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Preface

This book contains a selection of papers accepted for presentation and discussion at
ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal,
November 19th–21st, 2015. ROBOT 2015 is part of a series of conferences that are
a joint organization of SPR – “Sociedade Portuguesa de Robótica/Portuguese
Society for Robotics”, SEIDROB – Sociedad Española para la Investigación y
Desarrollo de la Robótica/Spanish Society for Research and Development in
Robotics and CEA-GTRob – Grupo Temático de Robótica/Robotics Thematic
Group. The conference organization had also the collaboration of several univer-
sities and research institutes, including: University of Minho, University of Porto,
University of Lisbon, Polytechnic Institute of Porto, University of Aveiro,
University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS.

Robot 2015 builds upon several successful events, including three biennal
workshops (Zaragoza- 2007, Barcelona – 2009 and Sevilla – 2011) and the first
Iberian Robotics Conference held in 2013 at Madrid. The conference is focussed on
the Robotics scientific and technological activities in the Iberian Peninsula,
although open to research and delegates from other countries.

Robot 2015 featured three plenary talks by:

• Manuela Veloso, Herbert A. Simon University Professor at Carnegie Mellon
University, USA, on “Symbiotic Autonomous Mobile Service Robots”;

• Bill Smart, director of the Personal Robotics Group at Oregon State University,
USA on “How the Law Will Think About Robots (and Why You Should
Care)”; and

• Jon Agirre Ibarbia, co-ordinator of R&D projects at TECNALIA Research &
Innovation, Spain, on “Applications in Flexible Manufacturing with Humans
and Robots”.

Robot 2015 featured 19 special sessions, plus a main/general robotics track. The
special sessions were about: Agricultural Robotics and Field Automation;
Autonomous Driving and Driver Assistance Systems; Communication Aware
Robotics; Environmental Robotics; Social Robotics: Intelligent and Adaptable AAL
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Systems; Future Industrial Robotics Systems; Legged Locomotion Robots;
Rehabilitation and Assistive Robotics; Robotic Applications in Art and Architecture;
Surgical Robotics; Urban Robotics; Visual Perception for Autonomous Robots;
Machine Learning in Robotics; Simulation and Competitions in Robotics;
Educational Robotics; Visual Maps in Robotics; Control and Planning in Aerial
Robotics, the XVI edition of the Workshop on Physical Agents and a Special
Session on Technological Transfer and Innovation.

In total, after a careful review process with at least three independent reviews for
each paper, but in some cases 4 or 5 reviews, a total of 118 high quality papers were
selected for publication, with a total number of authors over 400, from 21 countries,
including: Brazil, China, Costa Rica, Croatia, Czech Republic, Ecuador, France,
Germany, Italy, India, Iran, The Netherlands, Poland, Portugal, Serbia, Singapore,
Spain, Switzerland, United Kingdom, USA and Viet Nam.

ROBOT 2015 was co-located with the RoCKIn Competition 2015, which took
place in the Parque das Nações, Lisboa, between 19 and 23 November, nearby the
conference venue. RoCKIn is a Coordination Action funded by the European
Commission FP7, and its main goal is to foster robotics research, education and
dissemination through robot competitions. Thirteen teams from seven countries,
including two teams from Mexico, were qualified and competed in
RoCKIn@Home and RoCKIn@Work Challenges. Participants from both events
had the opportunity to join in social events and to visit both venues, taking
advantage of an extraordinary opportunity to follow presentations and actual robot
systems showing recent results in this exciting field.

We would like to thank all Special Sessions’ organizers for their hard work on
promoting their special session, inviting the Program Committee, organizing the
Special Session review process and helping to promote the ROBOT 2015
Conference. This acknowledgment goes especially to Vitor Santos, Angel Sappa,
Miguel Oliveira, Danilo Tardioli, Alejandro Mosteo, Luis Riazuelo, João Valente,
Antonio Barrientos, Luís Santos, Jorge Dias, Raul Morais Santos, Filipe Santos,
Germano Veiga, José Lima, Guillermo Heredia, Anibal Ollero, Manuel Silva,
Cristina Santos, Manuel Armada, Vicente Matellán, Miguel Ángel Cazorla,
Rodrigo Ventura, Nicolas Garcia-Aracil, Alicia Casals, Elena García, José Pedro
Sousa, Marta Malé-Alemany, Paulo Gonçalves, Jose Maria Sabater, Jorge Martins,
Pedro Torres, Tamás Haidegger, Alberto Sanfeliu, Juan Andrade, João Sequeira,
Anais Garrell, Andry Maykol Pinto, Aníbal Matos, Nuno Cruz, Brígida Mónica
Faria, Luis Merino, Nuno Lau, Artur Pereira, Bernardo Cunha, Armando Sousa,
Fernando Ribeiro, Eduardo Gallego and Oscar Reinoso Garcia.

We would also like to take this opportunity to thank the rest of the organization
members (Carlos Cardeira, Brígida Mónica Faria, Manuel Fernando Silva, Daniel
Castro Silva and Pedro Fonseca) for their hard and fine work on the local
arrangements, publicity, publication and financial issues. We also express our
gratitude to the members of all the Program Committees and additional reviewers,
as they were crucial for ensuring the high scientific quality of the event and to all
the authors and delegates whose research work and participation made this event a
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success. Last, but not the least, we acknowledge and thank our editor, Springer, that
was in charge of these proceedings, and in particular to Dr. Thomas Ditzinger.

November 2015 Luís Paulo Reis
António Paulo Moreira

Pedro U. Lima
Luis Montano

Victor Muñoz-Martinez
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Monte-Carlo Workspace Calculation
of a Serial-Parallel Biped Robot

Adrián Peidró, Arturo Gil, José María Marín, Yerai Berenguer,
Luis Payá and Oscar Reinoso

Abstract This paper presents the Monte-Carlo calculation of the work-space of a
biped redundant robot for climbing 3D structures. The robot has a hybrid serial-
parallel architecture since each leg is composed of two parallel mechanisms con-
nected in series. First, the workspace of the parallel mechanisms is characterized.
Then, a Monte-Carlo algorithm is applied to compute the reachable workspace of
the biped robot solving only the forward kinematics. This algorithm is modified
to compute also the constant-orientation workspace. The algorithms have been im-
plemented in a simulator that can be used to study the variation of the workspace
when the geometric parameters of the robot are modified. The simulator is useful for
designing the robot, as the examples show.

Keywords Climbing robots · Hybrid robots · Monte-Carlo · Redundant robots ·
Workspace

1 Introduction

Theworkspace of amanipulator can be defined as the set of positions and orientations
that can be attained by the end-effector, and it plays a crucial role when designing
the robot or planning its movements. Methods for determining the workspace can be
classified as analytic or numerical. Analyticmethods obtain closed-form descriptions
of the boundaries of the workspace, they are more efficient but limited to specific
classes of manipulators [5, 16]. Numerical methods [4, 11] can be applied to wider
classes of robots and are more flexible. Amongst the numerical methods, Monte-
Carlo algorithms [1] are specially interesting for complex and redundant robots,
such as humanoid robots [9].
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In this paper, we apply a well-known Monte-Carlo algorithm [1] to compute the
workspace of a robot designed to climb and explore 3D structures, with the purpose
of studying how this workspace is affected by the geometric design parameters of the
robot. 3D structures, such as metallic bridges or power transmission lines, require
periodic maintenance and inspection tasks that are dangerous for human workers due
to risks such as falling from height. To avoid these risks, many climbing robots have
been developed to execute these tasks. Climbing robots can have serial [3, 8, 12,
14, 17], parallel [2] or hybrid [7, 15] architecture. Serial architectures have smaller
load capacity than parallel robots, but have larger workspaces, which is useful for
exploring complex 3D structures. Parallel robots have a limited workspace, but a
high load-to-weight ratio that is useful for climbing robots since they must carry
their own weight. Finally, hybrid robots have the advantages of both architectures,
which makes them very interesting for climbing 3D structures.

The robot studied in this paper is shown in Figure 1a. The robot is biped and
hybrid, since each leg is composed of two serially connected parallel mechanisms.
Its legs are specially designed to facilitate the execution of the typical movements
that are necessary to explore 3D structures, such as movements along beams or
columns, or transitions between planes with different spatial orientation. Also, the
robot is redundant, because it has 10 degrees of freedom between its feet. Due to
the complexity of this robot, it is difficult to obtain an analytic description of its
workspace, hence we decided to use a simple Monte-Carlo method.

This paper is organized as follows. Section 2 briefly describes the architecture
of the robot and analyzes the workspace of the parallel mechanisms of the legs. In
Section 3, the solution to forward kinematics is used with a Monte-Carlo method
to compute the workspace of the robot. Then, Section 4 presents a simulation tool
developed to study the relation between the design parameters of the robot and its
workspace. Finally, the conclusions are exposed in Section 5.

2 Robot Architecture and Workspace of the Parallel
Mechanisms

Figure 1a shows the studied robot. It has two legs {A, B} connected to a hip H through
revolute joints (angles θA and θB). Each leg j is composed of a core link C j and two
platforms P1 j and P2 j . Each platform is connected to C j through a passive slider
and two linear actuators in parallel, constituting the parallel mechanism of Figure 1b.
Thus, each leg is composed of two parallel mechanisms of this type connected in
series. The robot has 10 degrees of freedom: eight linear actuators in the legs and two
revolute joints in the hip. The reference frames E A and EB of Figure 1a are attached
to the platforms P1A and P1B , which are the feet. The reference frames HA and HB

are fixed to the hip. All these reference frames have their origins in the middle plane
of the legs, as shown in Figure 1a.
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Fig. 1 (a) CADmodel of the studied climbing robot. The X , Y , and Z axes of the reference frames
are indicated with red, green, and blue colors, respectively. (b) 2-DOF parallel mechanism of the
legs of the robot.

Next, we will analyze the workspace of the parallel mechanisms. Figure 1b shows
the i-th parallelmechanism of the leg j (i ∈ {1, 2}, j ∈ {A, B}), which has a platform
Pij connected to the core link C j through a passive slider and two linear actuators of
lengths uij and vij. The forward kinematics of this mechanism consists in computing{

yij, ϕij
}
in terms of

{
uij, vij

}
, and this problem was solved in [10]. The inverse

problem can be easily solved analyzing Figure 1b:

ui j =
√

(p cosϕij − b)2 + (yij − p sin ϕij)2 (1)

vi j =
√

(p cosϕij − b)2 + (yij + p sin ϕij)2 (2)

In practice, the linear actuators have a minimum length ρ0 > 0 and a stroke�ρ > 0,
which means that uij, vij ∈ [ρ0, ρ0 + �ρ]. Thus, the workspace can be defined as
the set of pairs (yij, ϕij) for which the right-hand side of both Eqs. (1) and (2) is in
[ρ0, ρ0+�ρ]. For example, Figure 2 shows theworkspace for b = p = 4,ρ0 = 19.5,
and �ρ = 5 (all in cm). This workspace is composed of four regions Ri enclosed by
the curves where uij or vij equal ρ0 or ρ0 + �ρ. The configuration of the mechanism
is different in each region, as shown in Figure 2. Only the configurations of R1 are
valid, since the configurations of the other regions require mechanical interferences:
yij cannot be negative (regions R3 and R4), and the linear actuators cannot interfere
with the passive slider (regions R2 and R4). Thus, for this example the workspace is
defined as follows:

WS =
{
(ϕij, yij) ∈ R

2 : ϕmin ≤ ϕij ≤ ϕmax, yij(ϕij) ≤ yij ≤ yij(ϕij)
}

(3)
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Fig. 2 Workspace of a parallel mechanism with b = p = 4, ρ0 = 19.5, �ρ = 5 (cm)

where yij(ϕ
∗) and yij(ϕ

∗) are the lower and upper bounds of the variable yij for
ϕij = ϕ∗, respectively (see Figure 2). In the following, we will assume that the
workspace of the parallel mechanisms has the form of Eq. (3), which defines a more
general set. Although this type of workspace has been derived from a particular
geometry, the workspace of the parallel mechanisms will be similar to the region R1

of Figure 2 if b, p, and �ρ are similar and small compared to ρ0.

3 Monte-Carlo Workspace Calculation

In this section, we will use the equations of forward kinematics with a Monte-Carlo
method to compute theworkspace. Theworkspace considered here is the set of points
that can be attained by one foot of the robot (free foot) when the other foot is fixed.
Since the robot is symmetric, we can consider, without loss of generality, foot A as
the fixed foot and foot B as the free one.

3.1 Forward Kinematics

Next, we will compute the position and orientation of the foot B relative to the foot
A in terms of the rotations of the hip (angles θA and θB) and the rotations ϕij and
translations yij of the parallel mechanisms (i ∈ {1, 2}, j ∈ {A, B}). First, we will
obtain the relative position and orientation between the hip and the foot of a generic
leg j . According to Figure 3, the position and orientation of the hip relative to the
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Fig. 3 Kinematics of the generic leg j ∈ {A, B}.

foot of the leg j can be obtained multiplying the following matrices, which relate
the reference frames E j , Fj , G j , and Hj :

TE j

Hj
= TE j

Fj
TFj

G j
TG j

Hj
=

⎡

⎢⎢
⎣

cϕ1 j sϕ1 j 0 y1 j sϕ1 j

−sϕ1 j cϕ1 j 0 y1 j cϕ1 j

0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦×

⎡

⎢⎢
⎣

cϕ2 j −sϕ2 j 0 0
sϕ2 j cϕ2 j 0 y2 j − h
0 0 1 0
0 0 0 1

⎤

⎥⎥
⎦

⎡

⎢⎢
⎣

cθ j 0 sθ j 0
0 1 0 0

−sθ j 0 cθ j 0
0 0 0 1

⎤

⎥⎥
⎦ =

⎡

⎢⎢
⎣

cθ j c� j s� j sθ j c� j y j sϕ1 j

−cθ j s� j c� j −sθ j s� j y j cϕ1 j

−sθ j 0 cθ j 0
0 0 0 1

⎤

⎥⎥
⎦ (4)

where � j = ϕ1 j − ϕ2 j , y j = y1 j + y2 j − h, and h is the size of the core link of
the leg j . The symbols sx and cx denote respectively sin(x) and cos(x), and θ j is the
angle that the frame G j must be rotated about its Y axis to align that frame with the
frame Hj of the hip (shown in Figure 1a). Particularizing the previous matrix for
the two legs of the robot ( j = A and j = B), we obtain the position and orientation
of the foot B with respect to the foot A as follows:

TE A
EB

= TE A
HA

THA
HB

THB
EB

= TE A
HA

[
I [t, 0, 0]T

01×3 1

] (
TEB

HB

)−1
(5)

where I is the 3×3 identity matrix, 01×3 = [0, 0, 0], and THA
HB

encodes the position
and orientation of the frame HB relative to the frame HA (see Figure 1a). Performing
the products of Eq. (5), the matrix that encodes the position and orientation of the
frame EB relative to the frame E A can be written as follows:

TE A
EB

=
[

RE A
EB

[
px py pz

]T

01×3 1

]
(6)
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The position vector of the previous matrix has the following expression:

⎡

⎣
px

py

pz

⎤

⎦ = yA

⎡

⎣
sϕ1A

cϕ1A

0

⎤

⎦ + yB

⎡

⎣
−c�c�A sϕ2B − s�A cϕ2B

c�s�A sϕ2B − c�A cϕ2B

s�sϕ2B

⎤

⎦ + t

⎡

⎣
cθA c�A

−cθA s�A

−sθA

⎤

⎦ (7)

where � = θA − θB . The rotation submatrix of TE A
EB

has the following form:

RE A
EB

=
⎡

⎣
s�A s�B + c�c�A c�B s�A c�B − c�c�A s�B s�c�A

c�A s�B − c�s�A c�B c�A c�B + c�s�A s�B −s�s�A

−s�c�B s�s�B c�

⎤

⎦ (8)

Next, Eqs. (7) and (8) will be used to compute the following workspaces:

– Reachable workspace: the set of points P = [px , py, pz]T that can be reached by
the free foot with at least one orientation

– Constant-orientation workspace: the set of points P = [px , py, pz]T that can be
reached by the free foot with a specific orientation

3.2 Computation of the Reachable Workspace

Once the solution to forward kinematics of the complete biped robot is available,
the reachable workspace can be easily generated using a Monte-Carlo method [1].
This approach consists in varying randomly the following variables in their ranges:
{ϕ1A, ϕ2A, ϕ1B, ϕ2B, yA, yB, θA, θB}, generating a point P = [px , py, pz]T for each
value of these variables. The generated points form a 3D cloud point in space that
constitutes a discrete approximation of the workspace.

To apply this method, we must find the variation ranges of the previous variables,
for each leg j . It will be assumed that θ j ∈ [−π, π ] (the legs can perform complete
revolutions about the axes of the hip). The angles ϕij must belong to the workspace
of the parallel mechanisms of the legs. It will be assumed that such workspaces are
of the type studied in Section 2, which implies that ϕmin ≤ ϕij ≤ ϕmax. Finally, the
valid ranges for y j can be found as follows: given ϕij ∈ [ϕmin, ϕmax] (i ∈ {1, 2}), then
according to Eq. (3), yij must satisfy:

yij(ϕij) ≤ yij ≤ yij(ϕij) (9)

Since y j = y1 j + y2 j − h, then the variables y j must verify:

y1 j (ϕ1 j ) + y2 j (ϕ2 j ) − h ≤ y j ≤ y1 j (ϕ1 j ) + y2 j (ϕ2 j ) − h (10)
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Once the variation ranges of all the variables are known, the Monte-Carlo algorithm
to compute the reachable workspace can be summarized in Algorithm 1. In this
algorithm, Nr is the number of sampled random points.

Algorithm 1. Monte-Carlo calculation of the reachable workspace
1: WS = ∅ → The reachable workspace is initialized as an empty set.
2: for k = 1 to Nr do
3: Randomly sample θA and θB in [−π, π ]
4: Randomly sample ϕ1A, ϕ2A, ϕ1B , and ϕ2B in [ϕmin, ϕmax]
5: Compute the lower and upper limits for y j ( j ∈ {A, B}):
6: y j = y1 j (ϕ1 j ) + y2 j (ϕ2 j ) − h
7: y j = y1 j (ϕ1 j ) + y2 j (ϕ2 j ) − h
8: Randomly sample y j in [y j , y j ] ( j ∈ {A, B})
9: Compute the position P = [px , py, pz]T of the free foot using Eq. (7)
10: Add the point P to WS
11: end for

To sample the variables θA and θB in line 3 of Algorithm 1, a uniform distribution
can be used. However, the variables y j and ϕij (whose limits define the limits of
the workspace) should be sampled using a beta distribution with parameters α, β ∈
(0, 1). Using this non-uniform distribution for these variables favors the generation
of random points close to the boundaries of the workspace, which results in a better
definition of these boundaries [6].

3.3 Computation of the Constant-Orientation Workspace

The constant-orientation workspace is the set of points of the space that can be
reached with a desired orientation, which can be specified as:

RE A
EB

=
⎡

⎣
r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤

⎦ (11)

where rij are known quantities. Algorithm 1 can still be used to generate random
points in the constant-orientation workspace. However, unlike in Algorithm 1, not
all the angles {ϕij, θ j } can be sampled independently now: these angles must satisfy
certain relations to guarantee that the generated random points have the desired
orientation. Two cases are distinguished:

Case 1: r2
33 �= 1. Equating the element (3,3) of matrices (8) and (11) permits com-

puting the angle � as follows:

c� = r33 −→ s� = σ

√
1 − r233 −→ � = θA − θB = atan2(s�, c�) (12)
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where σ ∈ {−1, 1}. Once s� is known, Equating the elements (1,3), (2,3), (3,1) and
(3,2) of Eqs. (8) and (11) allows for the calculation of �A and �B :

c�A = r13/s�, s�A = −r23/s� −→ �A = ϕ1A − ϕ2A = atan2(s�A , c�A) (13)

c�B = −r31/s�, s�B = r32/s� −→ �B = ϕ1B − ϕ2B = atan2(s�B , c�B ) (14)

Note that Eqs. (12), (13), and (14) fix the differences θA − θB , ϕ1A − ϕ2A, and
ϕ1B − ϕ2B , respectively. Thus, we cannot give random values to the six angles
{ϕ1A, ϕ2A, ϕ1B, ϕ2B, θA, θB} simultaneously. Instead, we can give values to the an-
gles {θB, ϕ2A, ϕ2B} and compute the other three angles using the previous equations
to guarantee that the generated points have the desired orientation. Note that, after
calculating {ϕ1A, ϕ1B}, these angles may not be in [ϕmin, ϕmax], in which case the
point must be discarded since it does not satisfy the joint limits.

Case 2: r2
33 = 1. In this case, � can be calculated from Eq. (12), but �A and �B

cannot be computed from Eqs. (13) and (14) since s� = 0. To compute these angles,
we substitute c� = r33 into the elements (1,2) and (2,2) of Eq. (8) and equate these
elements to r12 and r22:

[
r12
r22

]
=

[
s�A c�B − r33c�A s�B

c�A c�B + r33s�A s�B

]
=

[
sin(�A − r33�B)

cos(�A − r33�B)

]
(15)

where the last equality is true because r33 = 1 or r33 = −1. In this case, Algorithm 1
can also be used with the following modification: {ϕ1B, ϕ2B, ϕ2A} are randomly
sampled,whereasϕ1A is computed asϕ1A = ϕ2A+r33�B+atan2(r12, r22), discarding
the point if ϕ1A /∈ [ϕmin, ϕmax].

Finally, the previous methods compute discrete approximations of the solid
workspace. However, for practical purposes (e.g., for visualization) it is sufficient
to know the surfaces that delimit these solids. The boundaries of the computed
workspaces can be extracted using the algorithm described in [1], which defines a
3D grid composed of Ng boxes in each dimension. The boxes that contain workspace
points are marked with “1”, whereas the remaining boxes are marked with “0”. Then,
the workspace boundary is composed of the boxes that are marked with “1” and have
at least one neighboring box marked with “0”.

4 Simulation Tool and Examples

This section presents a simulation tool developed in Java to study the workspace of
this robot. The tool can be downloaded from http://arvc.umh.es/parola/climber.html
and may require the latest version of Java.

http://arvc.umh.es/parola/climber.html
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Fig. 4 Simulator developed to study the workspace of the biped robot.

The tool, which has four windows, is shown in Figure 4. Window 1 shows the
workspace of the parallel mechanisms, as defined in Section 2, so that the user can
see if this workspace has the form of Eq. (3). Window 2 shows the biped robot in a
virtual environment composed of two beams, along with the workspace calculated
using the previous Monte-Carlo method. In the simulator, the foot A is fixed to the
horizontal beam, and the foot B is free.Window3 has some sliders and numeric fields
to modify the value of the joint coordinates. When a joint coordinate is modified, the
forward kinematics is solved and the posture of the robot in Window 2 is modified
accordingly. Window 3 also shows the current position and orientation of the foot B
(vector [px , py, pz]T and matrix RE A

EB
). Finally, Window 4 can be used to design

the robot: in it, the six design parameters {h, b, t, p,�ρ, ρ0} (in cm) can be modified
to study how the shape and size of the workspace varies with these parameters.

Next, wewill analyze some examples that showhow this tool can be used to design
the robot. In the following examples, the shownworkspaces have been obtained using
Nr = 2 · 106 random points and Ng = 50.
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Fig. 5 Variation of the reachable workspace when h is modified.

4.1 Example 1: Sensitivity of the Reachable Workspace with
Respect to the Design Parameters

In this example, we will study the changes in the shape and size of the reachable
workspace when perturbing the design parameters from their default values: ρ0 =
19.5, �ρ = 5, b = p = 4, t = 15.6, h = 16 (all in cm). The reachable workspace
for this geometry is shown in Figure 5 (center), which shows that the points above
the fixed foot A cannot be reached by the foot B. Next, we will vary the design
parameters (one at a time, keeping the rest at their default values) to obtain a larger
workspace in which the region above the foot A is accessible.

Figure 5 shows that increasing h reduces the size of the reachableworkspace, leav-
ing its shape practically unaffected. If the parameters t and ρ0 are respectively varied
in the intervals [10, 20] cm and [15, 25] cm in the simulator, it can be checked that
the size of the workspace increases with these parameters, but its shape hardly varies
with them. Also, it can be checked that varying b in (0, 10] cm hardly affects the
shape or size of the reachable workspace. Thus, varying these four parameters gen-
erates workspaces where the points above the foot A are still inaccessible. However,
varying the parameter p modifies noticeably the shape of the workspace, as shown in

Fig. 6 Variation of the reachable workspace when p is modified.
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Fig. 7 (a) Desired position and orientation to change between different faces of a beam. For
�ρ = 5 cm (b), the constant-orientation workspace for the desired orientation does not contain
the desired point, but it contains the point for �ρ = 6 cm (c). (d) Performing transitions between
different beams using the default geometry.

Figure 6. This figure shows that the reachable workspace opens as p increases. Thus,
it is convenient to reduce p as shown in Figure 6 in order to eliminate the inaccessible
region above the foot A. It can be checked that varying �ρ in [3, 6] cm produces a
similar effect in the opposite direction: the workspace opens as �ρ decreases.

4.2 Example 2: Transition Between Different Faces
of a Beam

In this example, we assume that all the design parameters are fixed at their default
values except �ρ, whose value must be chosen so as to permit the robot to perform
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a transition between different faces of a beam, as shown in Figure 7a. According to
this figure, the desired position and orientation for the foot B relative to the fixed
foot A are given by the following matrices:

RE A
EB

=
⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦ ,

⎡

⎣
px

py

pz

⎤

⎦ =
⎡

⎣
−11
−11
0

⎤

⎦ cm (16)

Introducing these matrices in the simulator, and using �ρ = 5 cm (default stroke)
yields the constant-orientation workspace of Figure 7b. Note that, for the default
stroke, the desired point cannot be attained with the desired orientation because it
lies outside the computed constant-orientationworkspace.However, if theworkspace
is recalculated for�ρ = 6 cm, we obtain the workspace of Figure 7c, which contains
the desired point. Thus, choosing a linear actuator with a stroke of 6 cmwould permit
the robot to change between different faces of the beam in this example.

Note that the orientation defined in Eq. (16) is also necessary to attach the foot B to
the column, as indicated in Figure 7d.As shown in this figure, the constant-orientation
workspace for �ρ = 5 cm contains points that are near the surface of the column.
Thus, it is possible to attach the foot B to the column using the default geometry.

5 Conclusions and Future Work

This paper has presented aMonte-Carloworkspace analysis of a serial-parallel climb-
ing robot. First, the workspace of the parallel mechanisms has been calculated to use
it in the calculation of the workspace of the complete robot. Then, the solution to
forward kinematics has been used together with a Monte-Carlo method to compute
the reachable and constant-orientation workspaces of the robot. These calculations
have been implemented in a simulator, which has been used to manually and visually
study the sensitivity of the shape and size of the workspace with respect to the de-
sign parameters. In the future, an algorithm to automatically perform the sensitivity
analysis and optimization of the design of the robot will be devised, similar to [13].
Also, we will compute other types of workspace (such as the orientation workspace)
and study the singularities.
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