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ABSTRACT

This paper proposes a model of concentrated parameters for a rolling bearing operating in

dynamic conditions with and without localized defect. The rolling bearing is modeled as a

Zþ 2 df degree of freedom (DOF) system, where Z is the number of rolling elements. The

radial displacement of these rolling elements is considered in this model. In the analytical

formulation, the contact force between the balls and races is considered as non-linear

spring-dampers, whose stiffnesses are obtained applying Hertzian elastic contact

deformation theory. The equations of motion are formulated using Lagrange’s equation,

considering the characteristics of the individual components of a rolling bearing, such as

rotor, rolling elements, and inner and outer race. The Runge-Kutta method is used to solve

the non-linear differential equations of motion. The simulation is accomplished by MATLAB and

SIMULINK. To validate the simulated model, we have designed a testbed to carry out. The

frequency components of the signal generated by the model in simulation and the

experimentally obtained signal are compared. The results achieved experimentally

demonstrate the validity of the mathematical model presented here. The model provides a

powerful tool to predict the satisfactory behavior of this system.

Keywords

non-linear dynamics, ball bearing, vibration, localized defect

Introduction

The rolling bearing is perhaps the part of rotary machines that has the highest rate of mechanical

failure (considering this rate as the number of repairs carried out on these elements over a fixed

amount of time). This tendency to deteriorate is because of the fact that the bearing is the element

that supports all the static and dynamic loads of the entire machine.
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Various texts in the technical literature [1,2] develop, in

detail, the geometric, kinematic, dynamic, and tribologic aspects

of rolling bearings. However, because of the complexity of these

mechanical components and the high performance standards

required for them (high speeds, great load capacity, and, above

all, reliability), some of these technical aspects have not been

completely resolved. An analysis of the dynamic behavior of

rolling bearings is decisive in the understanding of the vibratory

response of rotary machines [3].

To understand all the phenomena that take place in rolling

bearings, very often empirical models (derived from quasi-static

processes) are employed. However, these empirical models are

not too general and have large limitations [4]. With the quasi-

static techniques of Harris [1] now outdated, the models cur-

rently most regarded are those that account for the dynamic

effects of bearings [5].

With respect to the simulations of bearings behavior, it

should be pointed out that there have been many theoretical

models that have emulated the dynamics of ball bearings.

Wensing [6] not only compares the 10 most efficient of these

models to be found over the last 20 years, but he also calculates

the damping coefficient of a rolling bearing in elasto-

hydrodynamic conditions [7]. Sarangi et al. [8] propose an ana-

lytic model of a rolling bearing with elasto-hydrodynamic con-

tact, allowing for rigidity and damping in conditions of

adequate lubrication.

Among the many models of rolling bearing behavior, it is

worth pointing out the analytic dynamic model developed by

Walters [5] for ball bearings with a cage, which considers the

slippage between the ball and raceway. This model will later be

modified by Gupta [9,10] and subsequently brought up to date

by the work of Tiwari et al. [11]. However, the solutions pro-

vided by the models of Walters, Gupta, and Tiwari lead to

excessively long computational times.

The study of simplified systems that model the behavior of

the ball and cage in rolling bearings has been carried out by

numerous researchers. Yet, to date, these models have not been

completely validated by laboratory results in real cases. For

example, Kennel and Bupara [12] developed a simplified model

to analyze the dynamic of the cage and the balls where it is

assumed that the cage-balls assembly only moves on the plane

of its principal diameter. Subsequently, it was shown [13] that

the movements of the cage-balls assembly are too complicated

to be modeled with this extreme simplification of cage move-

ment. Fukata et al. [14] addresses the study of vibrations that

derive from the non-linear dynamic response of ball bearings,

which support a balanced horizontal rotor acting under con-

stant vertical force (and allowing for the variable flexibility

effect). It may be seen that resonance occurs when BPF (ball

passage frequency) coincides with the system frequency and

that, at certain speeds, the shaft-ball-support system may gener-

ate vibrations with sub and ultra BPF harmonics. An analytic

model was then developed [15] to study and optimize the

design parameters of the cage and the support rings.

In various works of Harsha et al. [16–20], analytic models

are developed to predict the non-linear dynamic response of

rotor-rolling bearing systems by taking into account: the bal-

anced and horizontal rotor, the number of variable balls, the

surface waviness in the outer race or inner race, the preload

effect, or the cage run-out effect. To iteratively solve non-linear

differential equations, Harsha uses Newmark’s technique of

numeric integration combined with the Newton-Raphson

method. Other authors have presented analytic models of bear-

ings similar to those of Harsha in which they have a reduced

number of df and have obtained acceptable results [21].

The distribution of loads on the rolling bearings has been

analyzed with models with concentrated parameters [16] and

[22]. Various simulation tools have been used, often employing

a dynamic simulation tools developed under the auspices of the

principal bearing manufacturers, with models that use Bond

Graph [23] and with models that have distributed parameters in

static conditions [24]. Besides, using finite element techniques

coupled with the dynamic conditions appears to open a new

direction in the area of modeling of rolling bearings [25]. The

subject of non-linear bearing dynamics is not completely

resolved and is one that many authors continue to research

[26–31].

This paper proposes an analytical model of concentrated

parameters for a rolling bearing with a localized defect. The pre-

sented model is experimentally validated under different

dynamic conditions and variations in the geometry of the ele-

ments of the bearing. The model takes into account the move-

ment of the balls and the damping in the contact point leading

to a complex system with 2þZ DOF (where Z is the number of

balls). The equations that govern the behavior of the rolling

bearing are deduced by applying Lagrange’s equations. Also, the

settings used in the simulation are consistent with those occur-

ring in real systems.

The remainder of the paper is structured as follows. Next,

the analytical model of the bearing system is deduced. This

model takes into account all the possible localized defects in its

inner raceway. The section that follows presents some details

about the simulation tool employed. Also in this section, simu-

lation results for bearings with three and nine balls with and

without defects are presented and discussed. Next, the testbed

employed to validate the simulated model is presented. Finally,

the experimental results and a comparison with the simulation

results are provided.

Model Sketch

A rolling bearing dynamic model of concentrated parameters,

with and without localized faults, is presented in this section.

To this end, a non-linear model relates the movement of the
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inner ring and the rolling elements surrounding the fixed outer

ring. Although the ball bearing is the subject of this study, the

model may be specified for either ball or roller bearings by

adjusting the conditions of stiffness and damping, according to

the situation. The rolling bearing model enables an easy varia-

tion of parameters such as spin velocity of the bearing, geomet-

ric or structural characteristics of the same, and load conditions

or presence of faults. The aim of the work presented here is to

validate the analytical model of a ball bearing containing local-

ized surface defects at the inner or outer raceway.

This model will allow simulation of the behavior of the

bearing vibration under different operating scenarios, with var-

iations in the geometry of the elements of the bearing. Also, this

model will allow the incorporation of different types of defects:

localized defects in the inner or outer raceway, or distributed

defects in the inner or outer raceway. We can find some previ-

ous works where only the rotor movement is considered and

therefore the system has only two df [32]. Other works consider

models with more df, but in these cases either experimental

results are not provided to contrast the model or simulation set-

tings are not appropriate (for example, the load of the bearing is

lower than its required minimum load). The models have more

stability issues using these values.

Equations that govern the behavior of the rolling bearing

are deduced by applying Lagrange’s equations. In the case of

complex mechanical systems, the equations obtained using

Lagrange’s method are more efficient than those obtained using

Newton’s law. The procedure is based on Lagrange scalar mag-

nitudes such as kinetic energy, potential energy, and virtual

work. All of them can be expressed in a suitable reference sys-

tem. When addressing the problem of modeling, dynamical sys-

tems based on Newton formulation of the strength, speed,

accelerations, etc. will be represented with a vectorial format.

However, by means of Lagrange equations, based on scalar

quantities we can pay attention to these magnitudes without the

necessity of employing formal vectorial methods.

To simulate the rolling bearing model, equations are imple-

mented in MATLAB code by using the SIMULINK tool. Numerical

integration is carried out by the ode45 method. The ode45 is an

integration method provided by the SIMULINK Solver. This is a

one-step method [33] based on the Runge-Kutta formula of the

4th and 5th order. This method gives satisfactory results for

most continuum models and proves to be a good method as a

first approximation when the knowledge of the system being

analyzed is not sufficient. The Runge-Kutta method can be used

to solve non-linear equations derived from dynamics and con-

tacts in rotary mechanical systems [34]. The obtained results

from the dynamic rolling bearing model will be studied via fre-

quential analysis. In the process, the evolution of the spectral

power of vibration of this model will be observed in relation to

the variation of certain operative parameters of the rolling

bearing.

Modeling of the Ball Bearing

System

ROLLING BEARING SYSTEM DESCRIPTION

A real ball bearing is a mechanism with many elastic compo-

nents making their analytical model very complex and with

non-linear structural equations. A ball bearing system has been

designed to support radial and axial load while turning at high

speeds.

The rolling bearing is composed basically of an inner race

joined to the axis of rotation, an outer race joined to the support

of the bearing, and a set of rolling elements that can be balls or

rollers with different geometries, placed between the two races.

Assistant elements, cages, or tabs are employed, whose only

purpose consists of keeping the rolling elements separated at

certain distances between them. The cage and the rolling ele-

ments have a rotational motion around the axis of the bearing.

The scheme of this rolling bearing system is shown in Fig. 1.

The model of the contact elements can be derived consider-

ing a mass-spring system with the corresponding damping. The

outer race is fixed to the rigid surrounding, whereas the inner

race is rigidly fixed to the rotor spinning at a certain angular

velocity xin. Elastic deformation between the races and rolling

elements, in this case balls, presents a non-linear force-deformation

behavior, which is obtained by applying the Hertz theory. In the

analytical model, the ball bearing is considered as a mass-spring-

damping and the balls act as non-linear springs, as can be seen in

Fig. 2.

Because Hertzian forces act only in the case of contact of

the ball with the inner or the outer race, the springs act only

under pressure. When the ball is separated from the rolling

track, the contact force is zero. This condition makes a non-

linear effect in the ball’s motion equations.

FIG. 1 Rolling bearing system.
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Before deriving the motion equations and to avoid an

excessively complex mathematical model, we take into consider-

ation the following assumptions [28]:

• Deformations occur according to the Hertzian theory of
elasticity: small elastic motions are considered but plastic
deformations are neglected.

• The balls and the rotor move in a plane. All of the ele-
ments (inner and outer races, balls, rotor, etc.) have
motions only in this plane that is considered as the move-
ment plane.

• The angular velocity of the cage is constant.
• The balls of the bearing have no angular rotation about

their axes.
• All the bearing elements and the rotor are considered

rigid.
• The bearing works under isothermal conditions. There-

fore, dimensional variations because of temperature
effects are not considered.

• We consider that there is no slipping between the balls
and the surface of the races.

• The cage keeps a constant distance between the balls of
the bearing. Therefore, there is no interaction between
them.

DIFFERENTIAL EQUATIONS OF MOTION

In this section, we derive the equations of motion of the rolling

element bearing using the Lagrange formulation. We consider a

system composed by i elements with j DOF. The number of

generalized coordinates (the same that the number of DOF),

that allow determination of the movement, will be denoted as

q1; q2; q3; :::; qj.

The displacement vector showing the location of the ith ele-

ment can be denoted as:

ri ¼ f q1; q2; q3; :::; qj
� �

(1)

The motion equations are obtained from the Lagrange

equation for a set of generalized coordinates. If the system is

not conservative and therefore there are dissipative forces, we

can write the Lagrange equation in its most general form as

[35]:

d
dt

@T
@ _qj

� �
� @T
@qj
þ @U
@qj
þ @DR

@ _qj
¼ Qj(2)

where T is the kinetic energy, U is the potential energy, DR is

the Rayleigh’s dissipation function, and Qj is the nonconserva-

tive generalized force of friction. For a system with 1 degree of

freedom, we have:

T ¼ 1
2

m _q2
1; U ¼ 1

2
C q2

1; DR ¼
1
2

Dq2
1(3)

where C is the stiffness coefficient (considered by the Hooke’s

Law F¼C�x), and D is the damping coefficient.

The total kinetic and potential energy of the system can be

obtained by the addition of several values of the components of

the bearing. So, the total kinetic energy can be expressed as:

TT ¼ Trotor þ Tin þ Tout þ
XZ

i¼1

Ti(4)

where Trotor is the kinetic energy of the rotor, Tin is the kinetic

energy of the inner race, Tout the kinetic energy of the outer

race, and Ti the kinetic energy of each ball. Table 1 represents

the notation used for the rolling bearing model.

In a similar way, the total potential energy can be expressed

as:

UT ¼ Urotor þ Uin þ Uout þ
XZ

i¼1

Ui þ
XZ

i¼1

Ucin þ Ucoutð Þ(5)

where Urotor is the potential energy of the rotor, Uin is the

potential energy of the inner race, Uout is the potential energy of

the outer race, Ui is the potential energy of each ball, Ucin is the

elastic potential energy of the contact of each ball with the inner

race, and finally Ucout is the elastic potential energy of the con-

tact of each ball with the outer race.

Figure 3 shows the employed notation of the generalized

coordinates chosen for the model of the system. So, we have

2þ 3 and 2þ 9 DOF system for three and nine balls bearing,

respectively. Following, the motion equations of each one of the

elements that constitute the bearing are derived.

INNER RACE

The position of the mass center of the inner race with regard to

the global reference system can be expressed as:

Lin
�! ¼ xin i

!þ yin j
!

(6)

FIG. 2 Modeling the ball as non-linear spring-damper.
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The kinetic energy of the inner race can be derived as:

Tin ¼
1
2

min _Lin

�!
� _Lin

�!� �
þ 1

2
Iin � _a2

in(7)

The velocity can be achieved by computing the derivative

of the position of the mass center of the inner race:

_Lin

�!
¼ _xin i

!þ _yin j
!

(8)

As a consequence:

Tin ¼
1
2

min _x2
in þ _y2

in

� �
þ 1

2
Iin _a2

in(9)

Taken as reference the potential energy of the mass center

of the outer race, the potential energy of the inner race can be

expressed as:

Uin ¼ min g hin ¼ min g yin(10)

The components in the Lagrange equation can be achieved

from the kinetic energy, potential energy, and dissipation func-

tion, computing the partial derivative with regard to the gener-

alized coordinates ðxin; yin; r1; :::; ri; :::; rZÞ, and computing the

time derivative ð _xin; _yin; _r1; :::; _ri; :::; _rZÞ. In this case, for the

inner race we have:

TABLE 1 Nomenclature used in analytical model.

Item Description Unit

xin Rotational speed of the inner race rpm

rb Radius of each rolling element mm

Rin Radius of the inner race mm

Rout Radius of the outer race mm

min Mass of the inner race kg

mb Mass of the rolling element kg

mrotor Mass of the rotor kg

Lin Position of mass center of the inner race

ri Radial position of the ith rolling element

qi Position of the ith rolling element from the center of inner race

ai Angular position of the ith rolling element Degree

ain Angular position of the rotor Degree

Fu Unbalanced rotor force N

Fex, Fey Component of external force N

Cin Constant for Hertzian contact elastic deformation referred to ball inner raceway N/mm3/2

Cout Constant for Hertzian contact elastic deformation referred to ball outer raceway N/mm3/2

Din Damping coefficient referred to ball inner raceway contact Ns/mm

Dout Damping coefficient referred to ball outer raceway contact Ns/mm

din Deformation at the point of the contact of the ith ball inner raceway mm

dout Deformation at the point of the contact of the ith ball outer raceway mm

h Internal radial clearance mm

xin, yin Center of the inner race

xo
in; xo

in Initial position of the center of inner race

ro
i Radial initial position of ith rolling element mm

Ib Moment of inertia of each rolling element kg.m2

Irotor Moment of inertia of the rotor kg.m2

Iin Moment of inertia of the inner race kg.m2

FIG. 3 Mass-spring-damper model of the element.

d
dt

@Tin

@ _xin

� �
¼ d

dt
min _xinð Þ ¼ min €xin

d
dt

@Tin

@ _yin

� �
¼ d

dt
min _yinð Þ ¼ min €yin

@Uin

@yin
¼ ming

(11)
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ROTOR

Because the rotor is joined with the inner race in the bearing,

both of them have the same movement and position. Therefore,

they have similar expressions for the kinetic and potential

energy. Only the mass and the moment of inertia of such ele-

ments are different.

Trotor ¼
1
2

mrotor _x2
in þ _y2

in

� �
þ 1

2
Irotor _a2

in(12)

Urotor ¼ mrotor g hin ¼ mrotor g yin(13)

So, the components of the Lagrange equation for the rotor are:

d
dt

@Trotor

@ _xin

� �
¼ d

dt
mrotor _xinð Þ ¼ mrotor €xin

d
dt

@Trotor

@ _yin

� �
¼ d

dt
mrotor _yinð Þ ¼ mrotor€yin

@Urotor

@yin
¼ mrotorg

(14)

OUTER RACE

Because of the outer race fixed to a rigid surrounding, its contri-

bution to the total kinetic and potential energy is zero.

BALLS

The position of the mass center of the ith ball i from the global

reference system is:

ri
!¼ ricosai i

!þ ri sin ai j
!

(15)

where ai is the angular position of the rolling element i. The ki-

netic energy is:

Ti ¼
1
2

mb _ri
!� _ri
!� �
þ 1

2
Ib x2

b ¼
1
2

mb _r2
i þ r2

i _a2
i

� �
þ 1

2
Ib x2

b(16)

where xb is the angular velocity of each ball with regard to its

center of mass.

We can estimate the potential energy of the rolling element

i, taking as reference the center of the outer race, as:

Ui ¼ mb g hi ¼ mb g ri sin ai(17)

So, the components of the Lagrange equation for the ball i,

are:

d
dt

@Ti

@ _ri

� �
¼ mb _ri;

@Ti

@ri
¼ mb ri _a2

i ;
@Ui

@ri
¼ mb g sin ai(18)

where i ¼ 1; 2; 3; :::;Z (Z being the number of balls).

CONTACT ROLLING ELEMENT-INNER RACE

The reaction force (in Newtons) as a consequence of the defor-

mation in the contact point is:

F ¼ Cin d
3
2
in(19)

The work carried out can be expressed as dW¼ Fdd. This

work is developed as an elastic potential energy:

DW ¼ DU ¼
ð

Cin d
3
2
in dd ¼ 2

5
Cin d

3
2
in(20)

Taking into account all of the rolling elements that consti-

tute the bearing, its elastic potential energy can be expressed as:

Ucin ¼
XZ

i¼1

2
5

Cin d
5
2
in i(21)

Considering the values of the different elements of the bear-

ing and the position of the mass center of the ball with regard

to the mass center of the inner race, qi, the value of the defor-

mation din at the point of contact with the inner race can be

expressed as:

din iðtÞ ¼
Rin þ rb � qi if qi < Rin þ rb

0 if qi � Rin þ rb

(
(22)

where qi can be deduced from:

qi ¼ ½r2
i þ x2

in þ y2
in � 2ri cos ai xin � 2ri sin ai yin�

1
2(23)

Because only elastic potential energy exists, it is necessary

to compute the variation of this energy from the generalized

coordinates ðxin; yin; r1; :::; ri; :::; rZÞ.

• Regarding to the generalized coordinate xin:

@Ucin

@xin
¼ 2

5
Cin

@

@xin
d

5
2
in i

� �
¼ �Cin d

3
2
in i

xin � ri cos ai

qi
(24)

• Regarding the generalized coordinate yin

@Ucin

@yin
¼ 2

5
Cin

@

@yin
d

5
2
in i

� �
¼ �Cin d

3
2
in i

yin � ri sin ai

qi
(25)

• Regarding the generalized coordinates r1,., ri; rZ

@Ucin

@ri
¼ 2

5
Cin

@

@ri
d

5
2
in i

� �

¼ �Cin d
3
2
in i

ri � cos aixin � sin aiyin

qi
(26)

where i ¼ 1; 2; 3; :::;Z.

As a consequence of the contact between the ball and the

race, a damping or a loss of energy can be considered, so the

Rayleigh’s dissipation function DR, can be calculated as:

DR ¼
XZ

i¼1

1
2

Din _r2
i(27)

where we have considered the velocity of the ball in the global

reference system. Therefore, the components of the Lagrange

equation for the ball i can be expressed as i ¼ 1; 2; 3; :::;Z:
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@DR

@ _xin
¼ 0 ;

@DR

@ _yin
¼ 0 ;

@DR

@ _ri
¼
XZ

i¼1

Din _ri(28)

CONTACT ROLLING ELEMENT-OUTER RACE

The elastic potential energy from the contact rolling element

and the outer race can be expressed as:

Ucout ¼
XZ

i¼1

2
5

Cout d
5
2
out i(29)

Taking into account the dimensions of the different ele-

ments of the bearing and the position of the mass center of the

ball with regard to the global reference system ri, the value of

the deformation dout i at the point of contact at outer race is:

dout iðtÞ ¼
ri þ rb � Rout if ri > Rout � rb

0 if ri � Rout � rb

(

Considering only potential energy, we can conclude:

• Regarding the generalized coordinate xin

@Ucout

@xin
¼ Coutd

3
2
out i

@dout i

@xin
¼ 0(31)

• Regarding the generalized coordinate yin

@Ucout

@yin
¼ Coutd

3
2
out i

@dout i

@yin
¼ 0(32)

• Regarding to r1; :::; ri; :::; rZ , (i ¼ 1; 2; 3; :::;Z):

@Ucout

@ri
¼ Coutd

3
2
out i

@dout i

@ri
(33)

The Rayleigh’s dissipation function DR at the point of con-

tact at outer race is:

DR ¼
XZ

i¼1

1
2

Dout _r
2
i(34)

So, the components of the Lagrange equation for the rolling ele-

ment i, are:

@DR

@ _xin
¼ 0 ;

@DR

@ _yin
¼ 0 ;

@DR

@ _ri
¼
XZ

i¼1

Dout _ri(35)

where i ¼ 1; 2; 3; :::;Z

MODELING OF LOCATED DEFECT

Localized defect means a single point of failure; for example,

any abnormality is present in any of the items of the bearing

such as cracks, pitting, chipping, etc. The simplest way to

express a fault on the inner or outer race is the sudden change

in the radius of curvature of the raceway. This variation can be

positive or negative depending on the cause of the defect, as this

may be a dimple or an impurity element interposed between the

rolling element and the raceway.

In the following, the model of a localized defect in the

inner race will be described. The parameters used to model

the defect in the inner race are shown in Fig. 4. An initial posi-

tion adi in is defined, the defect depth Pd in and the arc length

covering the defect on the inner raceway, Ld in are shown in

Fig. 5.

When the angular position of the ith ball ai is inside the

fault zone, then adi in < ai < adf in as shown in Fig. 5.

When the ball reaches the zone of defect it has a greater

freedom of movement without deformation. Obviously, when

the ball is on the zone of defect a deformation will be produced

depending on the load of the bearing. The radius of curvature

that initially had a value Rin changes to Rd in. This variation

generates a deformation in the contact point of the ring and the

ball, din, see Fig. 5.

Given the above conditions, the deformation at contact

points between the ith rolling element and the inner race is

din iðtÞ ¼

Rin þ rb � qi if Rin þ rb > qi and adi in � a � adf in

0 if Rin þ rb � qi and adi in � a � adf in

Rd in þ rb � qi if Rd in þ rb > qi and adi in > a > adf in

0 if Rd in þ rb � qi and adi in > a > adf in

8>>>>>>><
>>>>>>>:

(36)
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GLOBAL EQUATIONS OF THE MOVEMENT

From the previous sections, we can derive the following global

equations of the movement:

• For the coordinate xin,

X d
dt

@T
@ _xin

� �
�
X @T

@xin
þ
X @U

@xin
þ
X @DR

@ _xin
¼ Qx

• So, the differential equation of the movement is:

min þmrotorð Þ€xin �
XZ

i¼1

Cind
3=2
in i þ Din _riCin

" #
xin � ricosðaiÞ

qi

¼ Fex þ Fucosain

(37)

• For the coordinate yin,

X d
dt

@T
@ _yin

� �
�
X @T

@yin
þ
X @U

@yin
þ
X @DR

@ _yin
¼ Qy

the differential equation of the movement is:

minþmrotorð Þ €yin�gð Þ�
XZ

i¼1

Cind
3=2
in i þDin _riCin

" #
yin�risinðaiÞ

qi

¼FeyþFusinain

(38)

• For the coordinate ri,

X d
dt

@T
@ _ri

� �
�
X @T

@ri
þ
X @U

@ri
þ
X @DR

_ri
¼ Qrj;

i ¼ 1; 2; 3; :::;Z

so, the equation of the movement is:

mb€ri �mb _ri _a2
i þmb g sinai �

XZ

i¼1

Cind
3=2
in i þ Din _riCin

" #

@qi

@ri
þ Coutd

3=2
out i þ Dout _riCout ¼ 0

Cin ¼ 0 if din < 0; Cin ¼ 1 if din � 0

Cout ¼ 0 if dout < 0 ; Cout ¼ 1 ifdout � 0
(39)

where i ¼ 1; 2; 3; :::;Z

FIG. 4

Model of fault at inner race.

FIG. 5 Nomenclature used in fault at inner raceway.
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Simulation Analysis

The simulation analysis carried out from the movement equa-

tions that model the behavior of the rolling element bearing is

presented in this section. MATLAB and SIMULINK have been chosen

as the platforms to make the different analyses because of the

high capabilities that this software presents as a tool for model-

ing and simulating general processes. The differential equations

that model the process and the movement of the elements in

the bearing can be easily implemented, and also the parameters

can be easily modified with the purpose of analyzing several

behaviors.

MATLAB and SIMULINK have been usually employed in many

systems as a modeling and simulation tool. Moreover, this sim-

ulation software has been used on several occasions as a tool to

simulate certain systems or components of rolling element bear-

ings. Thus, for example, MATLAB-based software is used to pro-

vide a framework for in-depth simulation of motor system

dynamics [36]. This tool is used to process the data acquired by

the system with different operating and loading conditions, in a

cost-effective and time-efficient manner. MATLAB is employed in

this case to process the data experimentally obtained. Finally,

Liu et al. [37] uses MATLAB for monitoring the roller bearing con-

ditions with the purpose of applying a feature-selection tech-

nique to the data obtained from vibration signals. However,

MATLAB and SIMULINK have not been employed to generate the

signals and movement conditions on rolling element bearings

until now. In this paper we make use of these equations to gen-

erate the movement signals of each element that constitute the

bearing. Once the equations are processed, different conditions

can be simulated.

The parameters of the rolling element bearing are saved in

a configuration file. In the simulation scheme, the movement

equations obtained in the previous section are included. Also, a

global reference system located in the center of the outer race

(stationary) is assumed.

Table 2 represents the parameters used for the simulation of

the previously modeled system. These values were obtained

through the geometric analysis of the rolling bearing employed

in the experimental study (as was done with the application of

Hertz’ theory [1]). In this work, the calculation of these parame-

ters are not presented but the results of calculations are similar

to those proposed in the literature by other authors [1]. This

will enable the analysis from the simulation to be subsequently

compared with experimental data obtained on the specially

developed testbench. The selected data used in simulation cor-

respond to the values of a commercial ball bearing element

(SKF 6206). In this way, it will be possible to compare and vali-

date the simulation results achieved with regard to the experi-

mental results obtained with this real bearing.

SIMULINK offers multiple possibilities for carrying out a sim-

ulation via the differential equations that govern the system’s

behavior. The procedure of simulation employed uses the

Runge-Kutta 4th–5th order method. This is a fixed-step simula-

tion method. The period chosen is 0.1 ms. To suppress the tran-

sitory state at the beginning of the simulation, a total of 1.2 s is

simulated and data relating to the initial 0.2 s is eliminated. The

transitory state is thus avoided, and based on specific initial

conditions, we may focus on its steady state.

It is necessary to set some conditions regarding the specific

operating parameters. This will allow us to contrast the results

of the simulation (obtained via equations of movement) with

regard to the experimental results (obtained via the use of the

developed testbed). We now list these values to be used in the

simulation:

1. The initial position of the center of the inner ring (xo
in,

yo
in) will be taken as the static deflexion experienced by

the rolling bearing under load conditions.
2. The conditions of the bearing’s spin velocity will be vari-

able: 5, 10, 15, 20, 25, 30, 40, and 50 Hz (300, 600, 900,
1200, 1500, 1800, 2400, and 3000 rpm) and the radial load
applied to the rolling bearing will be 3000 N. These values
are usual in conventional machines.

Next, graphics are presented that show the results of €yin

obtained by simulation, in different conditions for models with

5 and 11 DOF (three and nine balls, respectively). To contrast

these results with those obtained in the developed experimental

system, which will be presented in the following section, the

behavior of the rolling bearing under vibration has been simu-

lated at different speeds.

In Fig. 6, we show the results of €yin achieved by simulation

of vibration at different speeds (5, 10, 20, 30, and 40 Hz) of

models with 5 DOF (three balls). In these figures, we can see the

modulated peaks that correspond to the presence of the defect

in the inner ring. Figure 7 represents envelope power spectrums,

determined via the FFT (fast Fourier transform) of each of the

temporal envelope of signals obtained in the simulation at each

velocity. In this figure, we can observe a dominant peak very

close to the ball passing inner race frequency.

TABLE 2 Values of the parameters used for the rolling bearing

element.

Item Value Unit Item Value Unit

xin 600–3000 rpm rb 4.75 mm

Rin 18.25 mm Rout 27.75 mm

Cin 779180 N/mm3/2 Cout 897760 N/mm3/2

min 0.061 kg mout 0.075 kg

mb 0.0035 kg mrotor 1.5 kg

Din 0.2 N�s/mm Dout 0.2 N�s/mm

Fu 0 N Fe 0 N

h 0.01 mm Z 3 and 9

ro
i 23 mm Vro

i 0 m/s

Vxo
in 0 m/s Vyo

in 0 m/s
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FIG. 6

Signals obtained of the proposed model,

which has 5 DOF for different speeds (Hz)

of inner race.

FIG. 7

Envelope power spectrum of signals shown

in Fig. 6.
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FIG. 8

Signals obtained of the proposed model,

which has 11 DOF for different speeds (Hz)

of inner race.

FIG. 9

Envelope power spectrum of signals shown

in Fig. 8.
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Finally, Fig. 8 presents results of €yin achieved by simulation

of vibration at different speeds of model with 11 DOF (nine

balls). Also we can see the modulated peaks that correspond to

the presence of the defect in the inner ring. As we can observe

the frequency of these peaks is bigger because of the number of

balls passing through the defect. Also, Fig. 9 represents envelope

power spectrums. We observe a dominant peak very close to

the ball passing inner race frequency.

Experimental Setup

With the aim of comparing the results achieved in simulation,

a testbed has been developed. This testbed allows acquisition

of multiple signals of mechanical vibrations from the

elements of the rolling bearing when it is subject to different

load conditions. The main features of this platform are the

following:

1. The testbed allows reproduction of the variables analyzed
and previously simulated. For this reason, the platform
has a mechanism that allows application of different loads
on the rolling bearing. The loads can be applied as axial
or radial forces on the rolling bearing.

2. The force applied to the bearing element must to be con-
trolled and sensed directly in a simple way. This can be
accomplished through a load cell.

3. The testbed must have the ability to control properly and
accurately the rotation speed, keeping the selected refer-
ence with an error less than 0.5 %.

4. The testbed must allow a simple coupling of the rolling
bearing to carry out multiple tests

Taking into account these characteristics to obtain the

vibration modes of the structure, the platform is developed by

means of steel beams that provides high rigidity, high damping

coefficients, and nominal frequencies far away from the

expected defect frequencies such as misalignments, unbalance,

possible faults in the rolling bearings, etc. An image of the

developed testbed is shown in Fig. 10.

On the main structure, two rolling bearings are added.

These rolling bearings support the main shaft. This shaft, in its

rotation movement, makes the rotation of the tested rolling

bearing that is located on one side of the shaft. A fixation sys-

tem composed of a washer and hexagonal bolt avoids sliding of

the inner race of the tested rolling bearing over the surface of

the axis. The motion from the electric motor to the main shaft

is carried out through a belt. The load acting over the rolling

bearing is transmitted by means of two spindles working axially

and radially. The control of the load acting over the rolling bear-

ing is performed by means of two load cells. These load cells have

a range under 10 000 N. The roller bearing housing has been

designed with the purpose of providing an easy system to change

the bearing without the necessity of using special tools.

We have designed this part paying particular attention to

the working frequencies of vibration. The purpose is that these

frequencies were further away than the expected vibration fre-

quencies generated in rolling bearings with a fault. The speed

FIG. 10

(a) Testbed, and (b) rolling bearing element: I, outer race; II,

inner race; III, balls; IV, cage; V, assembling tool.

FIG. 11

Rolling bearing of (a) nine balls, and (b)

three balls.
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FIG. 12

Experimental signal for inner race detect.

FIG. 13

Envelope power spectrum of signals shown

in Fig. 12.
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control of the electric motor is accomplished by means of a fre-

quency inverter. The frequency of the output currency can be

modified from 0 to 110 Hz allowing a variation in the speed of

the motor beyond 3000 rpm.

For the experimental analysis of the system with 5 DOF (three

balls), as the commercial ball bearing had nine balls, six were

extracted, leaving a ball bearing with three evenly spaced balls.

To get a representative experimental signal for each case

studied, and to minimize any randomness associated with

experiments, a large number of tests have been carried out as

follows. The experiment is composed of 10 trials. For each test,

we employed 10 different bearings. For each of these bearings,

10 data files were extracted (samples acquired at different time

intervals). So the result of each experiment (shown in the fig-

ures) is composed by 1000 measures. In these experiments we

have employed:

• New ball bearings and rolling bearings with localized
defects.

• Bearings of nine and three balls (Fig. 11).
• The speed has been varied through 5, 10, 15, 20, 25, 30,

40, and 50 Hz.
Figures 12 and 13, represent one example of the experimen-

tal results of €yin obtained for the system with 5 DOF (three

balls) when the ball bearing is submitted to different speeds.

The tests were carried out at the same velocities as those done

under simulation with the aim of contrasting the results. Figure

12 shows the data obtained in one of these tests under different

speeds (5, 10, 20, 30, and 40 Hz). This result corresponds to a

test of a rolling bearing with three balls and with one localized

defect in its inner ring. Also, Fig. 13 shows the fast Fourier trans-

form of these temporal envelope of signals.

Overall Analysis

In this section, we compare the signals obtained in simulation

with the result obtained with real equipment. To compare these

signals we have employed the fast Fourier transform of both sig-

nals achieving the envelope power spectrum.

Figure 14(a) and 14(b) show, for a bearing with an inner

race localized defect, the experimental signal and the simulated

signal, respectively. Also, the frequency spectrum of the signal

and those obtained from the acceleration response of the pro-

posed model are shown in Fig. 15(a) and 15(b), respectively.

As we can see in Fig. 15(a), the envelope power spectrum

contains a dominant peak very close to the ball passing the

inner race frequency (36.2 Hz). The peaks that ended with point

are the harmonic of defect frequency. This figure shows also a

peak at 20 Hz (ended with a square) corresponding to the rota-

tion frequency. Figure 15(b) is the envelope power spectrum of

the acceleration response obtained from the proposed model.

As it can be seen, there is a dominant peak at 36.19 Hz, which is

almost near to the ball passing inner race frequency. Harmonics

also appear at the frequency of the defect (peaks ended with

point) and peak of the rotation frequency (ended with square).

The peak that ended with an arrow (16.2 Hz–56.2 Hz) and the

peak that ended with a triangle (52.4 Hz–92.0 Hz) are sidebands

of the first and second harmonic of the fault frequency, respec-

tively. The above study shows that the main contributions of

the envelope power spectrum obtained by the proposed model

are in accordance with the reported experimental spectra for an

inner race defect condition.

With the purpose of comparing the large set of results in

the tests and the corresponding simulations, we have analyzed

the time evolutions of the spectral power. Figure 16 shows the

experimental data and the simulations of the models to com-

pare them. We can see the evolution graphs of spectral power

concerning the speed of the inner race, for the bearing of 5

DOF (Fig. 16(a)) and for the bearing of 11 DOF (Fig. 16(b)),

both without defect. Also, in this figure, we show the same sim-

ulations and the experimental results with a defect in the inner

race for the bearing of 5 DOF (Fig. 16(c)) and for the bearing of

FIG. 14 (a) Experimental signal (€yin), and (b) signal obtained from the

proposed model with 5 DOF.

FIG. 15 Envelope power spectrum of signals shown in Fig. 14.
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11 DOF (Fig. 16(d)). The experimental values are according to

the average of the test results.

It is observed that in all cases the obtained simulation

results match with the experimental results. This is true for roll-

ing bearings without defect and rolling bearings containing

localized surface defects on the inner raceway. We also observe

the same trend in each case as speed increases. As we can

deduce from the figures, the value of the spectral power in the

case of a rolling bearing without defect is lower than the defec-

tive rolling bearing.

Conclusions

A new analytic model of dynamic behavior of a ball bearing

with or without localized defects has been presented by applying

Lagrange’s formulation. The integration of non-linear equations

of motion were carried out on MATLAB by using the Runge Kutta

4th–5th order method.

The ball bearing model allows for the possibility of varying

geometric, kinematic, structural (stiffness and damping in

contact), or dynamic parameters, as well as the presence of

localized defects in its inner or outer ring. By means of the sim-

ulation of the model we can estimate the radial position, veloc-

ity, and acceleration of the balls in the bearing and the central

point of the inner ring, forces, and shifts in the contacts, etc.

The model has been tested for a configuration of three balls

(5 DOF) and nine balls (11 DOF) to better appreciate the phe-

nomena associated with its operation and was also tested for the

operating conditions of a conventional machine. The simulation

results obtained using the analytical model (vibrations) agree

reasonably well with the predictions. A well-defined temporary

signal was obtained along with various spectrums where the

dominant harmonics are usually associated with the FFT of the

ball bearing. The presence of defects in the model originates

dominant peaks in the frequency of the defect.

The vibratory behavior of the analytic ball bearing model

has been experimentally compared by means of a testbed specif-

ically designed to sense these characteristics. We have presented

simulation results of several ball bearings that have been

employed in real experiments in the testbed. When comparing

results obtained from the dynamic bearing model with the ex-

perimental results, using the evolution of the spectral power, we

can observe a similar behavior. Thus, we can conclude that the

analytical model presented has been validated through experi-

mental results in real cases.
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