consider that each robot obtains B/K observations.
That is to say, if we had three robots and B = 15, then each robot would integrate B = 5
observations. Figure 6(a) shows the results obtained if robots perform B/K observations. In
this case, it can be observed that the computational cost is simmilar regardless of the number
of robots, for any number of particles. The total number of observations integrated in the
filter is the same for the case of 1, 2 or 3 robots. On the other hand, in Figure 6(b) we
evaluate the error in the map, using the previous restriction (B/K observations). As the figure
shows, the estimate of the map and the paths improves when more robots are used. It can be
deduced, from these figures, that good results can be obtained even if we reduce the number
of observations performed by each robot.

6. Conclusion

This paper presents a posible solution to the multi-robot SLAM problem in the visual context.
Particularly, the approach proposed begins with an independent map building part, in which
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Fig. 6. Figure (a) shows the mean computation time at each iteration of the algorithm for
different number of particles M = {1 10 50 100 200 300 400 500 1000 1500 2000}. Figure (b)
shows the RMS error in the map when B/K observations are used. We show simultaneously
results with one robot (©), two robots (!) and three robots (+).

each robot builds its own map independently. In this case, the relative positions of the robots
are not necessary. This is an advantage in practice, since this data could be unknown. As
a consequence, the robots build their own local maps regardless of other robots’ poses and
observations. The map building is carried out by means of a Rao-Blackwellized particle filter.
Since the robots work independently, this algorithm has been implemented for a single robot.
At some point, the robots may share the information collected and fused the local maps
into a single one. For this reason, the map fusion problem has been tackled in this paper.
First, we paid attention to the alignment problem in which a common reference system for
the local maps is obtained. Then, we concentrated on the map merging problem. In this
case, the common landmarks are identified based on the descriptor similarity and fused,
taking into account the uncertainty in the estimate of those landmarks. To do this, we use
a Multivariable Stationary Kalman Filter. The results show that the uncertainty of the fused
landmarks is reduced. Finally, once the relative positions of the robots are known and a global
map is computed, the SLAM process is continued by means of an extension of the previous
particle filter. This time, we implemented a multi-robot particle filter in such a way that the
robots estimate their trajectories and the map jointly. The results obtained show the good
performance of the algorithm in simulation. As future work, it is desirable to evaluate this
algorithm in a real environment.
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