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a b s t r a c t

The problem of Simultaneous Localization and Mapping (SLAM) is essential in mobile robotics. The
obtention of a feasible map of the environment poses a complex challenge, since the presence of noise
arises as a major problem which may gravely affect the estimated solution. Consequently, a SLAM
algorithm has to cope with this issue but also with the data association problem. The Extended Kalman
Filter (EKF) is one of the most traditionally implemented algorithms in visual SLAM. It linearizes the
movement and the observation model to provide an effective online estimation. This solution is highly
sensitive to non-linear observation models as it is the omnidirectional visual model. The Stochastic
Gradient Descent (SGD) emerges in this work as an offline alternative to minimize the non-linear effects
which deteriorate and compromise the convergence of traditional estimators. This paper compares
both methods applied to the same approach: a navigation robot supported by an efficient map model,
established by a reduced set of omnidirectional image views.We present a series of real data experiments
to assess the behavior and effectiveness of both methods in terms of accuracy, robustness against errors
and speed of convergence.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The solution of the SLAM problem is vital for most applications
in the field of mobile robotics, for example in navigation tasks.
A reliable map representation of the environment has to be built
dynamically, in an incremental manner, meanwhile the mobile
vehicle requires an appropriated localization inside it, which has
to be calculated simultaneously. This fact poses a challenge for the
SLAM techniques, since this process involves a notable complexity.
The appearance of noise arises as a severe problem, which highly
aggravates the achievement of a valid estimation to the problem.

Different SLAM approaches may be classified according to
aspects such as the representation of themap, the solver algorithm
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to compute a solution and the kind of sensor which gathers
information of the environment. For instance, the utilization of
a laser range sensor [1] has been extensively applied to the
obtention of map representations. In this area, two kinds of map
representations were principally generated: 2D occupancy grid
maps [2] based on raw laser, and 2D landmark-based maps [3]
focused on the extraction of features, whichwere described thanks
to laser data measurements. An interesting comparison of both
representations is provided in [4].

Nowadays, the emergence of visual sensors has made the
tendency to turn into the utilization of digital cameras as the
main sensor to gather information. A huge number of applications
benefit from the use of these sensors, whose characteristics
outperform preceding sensors such as laser, in the sense of the
amount of available information. In contrast to laser data sensors,
vision sensors provide a wide amount of information of the scene,
being as well less expensive, lighter and more efficient in terms
of consumption at the price of needing a computational cost to
obtain profitable information to build the map. The extraction
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of significant feature points has been a procedure widely used
in order to encode the visual information. Diverse arrangements
are commonly known by their configuration in reference to the
number of cameras they consist of. For instance, approaches
which utilize two calibrated cameras, known as stereo-pair, in
order to extract a set of 3D visual landmarks determined by a
visual description [5]. Other approaches simply exploit a single
camera to estimate 3D visual landmarks [6,7]. They initialize the
coordinates of each 3D landmark by relying on an inverse depth
parametrization, since there exists a scale uncertainty on the
distance to each landmark, which cannot be directly calculated
by using only a single image. Omnidirectional cameras have also
been used solely [8], and even some others have arranged two
omnidirectional images [9], following the line stated by stereo-
based, but pursuing themajor advantage associatedwith thewider
field of view provided by omnidirectional cameras.

The estimator algorithm for a SLAM scheme has to be consid-
ered as important as the kind of sensor and the map representa-
tion. It represents the core of the system, since it is responsible
for the ultimate solution. Amongst the most widely used online
methods deserving to be highlighted are the EKF [10] and the
Rao-Blackwellized particle filters [3,11]. Regarding the offline al-
gorithms, one of the most effective is SGD [12].

Therefore, the correct balance in the combination of data
sensors, map representation and kind of algorithm, eventually
determines the effectiveness of a SLAM approach which pursues
reliability and suitability for realistic applications. Great efforts
have been made in this field. For example, certain approaches
[10,5,13,6,14] have concentrated on the estimation of the position
of a set of 3D visual landmarks in a main reference system,
while dealing with the obtention of the map simultaneously. Their
principle of working lays on the capability of an EKF filter to
converge the estimation to an appropriate solution for the SLAM
problem. In [15], an EKF algorithm also supports an approach
which proposes a distinctive map representation, consisting of
a reduced set of image views. These views are determined by
their position and orientation in the environment. Such technique
establishes an estimation of a state vector which includes the map
and the current localization of the robot at each timestep.

The methods based on EKF are generally liable to become
troublesome when dealing with external errors. This issue is
directly deduced from the linearization of variables carried out
by the EKF. In this sense, such difficulties compromise the proper
convergence of the estimation. This situation normally appears
in presence of gaussian noise introduced by the observation
measurement, fact that usually causes injurious data association
problems [16]. A visual observation model as in the case of the
omnidirectional model, is susceptible to introduce non-linearities
and thus it is responsible for those kind of errors. On the contrary,
an offline algorithm such as SGD [17] provides more robustness to
face this issue. It isworthmentioning that the vanilla SGDapproach
has been modified in this work to deal with omnidirectional
geometry as well as with the associated observation model.
Traditionally, every odometry and observation measurements are
processed in an independent manner. Nevertheless, with the aim
of finding a valid solution quickly, we have designed a strategy
based on the simultaneous usage of a certain set of observation
measurements. This proposal might seem to be likely to cause an
increase of the required computational resources. However, we
have concentrated on the prevention of such effect by updating
several stages of the SGD’s iterative optimization. According to this,
some amendments have been performed so as to accomplish the
avoidance of possible harmful bottleneck handicaps.

Hence, the main goal of this paper is to provide with results
which help analyze the behavior of both EKF and SGD applied to
a view-based SLAM approach. As it can be inferred, the solution’s

convergence is not trivial with EKF, neither with SGD, especially
when the nature of the observation measurement is up to a
scale factor. The results extracted from the experiments are
intended to assess the capability of both methods to maintain
a feasible estimation under different conditions. Estimation
accuracy, robustness and convergence of the estimation and speed
of convergence will be the most important terms to evaluate.

The structure of the paper has been divided as it follows:
Section 2 introduces the most important aspects of the visual
SLAM approach proposed here. The EKF principles are detailed in
Section 3. Then, Section 4 concentrates on the SGD’s specifications.
Next, Section 5 provides a series of experiments in order to extract
real data results. Finally, Section 6 pursues the analysis of the
results and the discussion.

2. SLAM

The main purpose of a visual SLAM scheme is to retrieve a
reliable representation of the environment explored by the robot,
as well as the position of this vehicle. In this approach, the map
of the environment is defined by a set of omnidirectional images
acquired from different poses of the robot along the environment,
denoted as views. These views do not express information about
any physical landmarks as it is traditionally in the field of vision-
based SLAM. By contrast, a viewconsists of a single omnidirectional
image captured at a certain pose of the robot xl = (xl, yl, θl) and a
set of interest points extracted from that image. In accordancewith
the large field of view provided by omnidirectional images, such
arrangement allows us to exploit this capability to gather a large
amount of information of the scene in a single image. Thus, a highly
notable reduction in terms of number of variables to estimate the
solution is achieved.

The position of the mobile robot is denoted as:

xv = (xv, yv, θv)
T . (1)

Each view nwith n ∈ [1, . . . ,N] is constituted by its pose:

xln = (xl, yl, θl)Tn (2)

together with its uncertainty Pln and a set of M interest points pj,
expressed in image coordinates. Each point is associated with a
visual descriptor dj, j = 1, . . . ,M .

Therefore, these are the variables which compose the aug-
mented state vector:

x̄ =

xv xl1 xl2 · · · xlN

T
. (3)

2.1. Map building

The process of map building may be clearly understood
by inspecting an example in Fig. 1. It shows the exploration
procedure carried out by a robot, which starts its navigation of
the environment at the origin A. At this moment, capturing an
omnidirectional image IA is required to determine the first view
of the map. This view is associated with the pose xlA and it encodes
the relevant information of the local area around this pose. Then,
the robot moves towards the first office room. Assuming that the
robot does not find any major obstruction, it will be capable of
extracting correspondences between IA and the omnidirectional
image referred to the pose where it currently moves through. This
procedure makes it able to localize itself. Once the robot enters in
the office room, the appearance of the images vary significantly,
thus, no matches are found between the current image and image
IA. In this case, the robot will initialize a new view into the map
IB at the current robot position xlB . Now, this view will facilitate
the localization of the vehicle inside this office room. Finally, the
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Fig. 1. Map building process. Origin is set at A, where a first view IA is initiated into the map. While the robot traverses the environment, correspondences may be found
between IA and the current image captured at the current robot’s pose. In case that no correspondences are found, a new view is initiated as the current image, for instance
IB at B. The procedure finalizes when the entire environment is represented.

robot concludes the exploration of the environment by successfully
achieving a well-defined trajectory and a map representation of
the different areas. As it may be seen, it has been necessary to
acquire a set of views IC , ID, IE to complete the finalmap. The size of
themap in terms of the number of views initiated, directly depends
on the specific appearance of the environment. Fig. 1 also depicts
how the robot accomplishes the computation of its localization,
by which it eventually obtains two relative angles thanks to the
processing of the information provided by IA and IE .

The relative appearance between images is determined by a
specific ratio, which it has been experimentally defined as:

A = k
c

p1 + p2
(4)

where p1 and p2 are the interest points detected on each image and
c are the corresponding points found between them. The value of
k has also been experimentally determined according to the visual
appearance of the environment. The ratio A represents a measure
of similarity and it is the factor which ease the robot to decide
whether to initialize a new view in themap. In particular, the robot
will initialize a new view whenever the ratio A drops a certain
threshold.

2.2. Data association

The data association problem is posed in the following way:
given a set of observations zt = [zt1 , . . . , ztB ] at each t , the views
which generate each observation have to be discerned. In the
approach presented here, the data association process is tackled
through the computation of the appearance ratio A. First, we select
a subset of candidate views from the map, based on the euclidean
distance between the current pose of the robot and the position of
each candidate, Dn =


(xv − xln)T (xv − xln). The maximum ob-

servation range of the robot is established as the maximum dis-
tance at which any view can be observed at each t . Thenwe extract
corresponding points between the image acquired at the current
pose of the robot and the rest of the candidate views. This allows
to find the view which provides the maximum appearance ratio A,
defined in (4), which will eventually be chosen as the data associa-
tion. The viewwithmaximum A reveals the highest similarity with

the current image. However, if none of the candidate views provide
a value forAhigher than a predefined threshold, thiswillmean that
the appearance of the current image of the robot differs substan-
tially from the set of candidate views. Therefore itwill be necessary
to initialize a newview into themap at the current robot’s position.

2.3. Observation model

In consequence with the view-based representation, the
formulation of a new observation model is required. The intention
is to retrieve a motion transformation between two poses. As
observed in Fig. 1 a comparison involving two images provides
a motion transformation between two poses. In fact these poses
represent the positions where the robot acquired these two
specific images. To that effect, only two images with a set of
corresponding points between them are required to obtain the
transformation. So that the observation measurement may be
expressed as:

zt =


φ
β


=

arctan

yln − yv

xln − xv


− θv

θln − θv

 (5)

where φ and β are the relative angles which express the bearing
and orientation at which the view i is observed. Please notice that
the structure of the view i follows (2),whereas the pose of the robot
is described in (1). Both measurements (φ, β) are shown in Fig. 1.
Please note that the feature point detector chosen is SURF [18] due
to its success and robustness when working with omnidirectional
images [19].

3. EKF

The EKF [20] is the first algorithm which has been considered
in this work to be applied to the case of visual SLAM with the
intention of generating a valid estimation for the problem.

The basis of this filter lays on the estimation of the augmented
state vector which is constantly updated in real time. In this
framework of a view-based representation, the variables to
estimate are themap itself, consisting of views and their poses, and
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the pose of the robot inside it. Hence the state vector defined in (3)
can be adapted to introduce t:

x̄(t) = [xv, xl1 , xl2 , · · · , xlN ]
T . (6)

Once the state vector is defined, the transformation relation
between x̄(t) and x̄(t + 1) is:

x̄(t + 1) = F(t)x̄(t) + u(t + 1) + v(t + 1) (7)

where F(t) contains the information pertinent to the transition
between states, u(t + 1) is the vector related to the movement
generated by the odometry of the wheels of the robot, and v(t +1)
represents the noise introduced in the system, which has gaussian
uncorrelated nature.

Similarly, a linear relation may be defined so as to connect the
observation measurement zi(t) with the current state vector:

zi(t) = Hi(t)x̄(t) + wi(t) (8)

where Hi(t) encodes the relation between x̄(t) and zi(t). Here,
wi(t) represents the randomnoise generated by the sensors, which
is gaussian and with covariance R(t).

Then, the filter’s procedure has to be divided into three
fundamental stages well differentiated. Firstly, a prediction of the
state x̂(t) is carried out, and based on it, a prediction for the
observation measurement ẑi(t) is also proposed in the following
terms:

x̂(t + 1|t) = F(t)x̂(t|t) + u(t) (9)

ẑi(t + 1|t) = Hi(t)x̂(t + 1|t) (10)

P(t + 1|t) = F(t)P(t|t)F T (t) + Q (t) (11)

where P(t|t) and P(t + 1|t) are the covariance matrices which
represent the uncertainty of the estimation at instants t and t + 1
respectively.

The second stage performs the real observation zi(t) at the
current instant t , of a specific view i of themap. Now the concept of
innovation has to be introduced to explain the deviation between
the prior prediction ẑi(t) and the current measurement zi(t):

vi(t + 1) = zi(t + 1) − ẑi(t + 1|t) (12)

Si(t + 1) = Hi(t)P(t + 1|t)HT
i (t) + Ri(t + 1) (13)

where Si(t + 1) represents the innovation’s covariance.
Finally, the third stage takes into account the refinement of the

estimation obtained during the first stage, seen as an updating
step. The value of the innovation is significantly relevant in the
computation of the final solution provided by the filter. This
solution estimation at instant t + 1, is finally obtained as:

x̂(t + 1|t + 1) = x̂(t + 1|t) + Ki(t + 1)vi(t + 1) (14)

P(t + 1|t + 1) = P(t + 1|t) − Ki(t + 1)Si(t + 1)K T
i (t + 1) (15)

where in this case Ki(t + 1) plays a role of weighting, and
corresponds to the gain of the EKF. It is calculated in the following
manner:

Ki(t + 1) = P(t + 1|t)HT
i (t)S−1

i (t + 1). (16)

It is worth mentioning that the matrices referred to the noise’s
covariance Q (t) y R(t) have to be initialized. Q (t) is established by
means of the noise parameters which characterize the odometry
of the wheels of the vehicle. On the other hand, R(t) is determined
by experimental accuracy thresholds associated with the visual
sensor. The odometry u(t) is required as an initial seed for the
prediction obtention, together with the previous state, as deduced
from (9). The uncertainty matrix of the map, P(t), considers the
noise introduced by the odometry in the form presented in (11),
and the noise introduced by the visual sensor when carrying out
an observation measurement, as detailed in (13) and (15).

3.1. Correspondence of interest points

With the aim of obtaining a set of feasible correspondences be-
tween two views, some restrictions have to be taken into account.
Considering the use of epipolar constraints is generally agreed to
delimit the search for correspondences [21]. The same point de-
tected in a first camera reference system, denoted as p = [x, y, z]T ,
may be expressed as p′

= [x′, y′, z ′
]
T in the second camera ref-

erence system. Then, the epipolar condition is used to state the
relationship between both 3D points p and p′ seen from different
views.

p′TEp = 0 (17)

where the matrix E is the essential matrix and it can be computed
from a set of corresponding points in two images.

E =

 0 0 sin(φ)
0 0 − cos(φ)

sin(β − φ) cos(β − φ) 0


(18)

being φ and β the relative angles that determine a planar motion
transformation between two different views, as shown in Fig. 1
and (5).

The avoidance of false correspondences has been studied
extensively so as to mitigate bad effects on the final estimation
for the SLAM problem. Techniques such as RANSAC and Histogram
voting have been widely used, and mainly applied to visual
odometry approaches [21]. Together with the epipolar constraint
(17), they reveal good results in the achievement of false positive
rejection. In such context of visual odometry, consecutive images
are close enough to disregard high errors in the pose from where
imageswere taken, so that the epipolar constraint is highly likely to
be satisfied. Nevertheless, concentrating on the framework of our
SLAM problem, the accumulative uncertainties are substantially
higher, either in the pose of the robot or in the pose of the
views which compose the map. This fact requires to define a
reliable strategy to accomplish with a correct data association. We
rely on the information provided by the predicted state vector
extracted from the Kalman filter, by which we are able to obtain
a predicted observation measurement ẑt , as stated in (5). Then it is
also necessary to consider the current map uncertainties so as to
deal with a realistic search for valid corresponding points between
images. The map uncertainties are propagated in accordance with
(17) by introducing a dynamic threshold δ. In an idealistic case,
the epipolar constraint may equal a fixed threshold, implying that
the epipolar curve defined between images always presents a little
static deviation. On the contrary, a realistic SLAM approach, should
consider that this threshold depends on the existing error on the
map, which dynamically varies at each step of the SLAM algorithm.
Since this error is correlated with the error on ẑt , we rename δ as
δ(ẑt). In addition, it has to be noted that (18) is defined up to a scale
factor, which is another reason to keep δ(ẑt) as a variable value.
Therefore, given two corresponding points between images, they
must satisfy:

p′T Êp < δ(ẑt). (19)

This approach not only mitigates the undesired harmful effects
associated with false positives, but also simplifies the search for
corresponding points between images as it restricts the areawhere
correspondences are expected. The procedure is depicted in Fig. 2,
where a detected point P(x, y, z) is assumed, and it is represented
in the first image reference systemby a normalized vector p⃗1 due to
the unknown scale. To deal with this scale ambiguity, we suggest a
point distribution to generate a set ofmulti-scale pointsλip⃗1, being
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Fig. 2. Given a detected point p⃗1 in the first image reference system, a point distribution is generated to obtain a set of multi-scale points λip⃗1 . By using the Kalman
prediction, they can be transformed into q⃗′

i in the second image reference system by means of R ∼ N(β̂, σβ ), T ∼ N(φ̂, σφ) and ρ̂. Finally q⃗′

i are projected into the image
plane to determine a restricted area where correspondences have to be found. Circled points represent the projection of the normal point distribution for the multi-scale
points that determine this area.

representative for the lack of scale in p⃗1. This distribution considers
a valid range for λi according to the predicted ρ̂. Please note that
the error of the current estimation of themap has to be propagated
along the procedure. To that end, we look back to the Kalman filter
theory, where the innovation is defined as the difference between
the predicted ẑt and the real zt observationmeasurement as stated
in (12), and the covariance of the innovation defined in (13). So that
Si(t + 1) presents the following structure:

Si(t + 1) =


σφ

2 σφβ

σβφ σβ
2


. (20)

As the predicted Ê can be decomposed in a rotation R̂ and a
translation T̂ , we can transform the distribution λip⃗1 into the sec-
ond image reference system, obtaining q⃗′

i . The introduction of (20)
allows to propagate the error, and thus it redefines a transfor-
mation between images through the normal distributions R ∼

N(β̂, σβ) and T ∼ N(φ̂, σφ). Therefore q⃗′

i is a gaussian distribu-
tion correlated with the current map uncertainty. Once obtained
q⃗′

i , they are projected into the image plane of the second image,
seen as circled points in Fig. 2. This projection of the normal multi-
scale distribution determines the predicted area which is drawn
with a continuous curve line on the omnidirectional image. This
area establishes the specific image pixels where correspondences
for p⃗1 must be searched for. The shape of this area depends on the
error of the prediction, which is directly correlated with the cur-
rent uncertainty of the current map estimation. Dash lines rep-
resent the possible candidate points located inside the predicted
area. Hence the problem of matching is simplified to the search for
the correct corresponding points for p⃗i amongst those candidates
inside a restricted area, instead of a global search along the whole
image.

4. SGD

4.1. Structure

The SGD algorithm has been the second method considered
in this work to be applied to the case of visual SLAM and it is
responsible for generating a feasible estimation for the problem.

In this case, the problem is dealt with a graph-oriented map,
which contains a set of nodes to define the poses traversed by
the robot and the views initialized into the map. It is considered
as a maximum-likelihood estimator, and it seeks a least squares
minimization [22]. The state vector st encodes this representation
through a set of variables which are expressed in the following
manner:

st =

(x0, y0, θ0), (x1, y1, θ1) · · · (xn, yn, θn)


(21)

being (xn, yn, θn) the 2D position and orientation of each node
in a general reference system. Despite the fact that this kind of
representation seems the most natural and intuitive, such global
encoding has the main drawback of not being capable to update
more than one node and its adjacents per constraint. This aspect
has led to a general agreement in the use of the incremental
representation:

sinct =


(x0, y0, θ0)

(dx1, dy1, dθ1)
...

(dxn, dyn, dθn)

 (22)

where (dxn, dyn, dθn) represents the deviation between two
consecutive poses in the global reference system. According to the
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formulation defined in (1) and (21), xv and each xln correspondwith
(x0, y0, θ0), (x1, y1, θ1) · · · (xn, yn, θn), and thus:

sinct =


(x0, y0, θ0)

(x1 − x0, y1 − y0, θ1 − θ0)
(x2 − x1, y2 − y1, θ2 − θ1)

...
(xn − xn−1, yn − yn−1, θn − θn−1)

 . (23)

Now, the state vector is differentially encoded and each single
update has influence on the whole map reestimation.

Regarding the observation measurements, a complementary
subset of edges are introduced to relate nodes to each other. That
is to say, they express the observation measurements between
poses, either from odometry of the wheels or visual sensors. The
nomenclature commonly refers to the observations as constraints,
and it denotes them as δji, where j indicates the observed node,
seen from node i. The general objective stated by these kind of
methods [23,12] is to minimize the error likelihood expressed as:

Pji(s) ∝ η exp


−
1
2
(fji(s) − δji)

TΩji(fji(s) − δji)


(24)

being fji(s) a function dependent on the state st and both nodes
j and i. The difference between fji(s) and δji expresses the error
deviation between nodes, which in this case are views of the map
and poses traversed by the robot. Such error term is weighted by
the information matrix:

Ωji = Σ−1
ji (25)

where Σ−1
ji is the inverse covariance matrix responsible for the

uncertainty of the observation measurements. After taking the
logarithm we have:

Fji(s) ∝ (fji(s) − δji)
TΩji(fji(s) − δji) (26)

= eji(s)TΩjieji(s) = rji(s)TΩjirji(s) (27)

being eji(s) the error resultant from fji(s)–δji(s), which is also
named as rji(s) to emphasize its condition of residue. Finally, the
global problem seeks the minimization of the objective function
which represents the accumulated error on the map:

F(s) =


⟨j,i⟩∈G

Fji(s) =


⟨j,i⟩∈G

rji(s)TΩjirji(s) (28)

where G = {⟨j1, i1⟩, ⟨j2, i2⟩ . . .} defines the subset of particular
constraint conforming the map, either pertaining to odometry or
visual observation measurements.

4.2. Estimation

Once the formulation of the problem has been stated, the SGD
algorithm develops an iterative process to reach a valid estimation
for the SLAM problem. The basis of a SGD method lays on the
minimization of (28) through derivative optimization techniques
such as mean square estimators, so that the estimated state vector
is obtained as:

st+1 = st + ∆s (29)

where ∆s updates st , by means of an adaptive constraint’s
optimization. It is worth noting that in a general case, this update
is calculated independently at each step by using only a single
constraint, that is to say ∆s = f (δji). The general expression for
the transition between st and st+1 has the following form:

st+1 = st + λ · H−1JTji Ωjirji. (30)

• Jji(s) is the Jacobian of fji(s) with respect to st . It translates the
error deviation into a spacial variation.

• H is the Hessian matrix, calculated as JTΩJ , and it shapes the
error function through a preconditioning matrix to scale the
variations of Jji:

H ≈


⟨i,j⟩

JjiΩjiJTji . (31)

• Ωji is the information matrix associated with a constraint, and
equals Σ−1

ji .
• λ is a learning factor to re-scale the term H−1JTji Ωjirji. Normally,

λ follows a decreasing criteria such as λ = 1/n, where
n is the iteration step. This strategy pretends to achieve a
final estimation by using higher values of λ at first steps, and
presuming that lower values of λ will be useful in preventing
from oscillations around the final solution.

This method updates the estimation by computing the rectifi-
cation introduced by each constraint at each iteration step respec-
tively. Despite the fact that the learning factor reduces the weight
by which each constraint updates the estimation, the procedure
may be inefficient as it may lead to an unstable solution. Unde-
sired oscillations may occur due to the stochastic nature of the
constraints’ selection. For this reason, we propose an optimization
process which takes into account several constraints at the same
iteration step. Such idea might cause undesired overloads of time.
However, we also propose some amendments to avoid this effect,
which succeed in maintaining the time requirements and even re-
duce them.

4.3. Adaption to omnidirectional images

Regarding the observation measurements provided by an om-
nidirectional camera, some assumptions have to be contemplated
in the structure of the SGD algorithm.

Note that in this approach we are dealing with a visual
observation given by an omnidirectional camera. This fact requires
the adaption of the equations defined in the previous section,
since the nature of the constraints are not only metrical like
odometry’s constraints. Following, we detail the terms related
to the observation measurements, emphasizing on the visual
observation, which has been redefined in consequence with (5):

• The first adaption was referred to fji(s), differentiating between
odometry and visual observation constraints:

f odoj,i (s) =

dxj
dyj
dθj


+

dxj−1
dyj−1
dθj−1


+ · · · +

dxi
dyi
dθi


(32)

f visual
j,i (s) =


φ
β


=

arctan

dyj − dyi
dxj − dxi


− dθi

dθj − dθi

 (33)

whereφ andβ express the relation between views and the pose
codification (21), and are directly computed as defined in [15].
Visual inspection of Fig. 1 may ease to define (33).

• Then, it is necessary to recalculate Jji(s) =
∂ fji(s)

∂s , accordingly
with the previous reformulation. It has to be noticed the
importance of considering the value of each node’s index, being
either j > i or j < i, since the derivatives vary its form
considerably. Furthermore, as seen above, the dimensions of
fji(s) are different, fact which has also to be considered in order
to resize the rest of the terms involved in the SGD algorithm.

Jji(s) =
∂ fji(s)

∂s
=


∂ fji(φ)

∂s
,
∂ fji(β)

∂s


. (34)
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• Lastly, we also propose that the estimation of the new state
st+1 reflects the usage of several constraints at the same
time. We seek more relevance of constraints’ weight when
searching for the optimal minimum estimation. Obviously,
computing more than one constraint at each step may cause
a certain overload. Contrarily, in this approach we reduce the
expensive estimation of H . In a general case, at every step, H
is computed as many times as constraints exist in the map. In
oppositionwith this, we only computeH once for each subset of
constraints introduced simultaneously into the system at each
step. Thuswe dramatically reduce the number of times thatH is
calculated, so thatwe proceed in amore efficientmannerwhich
compensates possible time overloads.

5. Results

We have performed different real data experiments in an office
environment. The equipment utilized in the experiments consisted
of a Pioneer P3-AT indoor robot equipped with a firewire 1280 ×

960 camera and a hyperbolic mirror to build the omnidirectional
image. The optical axis of the camera is installed approximately
perpendicular to the ground plane, as described in Fig. 3. As a
result, a rotation of the robot corresponds to a rotation of the
image with respect to its central point. In addition, we used a SICK
LMS range finder in order to compute a ground truth by means
of the method presented in [2]. The exposition of the results is
structured as it follows: First in Section 5.1 we show SLAM results
obtained with both methods EKF and SGD when the dimension
of the map in terms of N views is variable. Then in Section 5.2,
we also compare both methods by testing their accuracy and
robustness on the estimation when data association errors arise.
Finally, in Section 5.3 we present results with regard to the speed
of convergence.

5.1. SLAM results with EKF and SGD

This experiment has been conducted in an indoor environment
which corresponds to an office area of 42 × 32 m. The robot
navigates this area while it acquires omnidirectional images and
laser data along the trajectory. The laser data is an auxiliary
reference to aid in generating a ground truth for fair comparison.

In the EKF’s case, as mentioned above, the procedure of map
building is accomplished in an incremental manner. Fig. 4 shows
the results obtained in this experiment, where the robot starts
the SLAM process by adding the first view of the map. Next, it
keepsmoving along the trajectorywhile capturing omnidirectional
images. The image at the current robot pose is compared with
the views stored in the map so as to extract some corresponding
points that allow the robot to compute a relative measurement
of its position, as explained in Section 2. The robot decides to
initiate a new view whenever the relative appearance of the
current image compared to the appearance of the map’s views
drops below a specific similarity threshold R. The ellipses indicate
the uncertainty in the pose of each view and the robot. The
dash-dotted line represents the solution obtained with the EKF
approach, indicating with crosses the points along the trajectory
where the robot decided to initiate new views in the map. The
continuous line represents the ground truthwhereas the odometry
is drawn with dash line. The modification of R, leads to a variation
of the size of the map in terms of N . As it can be observed in
Fig. 4(a), a map for an environment of 42 × 32 mmay be perfectly
generated by a reduced set of N = 5 views, thus leading to a
compact representation.However, the sameenvironmentmay also
be represented with a different number of views N as shown in
Fig. 5(a). Figs. 4(b) and 5(b) compare the errors for the estimated
trajectory, each one associated with the maps composed by N =

Fig. 3. Robot Pioneer P3-AT used in the experiments. Two poses are indicated with
their corresponding relative angles which determine the motion transformation.

5 and N = 20 views respectively. Based on the ground truth
comparison, the solution error is shownwith dash-dotted line and
the odometry’s with dash line at every step of the trajectory. The
validity of the solution is confirmed due to the accomplishment of
the convergence requirements. It may be noticed that the solution
error is inside the 2σ interval, drawn in continuous line, whereas
the odometry error grows out of bounds. According to these
results, it should be noticed that the higher values of N the lower
the resultant error in the map.

On the other hand, we run the same experiment with a SGD
estimator. Fig. 6(a) and (b) represent the same two situations with
N = 5 and N = 20 views previously performed. The placement
of the views is exactly the same. The main difference in the
manner to proceed with respect to EKF is that SGD processes the
observations offline. Inspecting Figs. 4(a), 5(a), 6(a) and (b) reveals
that EKF estimations are more accurate than the SGD estimations.
To generalize, Fig. 7 establishes a fair comparison between both
methods, where the RMS (Root Mean Square) error along the path
is represented versus the number of views N . The continuous line
shows the RMS error for SGD and the dash line shows the EKF’s.
The results of EKF outperforms in this case SGD’s. However, this
experiment has dealt with a desirable situation where non-linear
errors, if any, were low enough so that the EKF response was
able to ensure convergence. The following experiment will show
the results obtained when the visual information is damaged and
corrupted by significative noise errors.

5.2. Comparing accuracy

Now we intend to compare the behavior of both methods
in a more realistic situation, that is to say, when they are
expected to suffer non-linear errors introduced by the observation
measurements and it consequently causes wrong data association
errors. We have conducted the same real experiment shown above
but assuming a highly relevant presence of non-gaussian errors.
To that end, we have modeled a random generator scheme which
introduces wrong data associations. At each estimation step, the
robot computes the observationmeasurements for the entire set of
viewswhich is able to observe. However the robot fails to associate
the observation measurement with its corresponding view at a
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Fig. 4. (a) presents results of SLAM using an EKF algorithm with real data. The map representation of the environment is formed by N = 5 views. The position of the views
is presented with error ellipses. (b) shows the solution and the odometry error in X, Y and θ at each time step.

certain probability, meaning that a percentage out of the total data
association are wrong, and thus the observation measurement as
well.

Fig. 8(a) and (b) describe the RMS error tendency of both
methods, when data association fails with a given probability.
The experiment has been repeated 200 times in order to retrieve
consistent and coherent mean values. Again, the environment has
been represented with different values of N in order to show
differences. The results provided by EKF reveal that the resultant
RMS error grows out of bounds when the probability of data
association error is apparently low. This fact demonstrates the low
reliability of the EKF when it has to deal with non-linearities and
thus non-gaussian errors. Despite the fact that maps with more
views provide a larger number of observation measurements to
enable the rectification of the estimation, the error continuously
increases. The results prove that once the solution diverges, the
EKF is unable to recover it, despite the fact that N is higher.
Consequently, the difficulties experienced by the EKF to keep the
convergence of the estimation are evidenced.

Contrary to the EKF’s results, and according to Fig. 8(b), the SGD
provides a lower RMS error under the same conditions. Moreover,
it ensures convergence, as the RMS’s tendency only increases
slightly. It is worth noting the importance of selecting a suitable
value for λ, so that new updates to st+1 do not lead the estimation
to diverge when there is evidence of errors. In this case, the SGD
proves its capability to rectify the solution even in presence of non-
linearities and the consequent non-gaussian errors. Therefore, in
the case of SGD, as it could be intuitively expected, the more N
views in the map, the more observations gathered, and thus the
better results provided.

5.3. Comparing speed of convergence

As it may be seen in the previous subsection, the SGD
outperforms EKF in terms of robustness and accuracy when the
system is considerably affected by non-gaussian errors. However,
one should think about the speed of convergence of both methods.
A compromising solution will have to be agreed so as to ensure
a balance which provides robustness against the influence of
noisy terms and speed of computation. With this experiment we
would like to compare the speed ratios by which EKF and SGD
compute a valid solution. Fig. 9 represents the time consumption
to reach a valid solution versus the number of views N of the
map. Since we look for a fair comparison, the y-axis, has been
transformed into a normalized time variable which achieves a
trustworthy comparison between both schemes. This adoption has
been considered since the stochastic nature of the SGD method
may lead each experiment to last a different number of iterations,
and consequently a different time. Therefore the mean values
for each iteration step have to be considered, so that the final
estimation time can be obtained. Hence this normalization allows
a fair and simpler comparison between methods.

In this sense, it may be proved that the solution provided by
EKF outperforms the solution given by a basic SGD for each N-
view map, since its gradient is definitely lower. However, it is also
worthwhile to analyze these results together with the tendency
of each corresponding RMS error. Fig. 10(a) and (b) show the
normalized RMS error, versus the total time consumption to reach
the final estimation. Now it can be clearly confirmed that quicker
speed of convergence is assured by EKF.
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Fig. 5. (a) presents results of SLAM using an EKF algorithmwith real data. The map representation of the environment is formed by N = 20 views. The position of the views
is presented with error ellipses. (b) shows the solution and the odometry error in X, Y and θ at each time step.
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Fig. 6. (a) and (b), present results of SLAM using a SGD algorithm with real data. These map representations of the environment are formed by N = 5 and N = 20
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6. Conclusions

We have presented a comparison between EKF and SGD al-
gorithms, according to their provided solution to the Simultane-
ous Localization and Mapping (SLAM) approach. The main issue
to analyze has been the influence of non-linear errors, which are
a clear indicator of added noise by the visual sensor’s measure-
ments, especially associated with the omnidirectional observation
model. We have presented a real data experimental set, which
has considered different modifications so as to test the behavior
of both methods under different conditions. The approach to the
map representation relies on an efficient view-based map model,
which is built by means of a reduced set of omnidirectional image
views. Bearing in mind the results presented in this work, a key
aspect to remark about EKF is definitely its capability to provide
a suitable estimation in real time, thanks to its adequate speed of
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Fig. 8. (a) and (b) presents the RMS error (m) versus the probability of data association error (%) for EKF and SGD respectively. Errors for maps with different number of
views N are indicated.
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Fig. 10. (a) and (b) present the normalized RMS error (m), and time consumption (s) versus the number of views N of the map for EKF and SGD respectively. The dash lines
show the RMS error, meanwhile the continuous lines show the time consumed by EKF and SGD respectively.

convergence. Moreover, other favorable aspect in case of an ide-
alistic situation without clear evidence of non-linearities, is that
EKF provides amore accurate estimation in contrast to SGD. On the
other hand, contrary to EKF, the SGD has evidenced to bemore reli-
able when a robust solution is required. Despite the fact that SGD’s
accuracy in an idealistic situation is lower than the EKF’s, the re-
sults obtained in presence of non-linear noise effects, indicate that
SGD provides a solid and stable solution which prevents the sys-
tem fromdiverging. As it iswell known, this is not accomplished by
EKF, since is highly sensitive to errors due to the linearization of the
variables of the filter. However, the SGD reveals a lower speed of
convergence.

Therefore it has been proved that the effectiveness of each
method depends on the assumed conditions. Assuring and
approach to SLAM which achieves the avoidance of the effects of
non-linearities and non-gaussian errors, would lead to select a SGD
method. Nevertheless, in case of dealing with a more desirable
situation, such as in a low-noise environment, would indicate
that an EKF method would be more appropriated in order to
succeed in providing a more precise solution with a higher rate of
convergence.
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