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Probabilistic Map Building, Localization and 
Navigation of a Team of Mobile Robots. 

Application to Route Following. 
L. Payá, O. Reinoso, F. Amorós, L. Fernández and A. Gil 

Miguel Hernandez University 
Spain 

1. Introduction    
The applications that require the navigation of a robot or a team of robots through an 
environment need an internal representation (or map) of this environment. Thanks to it, the 
robots can estimate their position and orientation using the information captured with the 
different sensors the robots are equipped with. Despite the fact that there are several kinds 
of sensors to carry out that task, omnidirectional visual systems can be stood out due to the 
richness of the information they provide and the relatively low cost they have.  
A typical problem in collaborative robotics implies a path following, e.g. to perform a 
surveillance task in an office environment or an assembly or delivery task in an industrial 
environment. Also, the problem of formations, where a team of robots must navigate 
keeping a relative position in a structure of robots can be seen as a problem of path 
following, where one or several robots must follow the path the leader is recording with an 
offset either in space or in time. 
Classical researches into mobile robots provided with vision systems have focused on the 
extraction of natural or artificial landmarks from the image to build the map and carry out 
the localization of the robot (Booij et al., 2007; Burschka & Hager, 2001; Thrun, 2003). 
Nevertheless, it is not necessary to extract such kind of landmarks to recognize where the 
robot is. Instead of this, we can process the image as a whole. These approaches (known as 
appearance-based) are especially useful for complicated scenes in unstructured environments 
where appropriate models for recognition are difficult to create. As an example, (Matsumoto 
et al., 1999) address a method for route following where several low-resolution images along 
the route are stored, and (Payá et al., 2007) use an incremental compression method of the 
scenes that permits online multi-robot route following. 
In the appearance-based approaches, images are saved without extracting any local feature, 
and the comparison is made directly, working with the whole information of the scenes. So 
the problem of nding the position of the robot in the environment consists in getting the 
best match for the current image among the reference images. Since no relevant information 
is extracted, an important problem of such approaches is the high computational cost they 
suppose. That is the reason why often it is necessary to apply some compression techniques. 
Different researchers have shown how a manifold representation of the environment using 
some compression techniques can be used. For example, PCA (Principal Components 
Analysis) is a widely used method that has demonstrated being robust applied to image 
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processing, as (Kröse et al., 2004) do to create a database using a set of views with a 
probabilistic approach for the localization inside this database. Conventional PCA methods 
do not take profit of the amount of information that omnidirectional cameras offer, because 
they cannot deal with rotations in the plane where the robot moves. (Uenohara & Kanade, 
1998) studied this problem with a set of rotated images, and (Jogan and Leonardis, 2000) 
applied these concepts to an appearance-based map of an environment. Despite its 
complexity and computational cost, it has the advantage of being a rotationally invariant 
method due to the fact that it takes into account the images with other orientations apart 
from the stored one. The approach consists in creating an eigenspace that takes into account 
the possible rotations of each training image, trying to keep a good relationship between 
amount of memory, time and precision of the map 
Other authors use the Discrete Fourier Transform (DFT) as a generic method to extract the 
most relevant information from an image. In this field, (Menegatti et al., 2004) define the 
Fourier Signature for panoramic images, which is based on the 1D Discrete Fourier 
Transform of the image rows and gets more robustness dealing with different orientations 
and (Rossi et al., 2008) use spherical Fourier transform of the omnidirectional images. 
On the other hand, (Dalal and Triggs, 2005) used a method based on the Histogram of 
Oriented Gradients (HOG) to pedestrians detection, proving that it could be a useful 
descriptor for computer vision and image processing using the objects’ appearance.  
In some applications, the use of a team of robots may help to make the achievement of the 
task quicker and more reliable. In such situations, each robot works with incomplete and 
changing information that has, also, a high degree of uncertainty. This way, only a suitable 
choice of the representation and an effective communication between the members of the 
team can provide the robots with a complete knowledge of the environment where they 
move. As an example, (Thrun, 2001) presents a probabilistic EKF algorithm where a team of 
robots builds a map online, while simultaneously they localize themselves. In (Ho & 
Newman, 2005) a map is build using visual appearance. From sequences of images, acquired 
by a team of robots, subsequences of visually similar images are detected and finally, the 
local maps are joined into a single map. 
In this work, we present a framework that permits carrying out multi-robot route following, 
where an appearance-based approach is used to represent the environment and a 
probabilistic approach is used to compute the localization of the robot. Each robot carries 
out an omnidirectional camera in a fixed position on its top, and the localization and 
navigation tasks are carried out using a descriptor of the global appearance of the 
omnidirectional images captured by this camera. Along the chapter, we study and compare 
some alternatives to build an efficient appearance descriptor. We compare the descriptors in 
terms of computational cost, size of memory and its validity in localization tasks. We use 
three different approaches to build these descriptors: the Discrete Fourier Transform, 
Principal Components Analysis and Histogram of Oriented Gradients. 
The remainder of the paper is organized as follows. In section 2, the main features of the 
multi-robot route-following system are addressed. In section 3, some methods to describe 
the appearance of the scenes are detailed.  The performance of these descriptors is tested in 
section 4 in a map building task, and in section 5 in a localization task. In both sections, the 
results of the experiments are commented. At last, the conclusions are presented. 

2. Multi-robot route following 
The main goal of the work is to present an architecture to carry out multi-robot route 
following using just visual information and with an appearance-based approach.  
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In this application, we work with a team of Pioneer P3-AT robots (fig. 1(a)) that are equipped 
with a catadioptric system (fig. 1(b)) consisting on a forward-looking camera and a parabolic 
mirror that provides omnidirectional images of the environment. To work with this 
information in an efficient way, the omnidirectional images are transformed to panoramic 
images, as shown on fig. 1(c). The size of these panoramic images is 41x256 pixels. 
 

 

 
(a) (b) (c) 

Fig. 1. (a) Pionner P3-AT robot and (b) catadioptric system that provides omnidirectional 
images. (c) Omnidirectional and (d) panoramic view of the environment captured by the 
catadioptric system. 

In a multi-robot route following task, a leader robot goes through the desired route while a 
team of robots follow it with an offset in space or in time. To accomplish this goal, the leader 
robot performs a learning task while the follower robots perform an autonomous navigation task. 
The learning task consists in tele-operating the leader robot through the route to follow while 
it stores some general visual information along this route. In a general way, new 
omnidirectional images are continuously acquired, but a new image is stored only when its 
correlation with the previously stored image goes down a threshold. This way, images are 
stored more frequently when the information changes quicker (i.e. turnings and non 
structured environments) and fewer images are stored when the new information is quite 
similar. In this step, it is important to define correctly the representation of the environment 
to permit that any robot can follow the route of the leader one with an offset either in space 
or/and in time in an efficient way. In this work, we propose the use of appearance-based 
methods to describe globally the information in the scenes. In section 3 we show how we 
build an efficient descriptor to represent this visual information. 
Fig. 2 shows a sample route in an indoor environment. The points where a new 
omnidirectional image has been stored are drawn as red dots. Each omnidirectional image 
has been transformed to the panoramic format, as show in the figure. In a posterior phase, a 
single descriptor per image will be computed. All these descriptors will constitute the 
database or map. 
On the other hand, once the leader robot has created the database or while it is being built, 
the follower robots perform the autonomous navigation task. Before starting this process, the 
follower robot is situated in a point near the learned route. Then, it has to recognize which 
of the stored positions is the nearest to the current one and drive to tend to the route, 
following it till the end. This task must be carried out just comparing its current visual 
information with the information stored in the database. Two processes must run 
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Fig. 2. Sample route including a hall, a corridor and a laboratory. The red dots show the 
places where the robot has acquired omnidirectional images to form the database. 

successively: auto-location and control. During the auto-location, the current visual 
information is compared with the information in the database, and the most similar point is 
taken as the current position of the robot. This decision must be made taking into account 
the aperture problem in office environments. This way, the new position of the robot must 
be in a neighbourhood of the previous one, depending on the speed of the robot. Once we 
have a new matching, in the control phase, the current visual information must be compared 
with the matched information of the database, and from this comparison, a control law must 
be deducted so that the robot tends to the route and follows it till the end. 
Once the principles of our route-following architecture have been exposed, in the next 
subsections each process in described in deep. 

2.1 Task 1: learning the map 
The map is built gradually while the leader robot is going through the route to record. This 
robot captures a new omnidirectional image when the correlation respect to the previous one 
goes down a threshold. This way, our database is composed of a set of omnidirectional views. 
As our proposal consists in working with global appearance methods, that imply using the 
information in the images as a whole, we do not perform any feature extraction. This fact 
becomes a problem due to the growing size of the memory for long routes and the high 
computational cost in the localization phase to find the best match between the current 
image and all the images stored in the database. That is the reason why a compression 
method must be used to extract the most relevant information from the set of images. 
When a new omnidirectional image is captured, first it is transformed into the panoramic 
image and then, the information is compressed to build a global descriptor of each 
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panoramic image. This way, each 41x256 image is compressed to a sequence of M numbers 
that constitute the descriptor of the image. 
Each image ; 1RxC

jX j N!" # ! , being R the number of rows and C the number of columns, 
is transformed into a vector ; 1M

jz j N!" #
" ! , being M the size of the global descriptor, M 

<< RxC. 
While building the descriptor jz" , some principles must be taken into account. It must 
extract the most relevant information from the image, and its length must be as small as 
possible. Also, each image must be described as the leader robot is capturing them; the 
descriptor must be computed in an incremental procedure (i.e. the descriptor of each image 
must be computed independently of the rest of images). At last, the descriptor must contain 
enough information so that the follower robot can estimate the control law that makes it 
tend to the route. In section 3 we present some approaches to build the descriptor and we 
make a complete set of experiments to decide the optimal procedure to build it in our route-
following application. 

2.2 Task 2: robot navigation 
After the learning task, the leader robot has created a database consisting of some feature 
vectors that are labelled as positions 1,..., N. For each position, a descriptor represents the 
visual information taken at that position. The descriptors are ; 1M

jz j N!" #
" ! . 

Now, a different robot (the follower robot) can follow the same route carrying out 
successively two processes: auto-location and control. 

2.2.1 Auto-location 
When the follower robot captures a new image tX , first, the global descriptor of this image  

tz"  must be computed. Then, using this information, the robot must be able to compute 
which of the stored points is the closest one. With this aim, the distance between the 
descriptor of the current images and all the descriptors in the database is computed. We 
propose using the Euclidean distance as a measure. The distance between the descriptor of 
the current image tz"  and the descriptors jz"  in the database is: 

 $ %2
0

( ) ( ) ; 1
M

tj t j
l

d z l z l j N
#

# & #' " " !  (1) 

To normalize the values of the distances, a degree of similarity between descriptors is 
computed with eq. (2). The image of the database that offers the maximal value of tj(  is the 
matching image, and then, the current position of the robot (the nearest one) is j. 

 $ %
$ % ) *

max

max min

1
; 0,1 ; 1

1
t tj

tj tj
t t

d d
j N

d d
( (

&
# ! #

&
!  (2) 

where $ %max
1

max
N

t tjj
d d

#
#  and $ %min

1
min

N

t tjj
d d

#
# .  

However, in office environments that present a repetitive visual appearance, this simple 
localization method tends to fail often as a result of the aperture problem (aliasing). This 
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means that the visual information captured at two different locations that are far away can 
be very similar. To avoid these problems, we propose the use of a probabilistic approach, 
based on a Markov process (Thrun et al., 2005) to solve the problem.  
In this localization task, we are interested in the estimation of the nearest point of the 
database, i.e. the state tx  at time t using a set of measurements + ,1: 1 2, , ,t tz z z z#

" " " "!  from the 
environment and the movements + ,1: 1 2, , ,t tu u u u# !  of the robot. In this notation, we 
consider that the robot makes a movement tu  from time t-1 to time t and next obtains an 
observation tz" . In this document the localization problem has been stated in a probabilistic 
way: we aim at estimating a probability function $ %1: 1:| ,t t tp x z u"  over the space of all possible 
localizations, conditioned on all the data available until time t, the observations 1:tz" , 
movements performed 1:tu  and the map. In a probabilistic mobile robot localization, the 
estimation process is usually carried out in two phases: 
Prediction phase: 

In the Prediction Phase the motion model is used to compute the probability function 
$ %1: 1 1:| ,t t tp x z u&
" , taking only motion into account. The motion model is a probabilistic 

generalization of robot kinematics. In this work the value of u is an odometry reading.  
Generally, we assume that the current state tx  depends only on the previous state 1tx &  and 
the movement tu . The motion model is specified in the form of the conditional density 
$ %1| ,t t tp x x u& . As we have a set of discrete localizations, the probability function at the next 

step is obtained by the summation: 

 $ % $ % $ %1: 1 1 1 1: 1 1: 1| , | , | ,t t t t t t t t tp x z u p x x u p x z u& & & & &# -'" "  (3) 

where the function $ %1| ,t t tp x x u&  represents the probabilistic movement model. 

When the robot moves, the uncertainty over its pose generally increases. This is due to the 
fact that the odometry sensors are not precise. In consequence, the function $ %1| ,t t tp x x u&  
describes the probability over the variable tx  given that the robot was at the pose 1tx &  and 
performed the movement tu . 
Update phase: 

In the second phase, a measurement model is used to incorporate information from the 
sensors and obtain the posterior distribution $ %ttt uzxp :1:1 ,| " .  In this step, the measurement 
model $ %tt xzp |"  is employed, which provides the likelihood of obtaining the observation tz

"  
assuming that the robot is at pose tx .  The posterior $ %ttt uzxp :1:1 ,| " , can be calculated using 
Bayes' Theorem: 

 $ % $ % $ %1: 1: 1: 1| , | | ,t t t t t t t tp x z u p z x p x z u. &# - -
" " "  (4) 

where $ %1: 1| ,t t tp x z u&
"  denotes the probability that the robot is on the position tx  before 

observing the image whose descriptor is tz" . This value is estimated using the previous 
information and the motion model (eq. 3). $ %|t tp z x"   is the probability of observing tz"  if the 
position of the robot is tx . This way, a method to estimate the observation model must be 
deducted. In this work, the distribution $ %|t tp z x"  is modelled through a sum of Gaussian 
kernels, centred on the n most similar points of the route: 
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 $ %
2

1

1|
t ix xn

t t ti
i

p z x e
n

/(
&0 1&2 3

4 5

#

0 1
2 3# - -2 3
2 3
4 5

'"  (5) 

Each kernel is weighted by the value of confidence ti(  (eq. 2). Once the prediction and the 
update phase have been computed, the new position is considered at the point with highest 
probability contribution. After the update phase, this process is repeated recursively.  
The knowledge about the initial state at time 0t  is generally represented by $ %0p x . In this 
case two different cases are generally considered. When the initial pose of the mobile robot 
is totally unknown, the initial state at time 0t , $ %0p x , is represented by a uniform 
distribution on the map. Then we say we are in the case of global localization. But if the 
initial pose of the mobile robot is partially known, the case of local localization or tracking, 
the function $ %0p x  is commonly represented by a Gaussian distribution centred at the 
known starting pose of the robot. In our route-following application, as the initial position is 
usually unknown, we use a uniform distribution to model $ %0p x .  

2.2.2 Control 
Once the robot knows its position, it has to compute its heading, comparing to the heading 
that the leader had when it captured the image at that position. This information must be 
computed from the comparison between the image descriptors. We suppose that the 
descriptor of the current image is tz" . After the probabilistic localization process, the 
descriptor of the corresponding location in the database is iz" . If we suppose we can retrieve 
the relative orientation t6  between the heading of the leader robot when it captured the 
image tX  and the heading of the follower robot when it captured the image iX , then, a 
control action can be computed to control the robot. We propose the use of a controller with 
the following expression: 

 ) *
$ %

1 2 1

3

.
.

t t t t

t t

k k
v k p x
7 6 6 6 &# - 8 - &

# -
 (6) 

where !t is the steering speed and vt the linear speed that must be applied to the robot. For 
the calculation of the steering speed, we propose to use a proportional and derivative 
controller. The linear velocity will be proportional to the probability p(xt), what means that 
when the robot is bad localized (due to the aperture problem or to the fact that it is far from 
the route), the linear velocity is low to allow correcting the trajectory, but when the robot is 
well localized (i.e. the robot is following the route quite well and no aliasing is produced), 
the robot goes quicker. 
Since the most important parameter to control the robot is the relative orientation of the 
robot, "t, in section 5 we make a detailed experimental study to determine how efficient is 
each descriptor when computing the relative orientation of the robot. 

3. Representation of the environment through a set of omnidirectional 
images with appearance-based methods 
In this section, we outline some techniques to extract the most relevant information from a 
set of panoramic images, captured from several positions along the route to follow. We have 
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grouped these approaches in three families: DFT (Discrete Fourier Transform), PCA 
(Principal Components Analysis) and HOG (Histogram of Oriented Gradients) methods. 
The last technique has proved previous promising results, although not in localization 
functions. This section completes the study presented in (Paya et al., 2009). 

3.1 DFT-based techniques 
As shown in (Menegatti et al., 2004), when working with panoramic images, it is possible to 
use a Fourier-based compact representation for the scenes. It consists in expanding each row 
of the panoramic image + , + ,0 1 1, , ,

yn Na a a a &# !  using the Discrete Fourier Transform into 
the sequence of complex numbers + , + ,0 1 1, , ,

yn NA A A A &# ! . 
This Fourier signature presents the same properties as the 2D Fourier Transform. The most 
relevant information concentrates in the low frequency components of each row, and it 
presents rotational invariance. However, it exploits better this invariance to ground-plane 
rotations in panoramic images. These rotations lead to two panoramic images which are the 
same but shifted along the horizontal axis (fig. 3). Each row of the first image can be 
represented with the sequence + ,na  and each row of the second image will be the sequence 
+ ,n qa & , being q the amount of shift, that is proportional to the relative rotation between 
images. The rotational invariance is deducted from the shift theorem, which can be 
expressed as: 

 + ,
2

; 0, ..., 1y

qk
j

N
n q k ya A e k N

9
& -

&
: ;< # # &= >  (7) 

where + ,n qa &
: ;<= >  is the Fourier Transform of the shifted sequence, and kA are the 

components of the Fourier Transform of the non-shifted sequence. According to this 
expression, the amplitude of the Fourier Transform of the shifted image is the same as the 
original transform and there is only a phase change, proportional to the amount of shift q. 
 

 
Fig. 3. Two panoramic images captured in the same point of the environment but with 
different heading for the robot. 

Then, with this method, a descriptor jz"  can be built with the modules and the angles of the 
Fourier signature of the panoramic image jI , retaining only the f  first columns where the 
most relevant information is stored.  
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3.2 PCA-based techniques 
When we have a set of N images with M pixels each, 1 ; 1Mx

jI j N!" # ! , each image can be 
transformed in a feature vector (also named ‘projection’ of the image) 1 ; 1Kx

jz j N!" #
" ! , 

being K the PCA features containing the most relevant information of the image, K N?  
(Kirby, 2000). The PCA transformation can be computed from the singular value 
decomposition of the covariance matrix C of the data matrix, X that contains all the training 
images arranged in columns (with the mean subtracted). If V is the matrix containing the K 
principal eigenvectors and P is the reduced data of size K x N, the dimensionality reduction 
is done by ·TP V X# , where the columns of P are the projections of the training images, jz" . 
However, if we apply PCA directly over the matrix that contains the images, we obtain a 
database with information just with the orientation of the robot when capturing those 
images but not for other possible orientations. Some authors have studied how to build an 
appearance-based map of an environment using a variation of PCA that includes 
information not only about the localizations where the images were taken but also about all 
the possible orientations at that points (Jogan et al., 2000). However, in previous works we 
have proved that the computational cost of such techniques does not permit to use them in 
an online task. Instead of using these rotational invariant techniques, what we propose in 
this chapter is to build the descriptor jz"  by applying PCA over the Fourier Signature 
components instead of the original image, obtaining the compression of rotational invariant 
information, joining the advantages of PCA and Fourier techniques.  

3.3 HOG-based techniques 
The Histogram of Oriented Gradient (HOG) descriptors (Dalal and Triggs, 2005) are based 
on the orientation of the gradient in local areas of an image. The first step to apply HOG to 
an image is to compute the spatial derivatives of the image along the x and y-axes ( xU

 and yU ). We have obtained these derivatives by calculating the convolution of the images 
with Gaussian filters with different variance. Once the convolution of the image is made, we 
can get the magnitude and direction values of the gradient at each pixel: 

 2 2
x yG U U# 8     $ %arctan x yU U6 #  (8)  

After that, we compute the orientation binning by dividing the image in cells, and creating 
the histogram of each cell. The histogram is computed based on the gradient orientation of 
the pixels within the cell, weighted with the corresponding module value. The number of 
histogram divisions is 8 in our experiments, and the angle varies between -90º and 90º. Each 
image is represented through the histogram of every cell ordered into a vector.  
An omnidirectional image contains the same pixels in a row although the image is rotated, 
but in a different order. We can take profit of this characteristic to carry out the location of 
the robot by means of calculating the histogram with cells having the same width as the 
image (fig. 4). This way, we obtain an array of rotational invariant characteristics. 
However, to know the relative orientation between two rotated images vertical windows 
(cells) are used, with the same height of the image, and variable width and distance (fig. 4). 
Ordering the histograms of these windows in a different way, we obtain the same results as 
calculating the histogram of an image rotated a proportional angle to the D distance. The 
angle resolution that can be got between two shifted images is proportional to that distance: 
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Fig. 4. Cells used to compute the current position and the orientation of the robot. 

 * 360(º ) DAngle
Width of the image

#  (9) 

4. Performance of the descriptors in a map building task 
In this section, the different methods to build the images’ descriptors are compared using a 
database made up of a set images that were collected in several living spaces under realistic 
illumination conditions. It has been got from Technique Faculty of Bielefeld University 
(Möller et al., 2007). The images were captured with an omnidirectional camera, and later 
converted into panoramic ones with 41x256 pixels size. All the images belong to inner living 
spaces.  Specifically, there are examples from a living room (L.R.), a kitchen and a combined 
area (C.A.), all of them structured in a 10x10 cm rectangular grid. Fig. 5 shows an example of 
image corresponding to each area. The objective is to test the memory requirements and 
computational cost of each descriptor when representing an environment. 
The number of images that compose the database varies depending on the experiment, since, 
in order to assess the robustness of the algorithms, the distance between the images of the grid 
we take will be expanded, getting less information. I.e., instead of using all the images in the 
database to make up the map, we use just every two, three or four available images. In table 1 
the size of the grid and the number of elements appear depending on the selected grid.  
 

 Size 10x10 20x20 30x30 40x40 
L.R. 22x11 242 66 32 18 

Kitchen 12x9 108 30 12 9 
C.A. 36x11 396 118 48 27 

TOTAL  746 204 92 54 

Table 1. Size of the database and number of images selected depending on the grid.  

 

 
Fig. 5. Living room, kitchen and combined area sample images. 
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Fig. 6. (a) Amount of memory and (b) processing time to build the map with the Fourier-
based algorithm. (c) Amount of memory and (d) processing time to build the map using 
PCA over Fourier Signature method. (e) Amount of memory and (f) processing time to build 
the map with HOG, varying horizontal windows parameters. (g) Amount of memory and 
(h) processing time to build the map with HOG, varying vertical windows parameters.  
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Once the images of the map are selected, we compute the image descriptors using each 
method to obtain a dataset, which represents the map of the environment.   
Fig. 6 shows the amount of memory and time necessary to build the map, depending on the 
number of images and/or the different parameters that affect each algorithm as described in 
the previous section. These parameters are, in the case of Fourier signature, the number of 
Fourier coefficients per row (f). In the case of PCA over the Fourier signature, they are the 
number of vectors selected from the PCA decomposition (K), apart from the number of 
Fourier coefficients (f). At last, in the case of HOG, both the size and separation between 
windows must be decided in the case of the horizontal (position estimation) and the vertical  
(orientation estimation) windows. 
Fig. 6(a) and 6(b) show the memory requirements and processing time to build the map with 
the Fourier method. Naturally, there is a proportional increase of the memory and time 
requirements as we get more coefficients of each row (since more information is computed 
and stored), and a decrease of both parameters when the grid step increases (since it 
supposes fewer images in the map).  
Fig. 6(c) and 6(d) show the results when applying PCA to the Fourier Signature for a 20x20 
cm grid. The results are more dependent on the number of Fourier coefficients than on the 
number of PCA components. In all the experiments, the processing time is larger than in the 
first method if the same number of Fourier components is taken, due to the fact that apart 
from calculating the Fourier signature, it is necessary to compute the PCA algorithm too.  
Fig. 6(e) and 6(f) show the results when using HOG and varying the size of the horizontal 
windows and grid step. In these experiments, the vertical windows have a fixed width and 
gap of 8 pixels (i.e., degree step of 11,25º). These figures show a strong correlation between 
the size of the horizontal window and the memory and time requirements, since the bigger 
is the window, the lesser windows exist (no overlapping is used in horizontal windows).  
Fig. 6(g) and 6(h) show the results when using HOG and varying the size of and the distance 
between the vertical windows, for a 20x20 grid step. In this case, overlapping between 
windows is allowed. In these figures, we appreciate that the number of windows is much 
more influential in the results than its size. That is because calculating the histogram of a 
bigger window is computationally less expensive than computing the histogram of a new 
cell. In fig. 6(g) the graphs are overlapped because the information stored (the histogram of 
each cell) has the same size although the windows get bigger. 

5. Performance of the descriptors in a localization task 
Apart from studying the performance of the descriptors when representing the scenes, it is 
also necessary to test the accuracy they offer when computing the position and the 
orientation of the robot in the environment, since both results are crucial in the localization 
and control phases of the route-following aplication. In this section, we measure this 
accuracy. When a new image arrives, the position and orientation the robot had when 
capturing it must be computed comparing the descriptor of the new image with the 
descriptors in the map. To carry out the experiments, we use as test images all the available 
images in the database, independently of the grid selected to make the map, and 15 artificial 
rotations of each one (every 22.5º). So, the total number of test images is 11,936.  
We study separately the computation of the position and the orientation of the robot. 
Position is studied as binary results, considering if we obtain the best possible match or not, 
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and the information is showed with recall and precision measurements (Gil et al., 2009). 
Each chart shows the information about if a correct location is in the Nearest Neighbour 
(N.N.), i. e., if it is the first result selected, or between Second or Third Nearest Neighbours 
(S.N.N or T.N.N). Regarding the rotation, we represent the results accuracy in bar graphs 
depending on how much they differ from the correct ones. If the experiment error is bigger 
than @10 degrees, it is considered as a failure. The processing time to calculate the position 
and orientation of the robot is shown in different tables, in seconds. 

5.1 Fourier signature technique 
The map obtained with the Fourier signature descriptor is represented with two matrices 
per image: the module and the phase of the Fourier coefficients. When a new image arrives, 
the first step is to compute its Fourier signature. Then, the location is estimated calculating 
the Euclidean distance between its module matrix and the module matrices stored in the 
map. The best match is obtained as the image in the map with minimun distance. Once the 
position of the robot is known, the phases’ matrix associated to the most similar image is 
used to compute the relative orientation of the robot. Table 2 shows the processing time 
depending on the images grid step and the number of Fourier components per row. There is 
a bigger dependency on the number of components than on the grid step (i.e. the number of 
images in the map). This is due to the orientation estimation, since it is the most 
computational heavy part of the algorithm and it depends only on the number of 
components per row. 
 

GRID 2 Comp 5 Comp 10 Comp 20 Comp 
10x10 0.0099 0.0130 0.0219 0.0487 
20x20 0.0072 0.0107 0.0192 0.0446 
30x30 0.0070 0.0104 0.0187 0.0440 
40x40 0.0069 0.0103 0.0185 0,0438 

Table 2. Processing time (in seconds) of the position and orientation estimation using the 
Fourier signature, varying the number of components per row and the grid step. 
Fig. 7 shows recall and precision measures. When more components per row are taken, the 
location is better, but there is a limit over which it is not interesting to raise the number of 
components because the results do not improve. In this case, with 10 components the 
location is successful. The phase accuracy also improves when more coefficients are used to 
compute the angle, although it is quite constant when we take 8 or more components. 

5.2 PCA over fourier signature 
After applying PCA over the Fourier signature modules matrix, we obtain another matrix 
containing the main eigenvectors, and the projection of the training images onto the space 
made up with that vectors. These projections are used to calculate the position of the robot. 
On the other hand, we keep the phases matrix of the Fourier signature directly to estimate 
the orientation.  
To know where the robot is, first the Fourier signature of the current image must be 
computed. After retaining the desired number of components per row, the vector of 
modules is projected onto the eigenspace. The most similar image in the map is obtained by  
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Fig. 7. (a), (b), (c) Recall-Precision charts with Nearest Neighbour (N.N.), Second Nearest 
Neighbour (S.N.N.) and Third Nearest Neighbour (T.N.N) and (d) accuracy in the 
calculation of the orientation using the Fourier Signature method. 
 

GRID 2 Comp 5 Comp 10 Comp 20 Comp 

10x10 0.1113 0.2420 0.2844 0.3362 

20x20 0.0355 0.0613 0.0985 0.1462 

30x30 0.0233 0.0483 0.0838 0.1321 

40x40 0.0205 0.0459 0.0815 0.1294 

Table 3. Processing time (in seconds) of the pose estimation using PCA over Fourier 
signature when selecting 10 PCA components. 
 

GRID 2 Vectors 5 Vectors 10 Vectors 20 vectors 

10x10 0.1505 0.1492 0.1497 0.1497 

20x20 0.1294 0.1293 0.1300 0.1295 

30x30 0.1278 0.1280 0.1271 0.1273 

40x40 0.1272 0.1273 0.1272 0.1270 

Table 4. Processing time (in seconds) of the pose estimation using PCA over Fourier 
signature when selecting 40 Fourier coefficients per row. 
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calculating the minimum Euclidean distance of the new image’s projection and the map 
ones. When the position is known, the phase is calculated in the same way than when we do 
not apply PCA since the phase matrix is not projected. 
Table 3 presents the processing time to get the position and the orientation of the robot from 
the moment the current image arrives. To measure this time, the number of eigenvectors we 
keep is constant. The results show that the elapsed time rises as the number of images in the 
map or the components in the Fourier signature increase. However, except in the first case, 
the number of coefficients we take has more influence since the computation of the phase is 
computationally more expensive than the localization, and it depends on this parameter.  
Table 4 shows the processing time when applying PCA over Fourier signature, varying the 
number of eigenvectors. These results show again that the number of vectors is not very 
influential since the time spent in the algorithm does not change significantly. Moreover, as 
far as PCA effects are concerned, there are no important variations in the time when the grid 
step varies, i.e. projecting the characteristic vector onto the eigenspace is a fast process and 
there are no important differences when having more images or using more vectors to build 
the projection space.  
As we can see in fig. 8, if a high accuracy in the localization task is needed, it is required a 
high number of PCA eigenvectors, what means loosing the advantages of applying this 
method. Moreover, in the majority of experiments, the number of Fourier coefficients we 
need is bigger than when we do not use PCA, incrementing the memory requirements. 
Phase results are not included because the results are exactly the same as showed in fig. 4 
since its calculation method does not vary. 
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                                  (c)                                (d)  
Fig. 8. Recall-Precision charts with Nearest Neighbour (N.N.), Second Nearest Neighbour 
(S.N.N.) and Third Nearest Neighbour (T.N.N) using PCA over Fourier Signature varying 
the number of PCA vectors. 
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5.3. Histogram of oriented gradient 
When a new image arrives, first, its histogram of oriented gradient is computed using cells 
(windows) with the same size as when the map was built. So, the time needed to find the 
pose of the robot varies depending on both vertical and horizontal cells. To find the position 
of the robot, the horizontal cells information is used, whereas to compute the phase it is 
necessary to use the information in the vertical cells. In both cases, the information is found 
by calculating the Euclidean distance between the histogram of the new image and the 
stored ones in the map.  
 

GRID 2 pixels 4 pixels 8 pixels 16 pixels 
10x10 0.1113 0.2420 0.2844 0.3362 
20x20 0.0355 0.0613 0.0985 0.1462 
30x30 0.0233 0.0483 0.0838 0.1321 
40x40 0.0205 0.0459 0.0815 0.1294 

Table 5. Processing time (in seconds) in the pose estimation using HOG, varying horizontal 
cells height. 
 

GRID 2 pixels 4 pixels 8 pixels 16 pixels 
10x10 0.6599 0.5259 0.4979 0.4857 
20x20 0.2777 0.1598 0.1240 0.1136 
30x30 0.2546 0.1301 0.0982 0.0866 
40x40 0.2497 0.1247 0.0943 0.0822 

Table 6. Processing time (in seconds) in the pose estimation using HOG, varying vertical 
cells distance. 
When a smaller cells’ size is used, more windows appear, so more histograms have to be 
computed. So, when we reduce the height of the cells, the processing time is bigger (table 5). 
Moreover, when the map is made up of more images, we have to make more comparisons to 
find the nearest image, what means to spend more time. But with fewer cells, it is more 
difficult to recognise the correct position, as shown in fig. 9. 
In table 6 the effect of varying the distance between vertical cells is assessed. This parameter 
conditions the phase computation. The more distance we have, the less time we need, 
because the number of histograms to compute is lower. However, to improve the angle 
accuracy, that distance must be reduced. 

6. Conclusion 
In this paper, we have presented an appearance-based multi-robot route following scheme. 
The proposed solution uses low resolution panoramic images obtained through a 
catadioptric system that is mounted on each robot in the system, and appearance based 
methods to build the map and compute the localization. 
In our approach, a leader robot goes through the desired rote while it creates a database 
with some visual information captured along the route. This database is shared with the 
follower robots, which have to follow this route from a distance (as in space or in time). To  
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Fig. 9. (a), (b), (c) Recall-Precision charts with Nearest Neighbour (N.N.), Second Nearest 
Neighbour (S.N.N.) and Third Nearest Neighbour (T.N.N). (d) Phase accuracy using HOG. 
do it, a probabilistic algorithm, based on a Markov process has been implemented to 
calculate their current position among those that the leader has stored, and a controller has 
been implemented, also based on the appearance of the scenes, to calculate the linear and 
turning speeds of the robot. To allow a new robot can follow the route that another robot is 
recording at the same time, an incremental algorithm is presented. 
The work is mainly focused in the study of the feasibility of the techniques based on the 
global appearance of the panoramic scenes to solve the problem. With this aim, we use 
dimensionality reduction to extract the most relevant information from the environment and 
build a robust and efficient descriptor of each scene.  
We have compared the performance of three different approaches when working with 
panoramic images: Fourier signature, Principal Components Analysis applied to the Fourier 
signature and Histogram of Oriented Gradients. Our contribution in the comparison of 
these three methods is twofold. First, we have studied their performance when representing 
the environment. We have carried out a set of experiments to test the computational cost to 
compute each kind of descriptor and the memory requirements to store them. Secondly, we 
have also studied their validity in localization tasks. In this case, the experiments have 
allowed us to know the efficiency in calculating the position and the orientation of the robot 
by comparing its current visual information with all the descriptors previously stored in the 
database.  
All the description methods have demonstrated to be valid to represent the environment 
and to carry out the estimation of the pose of a robot inside the map. However, the Fourier 
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signature has proved to be the most efficient method since with few components of the 
Fourier Transform of each row we obtain good results. So, the map does not need a huge 
amount of memory to be stored, and the comparison is not a computationally heavy 
process. No advantage has been found in applying PCA to the Fourier signature, since 
creating the eigenspace is a computationally expensive task, and in order to have good 
results it is needed to keep the great majority of the eigenvectors obtained. Moreover, 
because we need more Fourier coefficients, the size of the map is not reduced. Regarding 
HOG, although the results demonstrate it is a robust method, it is not very flexible due to its 
time and memory requirements, since the histogram computation is a time-consuming task, 
and if we want to improve the orientation accuracy, the map’s memory increases notably.  
This paper shows again the wide range of possibilities of appearance-based methods 
applied to mobile robotics, and its promising results encourage us to continue studying 
them in deep, looking for new available techniques. Our future work includes studying how 
to build more sophisticated topological maps of the environment and how to cope with 
some typical problems in indoor environments such as occlusions, changes in the lighting 
conditions and changes in the position of some objects of the scene. Also, these new maps 
will require the use of new probabilistic localization methods, such as Monte Carlo 
approaches, whose applicability to appearance-based data must be explored. 
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