Advances in Intelligent Systems and Computing 418 Luís Paulo Reis António Paulo Moreira Pedro U. Lima Luis Montano Victor Muñoz-Martinez *Editors*

Robot 2015: Second Iberian Robotics Conference

Advances in Robotics, Volume 2

Advances in Intelligent Systems and Computing

Volume 418

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series "Advances in Intelligent Systems and Computing" contains publications on theory, applications, and design methods of Intelligent Systems and Intelligent Computing. Virtually all disciplines such as engineering, natural sciences, computer and information science, ICT, economics, business, e-commerce, environment, healthcare, life science are covered. The list of topics spans all the areas of modern intelligent systems and computing.

The publications within "Advances in Intelligent Systems and Computing" are primarily textbooks and proceedings of important conferences, symposia and congresses. They cover significant recent developments in the field, both of a foundational and applicable character. An important characteristic feature of the series is the short publication time and world-wide distribution. This permits a rapid and broad dissemination of research results.

Advisory Board

Chairman Nikhil R. Pal, Indian Statistical Institute, Kolkata, India e-mail: nikhil@isical.ac.in

Members

Rafael Bello, Universidad Central "Marta Abreu" de Las Villas, Santa Clara, Cuba e-mail: rbellop@uclv.edu.cu Emilio S. Corchado, University of Salamanca, Salamanca, Spain e-mail: escorchado@usal.es Hani Hagras, University of Essex, Colchester, UK e-mail: hani@essex.ac.uk László T. Kóczy, Széchenyi István University, Győr, Hungary e-mail: koczy@sze.hu Vladik Kreinovich, University of Texas at El Paso, El Paso, USA e-mail: vladik@utep.edu Chin-Teng Lin, National Chiao Tung University, Hsinchu, Taiwan e-mail: ctlin@mail.nctu.edu.tw Jie Lu, University of Technology, Sydney, Australia e-mail: Jie.Lu@uts.edu.au Patricia Melin, Tijuana Institute of Technology, Tijuana, Mexico e-mail: epmelin@hafsamx.org Nadia Nedjah, State University of Rio de Janeiro, Rio de Janeiro, Brazil e-mail: nadia@eng.uerj.br Ngoc Thanh Nguyen, Wroclaw University of Technology, Wroclaw, Poland e-mail: Ngoc-Thanh.Nguyen@pwr.edu.pl Jun Wang, The Chinese University of Hong Kong, Shatin, Hong Kong e-mail: jwang@mae.cuhk.edu.hk

More information about this series at http://www.springer.com/series/11156

Luís Paulo Reis · António Paulo Moreira Pedro U. Lima · Luis Montano Victor Muñoz-Martinez Editors

Robot 2015: Second Iberian Robotics Conference

Advances in Robotics, Volume 2

Editors Luís Paulo Reis Luis Montano University of Minho, School of Engineering University of Zaragoza, School of Information Systems Department Engineering and Architecture Computer and Systems Engineering Guimarães Portugal Department Zaragoza António Paulo Moreira Spain University of Porto, Faculty of Engineering INESC-TEC Victor Muñoz-Martinez Porto University of Malaga, Superior Technical School of Industrial Engineers Portugal Automatic Control and Systems Engineering Pedro U. Lima Department University of Lisbon, Instituto Superior Málaga Técnico Spain Institute for Systems and Robotics Lisboa Portugal

 ISSN 2194-5357
 ISSN 2194-5365 (electronic)

 Advances in Intelligent Systems and Computing
 ISBN 978-3-319-27148-4

 ISBN 978-3-319-27148-4
 ISBN 978-3-319-27149-1 (eBook)

 DOI 10.1007/978-3-319-27149-1

Library of Congress Control Number: 2015955886

Springer Cham Heidelberg New York Dordrecht London

© Springer International Publishing Switzerland 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com)

Preface

This book contains a selection of papers accepted for presentation and discussion at ROBOT 2015: Second Iberian Robotics Conference, held in Lisbon, Portugal, November 19th–21st, 2015. ROBOT 2015 is part of a series of conferences that are a joint organization of SPR – "Sociedade Portuguesa de Robótica/Portuguese Society for Robotics", SEIDROB – Sociedad Española para la Investigación y Desarrollo de la Robótica/Spanish Society for Research and Development in Robotics and CEA-GTRob – Grupo Temático de Robótica/Robotics Thematic Group. The conference organization had also the collaboration of several universities and research institutes, including: University of Minho, University of Porto, University of Lisbon, Polytechnic Institute of Porto, University of Aveiro, University of Zaragoza, University of Malaga, LIACC, INESC-TEC and LARSyS.

Robot 2015 builds upon several successful events, including three biennal workshops (Zaragoza- 2007, Barcelona – 2009 and Sevilla – 2011) and the first Iberian Robotics Conference held in 2013 at Madrid. The conference is focussed on the Robotics scientific and technological activities in the Iberian Peninsula, although open to research and delegates from other countries.

Robot 2015 featured three plenary talks by:

- Manuela Veloso, Herbert A. Simon University Professor at Carnegie Mellon University, USA, on "Symbiotic Autonomous Mobile Service Robots";
- Bill Smart, director of the Personal Robotics Group at Oregon State University, USA on "How the Law Will Think About Robots (and Why You Should Care)"; and
- Jon Agirre Ibarbia, co-ordinator of R&D projects at TECNALIA Research & Innovation, Spain, on "Applications in Flexible Manufacturing with Humans and Robots".

Robot 2015 featured 19 special sessions, plus a main/general robotics track. The special sessions were about: Agricultural Robotics and Field Automation; Autonomous Driving and Driver Assistance Systems; Communication Aware Robotics; Environmental Robotics; Social Robotics: Intelligent and Adaptable AAL

Systems; Future Industrial Robotics Systems; Legged Locomotion Robots; Rehabilitation and Assistive Robotics; Robotic Applications in Art and Architecture; Surgical Robotics; Urban Robotics; Visual Perception for Autonomous Robots; Machine Learning in Robotics; Simulation and Competitions in Robotics; Educational Robotics; Visual Maps in Robotics; Control and Planning in Aerial Robotics, the XVI edition of the Workshop on Physical Agents and a Special Session on Technological Transfer and Innovation.

In total, after a careful review process with at least three independent reviews for each paper, but in some cases 4 or 5 reviews, a total of 118 high quality papers were selected for publication, with a total number of authors over 400, from 21 countries, including: Brazil, China, Costa Rica, Croatia, Czech Republic, Ecuador, France, Germany, Italy, India, Iran, The Netherlands, Poland, Portugal, Serbia, Singapore, Spain, Switzerland, United Kingdom, USA and Viet Nam.

ROBOT 2015 was co-located with the RoCKIn Competition 2015, which took place in the Parque das Nações, Lisboa, between 19 and 23 November, nearby the conference venue. RoCKIn is a Coordination Action funded by the European Commission FP7, and its main goal is to foster robotics research, education and dissemination through robot competitions. Thirteen teams from seven countries, including two teams from Mexico, were qualified and competed in RoCKIn@Home and RoCKIn@Work Challenges. Participants from both events had the opportunity to join in social events and to visit both venues, taking advantage of an extraordinary opportunity to follow presentations and actual robot systems showing recent results in this exciting field.

We would like to thank all Special Sessions' organizers for their hard work on promoting their special session, inviting the Program Committee, organizing the Special Session review process and helping to promote the ROBOT 2015 Conference. This acknowledgment goes especially to Vitor Santos, Angel Sappa, Miguel Oliveira, Danilo Tardioli, Alejandro Mosteo, Luis Riazuelo, João Valente, Antonio Barrientos, Luís Santos, Jorge Dias, Raul Morais Santos, Filipe Santos, Germano Veiga, José Lima, Guillermo Heredia, Anibal Ollero, Manuel Silva, Cristina Santos, Manuel Armada, Vicente Matellán, Miguel Ángel Cazorla, Rodrigo Ventura, Nicolas Garcia-Aracil, Alicia Casals, Elena García, José Pedro Sousa, Marta Malé-Alemany, Paulo Gonçalves, Jose Maria Sabater, Jorge Martins, Pedro Torres, Tamás Haidegger, Alberto Sanfeliu, Juan Andrade, João Sequeira, Anais Garrell, Andry Maykol Pinto, Aníbal Matos, Nuno Cruz, Brígida Mónica Faria, Luis Merino, Nuno Lau, Artur Pereira, Bernardo Cunha, Armando Sousa, Fernando Ribeiro, Eduardo Gallego and Oscar Reinoso Garcia.

We would also like to take this opportunity to thank the rest of the organization members (Carlos Cardeira, Brígida Mónica Faria, Manuel Fernando Silva, Daniel Castro Silva and Pedro Fonseca) for their hard and fine work on the local arrangements, publicity, publication and financial issues. We also express our gratitude to the members of all the Program Committees and additional reviewers, as they were crucial for ensuring the high scientific quality of the event and to all the authors and delegates whose research work and participation made this event a success. Last, but not the least, we acknowledge and thank our editor, Springer, that was in charge of these proceedings, and in particular to Dr. Thomas Ditzinger.

November 2015

Luís Paulo Reis António Paulo Moreira Pedro U. Lima Luis Montano Victor Muñoz-Martinez

Organization

General/Program Chairs

Luís Paulo Reis	University of Minho, Portugal
António Paulo Moreira	University of Porto - FEUP/INESCTEC, Portugal
Pedro U. Lima	University of Lisbon – IST, Portugal
Luis Montano	University of Zaragoza, Spain
Victor F. Muñoz	University of Malaga, Spain

Organizing Committee

Luís Paulo Reis	University of Minho, Portugal (General/Program Chair)
António Paulo Moreira	University of Porto - FEUP/INESCTEC, Portugal
	(General/Program Chair)
Pedro U. Lima	University of Lisbon – IST, Portugal (General/Program Chair)
Luis Montano	University of Zaragoza, Spain (General/Program Chair)
Victor F. Muñoz	University of Malaga, Spain (General/Program Chair)
Carlos Cardeira	University of Lisbon - IST, Portugal
	(Local Arrangements Chair)
Brígida Mónica Faria	Polytechnic Institute of Porto, Portugal (Publicity Chair)
Manuel Fernando Silva	Polytechnic Institute of Porto, Portugal (Publications
	Chair)
Daniel Castro Silva	University of Porto - FEUP, Portugal (Publications
	Chair)
Pedro Fonseca	University of Aveiro, Portugal (Financial/Registration
	Chair)

General Robotics Session Organizing Committee

Luís Paulo Reis	University of Minho, Portugal
António Paulo Moreira	University of Porto - FEUP/INESCTEC, Portugal
Pedro U. Lima	University of Lisbon – IST, Portugal
Luis Montano	University of Zaragoza, Spain
Victor F. Muñoz	University of Malaga, Spain

General Robotics Session Program Committee

Alberto Sanfeliu	University Politécnica de Cataluña, Spain
Alexandre Bernardino	Universiy of Lisbon, Portugal
Alfonso García-Cerezo	University Málaga, Spain
Alícia Casals	University Politécnica de Cataluña, Spain
Americo Azevedo	FEUP/INESCTEC, Portugal
Aníbal Matos	University of Porto, Portugal
Anibal Ollero	CATEC-Universidad Sevilla, Spain
Antonio Barrientos	CAR CSIC-UPM, Spain
Antonio Fernando	University of Minho, Portugal
Ribeiro	
António José Neves	University of Aveiro, Portugal
Antonio R Jiménez	CAR-CSIC, Spain
António Pedro Aguiar	University of Porto – FEUP, Portugal
António Valente	University of Tras dos Montes e Alto Douro, Portugal
Armando Jorge Sousa	University of Porto, Portugal
Artur Pereira	University of Aveiro, Portugal
Brígida Mónica Faria	I.P. Porto, Portugal
Bruno Guerreiro	Universiy of Lisbon, Portugal
Carlos Cardeira	Universiy of Lisbon, Portugal
Carlos Cerrada	UNED, Spain
Carlos Rizzo	University of Zaragoza, Spain
Carlos Sagüés	University Zaragoza, Spain
Cristina Santos	University of Minho, Portugal
Eduardo Zalama	University of Valladolid, Spain
Estela Bicho	University of Minho, Portugal
Eugenio Aguirre	University Granada, Spain
Fernando Caballero	University Sevilla, Spain
Fernando Torres	University Alicante, Spain
Filipe Santos	FEUP/INESCTEC, Portugal
Filomena Soares	University of Minho, Portugal
Francisco Melo	University of Lisbon, Portugal
Hugo Costelha	I.P. Leiria, Portugal

Javier Pérez Turiel João Calado Jon Aguirre Jorge Dias Jorge Lobo José A. Castellanos José Luís Azevedo José Luis Magalhães Lima José L. Villarroel José M. Cañas José Nuno Pereira José Santos Victor Josep Amat Lino Marques Luis Almeida Luis Basañez Luis Merino Luis Moreno Luis Seabra Lopes Manuel Armada Manuel Bernardo Cunha Manuel Fernando Silva Manuel Ferre Marcelo Petry Maria Isabel Ribeiro Miguel A. Cazorla Nicolás García-Aracil Nuno Lau Oscar Reinoso Pascual Campoy Paulo Costa Paulo Goncalves Paulo Jorge Oliveira Pedro Costa Pedro Fonseca Pedro J. Sanz Pere Ridao Raul Morais Rafael Sanz Rodrigo Ventura Rui Rocha Urbano Nunes Vicente Feliú Vicente Matellán Vitor Santos

CARTIF, Valladolid, Spain I.P. Lisboa, Portugal Tecnalia, Spain University of Coimbra, Portugal University of Coimbra, Portugal University Zaragoza, Spain University of Aveiro, Portugal I.P. Bragança, Portugal University of Zaragoza, Spain University Rey Juan Carlos, Spain University of Lisbon, Portugal University of Lisbon, Portugal University of Politécnica de Cataluña, Spain University of Coimbra, Portugal University of Porto, FEUP, Portugal University Politécnica de Cataluña, Spain University Pablo Olavide, Sevilla, Spain University Carlos III de Madrid, Spain University of Aveiro, Portugal CAR CSIC-UPM, Spain University of Aveiro, Portugal I.P. Porto, Portugal CAR CSIC-UPM, Spain Univ. Federal Santa Catarina, Brazil University of Lisbon, Portugal University de Alicante, Spain University Miguel Hernández, Spain University of Aveiro, Portugal University Miguel Hernández, Spain CAR CSIC-UPM, Spain University of Porto, Portugal I.P. Castelo Branco, Portugal University of Lisbon, Portugal University of Porto, Portugal University of Aveiro, Portugal UJI, Castellón, Spain University of Girona, Spain University of Trás dos Montes e Alto Douro, Portugal University of Vigo, Spain University of Lisbon, Portugal University of Coimbra, Portugal University of Coimbra, Portugal University Castilla la Mancha, Spain University León, Spain University of Aveiro, Portugal

Agricultural Robotics and Field Automation Session Organizing Committee

Raul Morais Santos	UTAD University, Portugal
Filipe Santos	INESC-TEC, Portugal

Agricultural Robotics and Field Automation Session Program Committee

Angela Ribeiro	CAR-CSIC, Spain
Antonio Valente	UTAD University, Portugal
Armando Sousa	University of Porto - FEUP, Portugal
Carrick Detweiler	University of Nebraska, United States
Dimitrios S. Paraforos	University of Hohenheim, Germany
Eduardo Solteiro Pires	UTAD University, Portugal
Filipe Neves dos Santos	INESC TEC, Portugal
Joris Ijsselmuiden	Wageningen UR, Netherlands
Joaquín Ferruz-Melero	University of Seville, Spain
Raul Morais Dos Santos	INESC TEC/CROB/UTAD, Portugal
Manuel Silva	Inst. Superior de Engenharia do Porto, Portugal
Nieves Pavon	University of Huelva, Spain
Paulo Costa	U. of Porto, FEUP, Portugal
Paulo Moura Oliveira	UTAD University, Portugal
Robert Fitch	Australian Centre for Field Robotics,
	The University of Sydney, Australia
Tiago Nascimento	Federal University of Paraíba - UFPB, Brazil
Timo Oksanen	Aalto University, Finland

Autonomous Driving and Driver Assistance Systems Session Organizing Committee

Vitor Santos Angel Sappa Miguel Oliveira Universidade de Aveiro, Portugal CVC, Barcelona, Spain INESC-TEC, Porto, Portugal

Autonomous Driving and Driver Assistance Systems Session Program Committee

Angelos Amanatiadis	Democritus University of Thrace, Greece
Antonio Valente	UTAD, Portugal
Antonio M. López	CVC and UAB, Barcelona, Spain
Arturo De La Escalera	Universidad Carlos III de Madrid, Spain
Bernardo Cunha	Universidade de Aveiro, Portugal
Carlos Cardeira	IST, Lisboa, Portugal
Cristina Peixoto Santos	Universidade do Minho, Portugal
David Vázquez Bermúdez	CVC, Barcelona, Spain
Fadi Dornaika	University of the Basque Country UPV/EHU
	& IKERBASQUE, Spain
Frederic Lerasle	LAAS-CNRS, France
Jorge Almeida	DEM, Universidade de Aveiro, Portugal
José Azevedo	Universidade de Aveiro, Portugal
José Álvarez	RSCS, ANU College, Australia
Jose A. Castellanos	University Zaragoza, Spain
Luis Almeida	Universidade do Porto, Portugal
Miguel Angel Sotelo	University of Alcala, Spain
Paulo Dias	IEETA - Universidade de Aveiro, Portugal
Procópio Stein	INRIA, France
Rafael Sanz	Universidad de Vigo, Spain
Ricardo Pascoal	Universidade de Aveiro, Portugal
Ricardo Toledo	CVC and UAB, Barcelona, Spain
Susana Sargento	IT, University of Aveiro, Portugal
Urbano Nunes	University of Coimbra, Portugal

Control and Planning in Aerial Robotics Organizing Committee

Guillermo Heredia	Universidad de Sevilla, Spain
Anibal Ollero	Universidad de Sevilla, Spain

Control and Planning in Aerial Robotics Program Committee

Abdelkrim Nemra	Ecole Militaire Polytechnique, Algiers
Alessandro Rucco	University of Porto, Portugal
Begoña Arrue	Universidad de Sevilla, Spain
Bruno, Guerreiro	Instituto Superior Técnico, Univ. Lisboa, Portugal
Elena Lopez Guillen	Universidad de Alcala, Spain

Eugenio Aguirre	University of Granada, Spain
Fernando Caballero	University of Seville, Spain
Luis Merino	Pablo de Olavide University, Spain
Mario Garzon	Universidad Politécnica de Madrid, Spain
Rita Cunha	LARSyS, Instituto Superior Técnico, Univ. Lisboa,
	Portugal

Communication Aware Robotics Organizing Committee

Danilo Tardioli	Centro Universitario de la Defensa de Zaragoza,
	Spain
Alejandro Mosteo	Centro Universitario de la Defensa de Zaragoza, Spain
Luis Riazuelo	University of Zaragoza, Spain

Communication Aware Robotics Program Committee

Carlos Rizzo	University of Zaragoza, Spain
Domenico Sicignano	University of Zaragoza, Spain
Eduardo Montijano	Centro Universitario de la Defensa de Zaragoza, Spain
Enrico Natalizio	Université de Technologie de Compiègne, France
Jesus Aisa	University of Zaragoza, Spain
Jorge Ortin García	Centro Universitario de la Defensa de Zaragoza,
	Spain
Luis Merino	Pablo de Olavide University, Spain
Lujia Wang	The Chinese University of Hong Kong, Hong Kong, China
María T. Lázaro	Sapienza University of Rome, Italy
María-Teresa Lorente	University of Zaragoza, Spain
Pablo Urcola	University of Zaragoza, Spain

Educational Robotics Session Organizing Committee

A. Fernando Ribeiro	University of Minho, Portugal
Armando Sousa	University of Porto - FEUP, Portugal
Eduardo Gallego	Complubot, Spain

Educational Robotics Session Program Committee

A. Fernando Ribeiro	University of Minho, Portugal
Armando Sousa	University of Porto - FEUP, Portugal
Eduardo Gallego	Complubot, Spain
Gil Lopes	University of Minho, Portugal
José Goncalves	ESTiG – I.P. Bragança, Portugal
Paulo Costa	University of Porto - FEUP, Portugal
Paulo Trigueiros	I.P. Porto, Portugal

Environmental Robotics Special Session Organizing Committee

João Valente	Universidad Carlos III de Madrid, Spain
Antonio Barrientos	Universidad Politécnica de Madrid, Spain

Environmental Robotics Special Session Program Committee

Achim J. Lilienthal	Örebro University, Sweden
Angela Ribeiro	Centre for Automation and Robotics
	(CAR) UPM-CSIC, Spain
Carol Martinez	Pontifical Xavierian University, Colombia
David Gomez	Nat. Res. Inst. Science and Technology for
	Environment and Agriculture, France
Gonzalo Pajares	Complutense University of Madrid, Spain
Jaime Del Cerro	Polytechnic University of Madrid, Spain
Marc Carreras	University of Girona, Spain
Mario Andrei Garzón	Polytechnic University of Madrid, Spain
Mohamed Abderrahim	Carlos III University of Madrid, Spain
Pablo Gonzalez de Santos	Spanish National Research Council (CSIC), Spain
Paloma de la Puente	Vienna University of Technology, Austria
William Coral	Polytechnic University of Madrid, Spain

Future Industrial Robotics Systems Organizing Committee

Germano Veiga	INESC TEC - Robotics and Intelligent Systems,
	Portugal
José Lima	INESC TEC - Robotics and Intelligent Systems,
	Portugal

Future Industrial Robotics Systems Program Committee

Andry Pinto António Paulo Moreira Fabrizio Caccavale Joerg Roewekaemper José Barbosa José Miguel Almeida Klas, Nilsson Luis Rocha Manuel Fernando Silva Nuno Mendes	Universidade do Porto, INESC-TEC, Portugal Universidade do Porto, INESC-TEC, Portugal UNIBAS, Italy University of Freiburg, Germany I.P. Bragança, Portugal I.P. Porto, Portugal Lund University, Sweden Universidade do Porto, Portugal I.P. Porto, Portugal Universidade de Coimbra, Portugal
Nuno Mendes	Universidade de Coimbra, Portugal
Pedro Neto	Universidade de Coimbra, Portugal
Simon Bogh	AalBorg University, Denmark
Ulrike Thomas	TU Chemnitz, Germany

Legged Locomotion Robots Session Organizing Committee

Manuel Silva	ISEP/IPP - School of Engineering, Polytechnic
	Institute of Porto and INESC TEC, Portugal
Cristina Santos	Industrial Electronics Department and ALGORITMI
	Center, University of Minho, Portugal
Manuel Armada	Centre for Automation and Robotics - CAR (CSIC-UPM), Spain

Legged Locomotion Robots Session Program Committee

Carla M.A. Pinto	Instituto Superior de Engenharia do Porto, Portugal
Filipe Silva	University of Aveiro, Portugal
Filomena Soares	University of Minho, Portugal
Gurvinder S. Virk	University of Gävle, Sweden
José Machado	University of Minho, Portugal
Lino Costa	University of Minho, Portugal
Lino Marques	University of Coimbra, Portugal
Paulo Menezes	University of Coimbra, Portugal
Pedro Figueiredo Santana	Escola de Tecnologias e Arquitetura, Portugal
Rui P. Rocha	University of Coimbra, Portugal
Yiannis Gatsoulis	University of Leeds, United Kingdom

Machine Learning in Robotics Session Organizing Committee

Brígida Mónica Faria	Polytechnic Institute of Porto (ESTSP-IPP), Portugal
Luis Merino	Pablo de Olavide University (UPO), Spain

Machine Learning in Robotics Session Program Committee

Ana Lopes Armando Sousa	Institute for Systems and Robotics, Portugal University of Porto, Portugal
Daniel Castro Silva	Univesity of Porto - FEUP, Portugal
Fernando Caballero	University of Seville, Spain
Benítez	
João Fabro	UTFPR - Federal University of Technology Parana,
	Brazil
João Messias	Institute for Systems and Robotics, Portugal
Marcelo Petry	Federal University of Santa Catarina, Brazil
Noé Pérez-Higueras	Pablo de Olavide University (UPO), Spain
Nuno Lau	University of Aveiro, Portugal
Pedro Henriques Abreu	University of Coimbra, Portugal
Rafael Ramón-Vigo	Pablo de Olavide University (UPO), Spain

Rehabilitation and Assistive Robotics Organizing Committee

Alicia Casals	Institute for Bioengineering of Catalonia, Spain
Nicolás García-Arazil	Universidad Miguel Hernandez, Spain
Elena García	Centre for Automation and Robotics (CSIC-UPM),
	Spain

Rehabilitation and Assistive Robotics Program Committee

Aikaterini D. Koutsou Alicia Casals	CSIC, Spain Institute for Bioengineering of Catalonia, Spain
Arturo Bertomeu-Motos	UMH, Spain
Diana Ruiz Bueno	University of Saragoza, Spain
Elena García	Centre for Automation and Robotics (CSIC-UPM), Spain
Eloy Urendes Jimenez	CSIC, Spain
Iñaki Diaz	CEIC, Spain
Javier P. Turiel	University of Valladolid, Spain

Jose Maria	UMH, Spain
Sabater-Navarro	
Luis Daniel Lledó Pérez	UMH, Spain
Nicolás García-Arazil	Universidad Miguel Hernandez, Spain

Robotic Applications in Art and Architecture Session Organizing Committee

Manuel Silva	ISEP/IPP - School of Engineering, Polytechnic
	Institute of Porto and INESC TEC, Portugal
José Pedro Sousa	Digital Fabrication Lab (DFL/CEAU), Fac.
	Arquitetura, Universidade do Porto, Portugal
Marta Malé-Alemany	Architect, Researcher and Curator + Polytechnic
	University of Catalonia, Spain

Robotic Applications in Art and Architecture Session Program Committee

Alexandra Paio	ISCTE - Instituto Universitário de Lisboa, Portugal
André Dias	Polytechnic Institute of Porto and INESC TEC,
	Portugal
Andrew Wit	Ball State University, USA
António Mendes Lopes	Faculty of Engineering, University of Porto, Portugal
Filipe Coutinho Quaresma	ECATI - Universidade Lusófona, Portugal
Germano Veiga	INESC TEC, Portugal
Gonçalo Castro Henriques	Universidade Federal do Rio de Janeiro, Brazil
Leonel Moura	Universidade de Lisboa, Portugal
Mauro Costa	Universidade de Coimbra, Portugal
Paulo Fonseca de Campos	Faculdade de Arquitetura e Urbanismo, Universidade
	de São Paulo, Brazil
Sancho Oliveira	ISCTE - Instituto Universitário de Lisboa, Portugal
Wassim Jabi	Welsh School of Architecture, Cardiff University,
	United Kingdom

Simulation and Competitions Session Organizing Committee

Artur Pereira	Universidade de Aveiro/IEETA, Portugal
Nuno Lau	Universidade de Aveiro/IEETA, Portugal
Bernardo Cunha	Universidade de Aveiro/IEETA, Portugal

xviii

Simulation and Competitions Session Program Committee

Universitat Jaume I, Spain
Universidade do Porto, Portugal
Universidade de Aveiro, Portugal
University of Aveiro, Portugal
Universidade de Aveiro, Portugal
Universidad Carlos III de Madrid, Spain
University Paris8, France
Polytechnic Institute of Castelo Branco, Portugal
Instituto Politécnico do Porto, Portugal
Universidade de Aveiro, Portugal
Universidade do Porto, Portugal

Social Robotics: Intelligent and Adaptable AAL Systems Organizing Committee

Luís Santos	Institute of Systems and Robotics – University
	of Coimbra, Portugal
Jorge Dias	Khalifa University Robotics Institute and Institute of
	Systems and Institute of Systems and Robotics,
	University of Coimbra, Portugal

Social Robotics: Intelligent and Adaptable AAL Systems Program Committee

Filippo Cavallo	The BioRobotics Institute, Italy
Friederike Eyssel	Bielefeld University, Germany
João Sequeira	Instituto Superior Técnico de Lisboa, Portugal
Jorge Lobo	ISR - University of Coimbra, Portugal

Surgical Robotics Organizing Committee

Alicia Casals	Universidad Politecnica de Catalunha, Spain
Paulo Gonçalves	Instituto Politécnico de Castelo Branco, Portugal
Nicolas Garcia	Universidad Miguel Hernandez de Elche, Spain
Jose Maria Sabater	Universidad Miguel Hernandez de Elche, Spain
Jorge Martins	Instituto Superior Técnico, Univ. Lisboa, Portugal

Surgical Robotics Program Committee

Alicia Casals	Universidad Politecnica de Catalunha, Spain
Jorge Martins	Instituto Superior Técnico, Univ. Lisboa, Portugal
Jose Maria Sabater	Universidad Miguel Hernandez de Elche, Spain
Nicolas Garcia	Universidad Miguel Hernandez de Elche, Spain
Paulo Gonçalves	Instituto Politécnico de Castelo Branco, Portugal
Pedro Torres	Instituto Politécnico de Castelo Branco, Portugal
Tamás Haidegger	ABC Center for Intelligent Robotics, Óbuda
	University

Urban Robotics Organizing Committee

SIC-UPC), Spain
SIC-UPC), Spain
Jniv. Lisboa, Portugal
SIC-UPC), Spain

Urban Robotics Program Committee

Alberto Sanfeliu	IRI (CSIC-UPC), Spain
Anais Garrell	IRI (CSIC-UPC), Spain
Joao Sequeira	ISR - Univ. Lisboa, Portugal
Juan Andrade	IRI (CSIC-UPC), Spain

Visual Maps in Robotics Session Organizing Committee

Oscar Reinoso Garcia	Miguel Hernandez University, Spain
----------------------	------------------------------------

Visual Maps in Robotics Session Program Committee

Arturo Gil Aparicio	UMH, Spain
Carlos Sagües	University of Zaragoza, Spain
Fernando Torres Medina	University of Alicante, Spain
Javier González Jiménez	University of Malaga, Spain
Jose M ^a Sebastian Zuñiga	UPM, Spain

Jose María Martínez Montiel	University of Zaragoza, Spain
Luis Payá Castelló	UMH, Spain
Pablo Gil	University of Alicante, Spain

Visual Perception for Autonomous Robots Session Organizing Committee

Andry Maykol Pinto	INESC-TEC and Faculty of Engineering of the
	University of Porto, Portugal
Pedro Neto	University of Coimbra, Portugal
Luis Rocha	INESC-TEC, Portugal

Visual Perception for Autonomous Robots Session Program Committee

Aníbal Matos	INESC-TEC and Faculty of Engineering of the University
	of Porto, Portugal
António Neves	University of Aveiro, Portugal
Armando Pinho	University of Aveiro, Portugal
Bernado Cunha	University of Aveiro, Portugal
Brígida Mónica Faria	Polytechnic Institute of Porto – ESTSP/IPP, Portugal
Hélder Oliveira	INESC-TEC and Faculty of Engineering of the University of Porto, Portugal
Marcelo Petry	Federal University of Santa Catarina and INESC P&D Brasil, Brasil
Nuno Cruz	INESC-TEC and Faculty of Engineering of the University of Porto, Portugal

WAF – XVI Workshop on Physical Agents Organizing Committee

Vicente Matellán	Universidad de León, Spain
Miguel Ángel Cazorla	Universidad de Alicante, Spain
Rodrigo Ventura	Instituto Superior Técnico, Universidade de Lisboa,
	Portugal

WAF - XVI Workshop on Physical Agents Program Committee

Domenec Puig	Universitat Rovira i Virgili, Spain
Eugenio Aguirre	University of Granada, Spain
Francisco Javier Rodríguez Lera	Universidad de León, Spain
Ismael García-Varea	Univ. de Castilla-La Mancha, Spain
J. Francisco Blanes Noguera	Universidad Politécnica de Valencia, Spain
Joaquin Lopez	University of Vigo, Spain
Jose Manuel Lopez	Basque Country University, Spain
José María Armingol	Universidad Carlos III de Madrid, Spain
Josemaria Cañas Plaza	Universidad Rey Juan Carlos, Spain
Lluís Ribas-Xirgo	Universitat Autònoma de Barcelona, Spain
Pablo Bustos	Universidad de Extremadura, Spain
Rafael Muñoz-Salinas	University of Cordoba, Spain
Roberto Iglesias Rodriguez	University of Santiago de Compostela, Spain

Additional Reviewers

Abdelkrim Nemra Albert Palomer Vila Alberto Vale Ali Marjovi Alireza Asvadi Ammar Assoum Ana Maria Maqueda André Farinha André Mateus Arpad Takacs Begoña Arrúe Carlos Martinho Clauitton Siebra Cristiano Premebida Daniel Silvestre David Fornas Diana Beltran Diego Faria Dolores Blanco Eduard Bergés Enric Cervera Fernando Martín Friederike Eyssel Giovanni Saponaro Guillem Alenya

Guillem Vallicrosa Iñaki Maurtua Isabel García-Morales Iván Villaverde Jan Veneman João Ouintas Johannes Kropf José Antonio Cobano José Barbosa José María Martínez Montiel Juan Carlos García Sánchez Lorenzo Jamone Manel Frigola Miguel Garcia-Silvente Narcís Palomeras Pablo Lanillos Pedro Casau Pedro Lourenco Raul Marin Santiago Garrido Sedat Dogru Sten Hanke Vijaykumar Rajasekaran Xavier Giralt

Contents

Part I Environmental Robotics

A UGV Approach to Measure the Ground Properties of Greenhouses Alberto Ruiz-Larrea, Juan Jesús Roldán, Mario Garzón, Jaime del Cerro and Antonio Barrientos	3
An Aerial-Ground Robotic Team for Systematic Soil and Biota Sampling in Estuarine Mudflats Pedro Deusdado, Eduardo Pinto, Magno Guedes, Francisco Marques, Paulo Rodrigues, André Lourenço, Ricardo Mendonça, André Silva, Pedro Santana, José Corisco, Marta Almeida, Luís Portugal, Raquel Caldeira, José Barata and Luis Flores	15
Autonomous Seabed Inspection for Environmental Monitoring Juan David Hernández, Klemen Istenic, Nuno Gracias, Rafael García, Pere Ridao and Marc Carreras	27
Integrating Autonomous Aerial Scouting with Autonomous Ground Actuation to Reduce Chemical Pollution on Crop Soil Jesús Conesa-Muñoz, João Valente, Jaime del Cerro, Antonio Barrientos and Ángela Ribeiro	41
Part II Future Industrial Robotics Systems	
Force-Sensorless Friction and Gravity Compensation for Robots Santiago Morante, Juan G. Victores, Santiago Martínez and Carlos Balaguer	57
Commanding the Object Orientation Using Dexterous Manipulation Andrés Montaño and Raúl Suárez	69

Validation of a Time Based Routing Algorithm Using a Realistic Automatic Warehouse Scenario 81
Joana Santos, Pedro Costa, Luís Rocha, Kelen Vivaldini, A. Paulo Moreira and Germano Veiga
Online Robot Teleoperation Using Human Hand Gestures: A Case Study for Assembly Operation 93 Nuno Mendes, Pedro Neto, Mohammad Safeea and António Paulo Moreira 93
Generic Algorithm for Peg-In-Hole Assembly Tasks for Pin Alignments with Impedance Controlled Robots
Double A* Path Planning for Industrial Manipulators
Mobile Robot Localization Based on a Security Laser: An IndustryScene Implementation13Héber Sobreira, A. Paulo Moreira, Paulo Gomes Costa and José Lima
Part III Legged Locomotion Robots
Energy Efficient MPC for Biped Semi-passive Locomotion
Monte-Carlo Workspace Calculation of a Serial-Parallel Biped Robot 157 Adrián Peidró, Arturo Gil, José María Marín, Yerai Berenguer, Luis Payá and Oscar Reinoso
A Control Driven Model for Human Locomotion
Biped Walking Learning from Imitation Using DynamicMovement Primitives.185José Rosado, Filipe Silva and Vítor Santos
Reconfiguration of a Climbing Robot in an All-Terrain Hexapod Robot
Review of Control Strategies for Lower Limb Prostheses
Part IV Machine Learning in Robotics
Visual Inspection of Vessels by Means of a Micro-Aerial Vehicle: An Artificial Neural Network Approach for Corrosion Detection 223 Alberto Ortiz, Francisco Bonnin-Pascual, Emilio Garcia-Fidalgo

and Joan P. Company

Analyzing the Relevance of Features for a Social Navigation Task Rafael Ramon-Vigo, Noe Perez-Higueras, Fernando Caballero and Luis Merino	235
Decision-Theoretic Planning with Person Trajectory Prediction for Social Navigation Ignacio Pérez-Hurtado, Jesús Capitán, Fernando Caballero and Luis Merino	247
Influence of Positive Instances on Multiple Instance Support Vector Machines Nuno Barroso Monteiro, João Pedro Barreto and José Gaspar	259
A Data Mining Approach to Predict Falls in Humanoid Robot Locomotion	273
Part V Rehabilitation and Assistive Robotics	
User Intention Driven Adaptive Gait Assistance Using a WearableExoskeletonVijaykumar Rajasekaran, Joan Aranda and Alicia Casals	289
Control of the E2REBOT Platform for Upper Limb Rehabilitation in Patients with Neuromotor Impairment Juan-Carlos Fraile, Javier Pérez-Turiel, Pablo Viñas, Rubén Alonso, Alejandro Cuadrado, Laureano Ayuso, Francisco García-Bravo, Felix Nieto, Laurentiu Mihai and Manuel Franco-Martin	303
Design and Development of a Pneumatic Robot for Neurorehabilitation Therapies Jorge A. Díez, Francisco J. Badesa, Luis D. Lledó, José M. Sabater, Nicolás García-Aracil, Isabel Beltrán and Ángela Bernabeu	315
An Active Knee Orthosis for the Physical Therapy of Neurological Disorders Elena Garcia, Daniel Sanz-Merodio, Manuel Cestari, Manuel Perez and Juan Sancho	327
Part VI Robotic Applications in Art and Architecture	
LSA Portraiture Robot	341
Human Interaction-Oriented Robotic Form Generation: Reimagining Architectural Robotics Through the Lens of Human Experience Andrew Wit, Daniel Eisinger and Steven Putt	353

Robot-Aided Interactive Design for Wind Tunnel Experiments Maider Llaguno Munitxa	365
Part VII Simulation and Competitions in Robotics	
A Coordinated Team of Agents to Solve Mazes David Simões, Rui Brás, Nuno Lau and Artur Pereira	381
Part VIII Social Robotics: Intelligent and Adaptable AAL Systems	
RFID-Based People Detection for Human-Robot Interaction Duarte Lopes Gameiro and João Silva Sequeira	395
Gaze Tracing in a Bounded Log-Spherical Space for Artificial Attention Systems Beatriz Oliveira, Pablo Lanillos and João Filipe Ferreira	407
Part IX Surgical Robotics	
Design of a Realistic Robotic Head Based on Action Coding System Samuel Marcos, Roberto Pinillos, Jaime Gómez García-Bermejo and Eduardo Zalama	423
A Comparison of Robot Interaction with Tactile Gaming Console Stimulation in Clinical Applications	435
Part X Urban Robotics	
Real-Time Application for Monitoring Human Daily Activity and RiskSituations in Robot-Assisted LivingMário Vieira, Diego R. Faria and Urbano Nunes	449
Challenges in the Design of Laparoscopic Tools J. Amat, A. Casals, E. Bergés and A. Avilés	463
Part XI Visual Maps in Robotics	
Ontologies Applied to Surgical Robotics	479
Low Cost, Robust and Real Time System for Detecting and Tracking Moving Objects to Automate Cargo Handling in Port Terminals Victor Vaquero, Ely Repiso, Alberto Sanfeliu, John Vissers and Maurice Kwakkernaat	491

Observation Functions in an Information Theoretic Approach for Scheduling Pan-Tilt-Zoom Cameras in Multi-target	
Tracking Applications	503
Tiago Marques, Luka Lukic and José Gaspar	
Nearest Position Estimation Using Omnidirectional Images and Global	- 1 -
Appearance Descriptors 5 Yerai Berenguer, Luis Payá, Adrián Peidró, Arturo Gil and Oscar Reinoso 5	517
Part XII Visual Perception for Autonomous Robots	
Accurate Map-Based RGB-D SLAM for Mobile Robots 5 Dominik Belter, Michał Nowicki and Piotr Skrzypczyński	533
Onboard Robust Person Detection and Tracking for Domestic	
Service Robots	547
Visual-Inertial Based Autonomous Navigation	561
Ball Detection for Robotic Soccer: A Real-Time RGB-D Approach 5 André Morais, Pedro Costa and José Lima	573
Real Time People Detection Combining Appearance and Depth ImageSpaces Using Boosted Random Ferns.Victor Vaquero, Michael Villamizar and Alberto Sanfeliu	587
Visual Localization Based on Quadtrees	599
A Simple, Efficient, and Scalable Behavior-Based Architecture	
for Robotic Applications	511
Analysis and Evaluation of a Low-Cost Robotic Arm for @Home	
Competitions	523
Object Categorization from RGB-D Local Features and Bag of Words 6 Jesus Martínez-Gómez, Miguel Cazorla, Ismael García-Varea and Cristina Romero-González	535
A Multisensor Based Approach Using Supervised Learning and Particle Filtering for People Detection and Tracking	645
Incremental Compact 3D Maps of Planar Patches from RGBD Points 6 Juan Navarro and José M. Cañas	659

	•	٠
XXV1	1	1

Computing Image Descriptors from Annotations Acquired from External Tools Jose Carlos Rangel, Miguel Cazorla, Ismael García-Varea, Jesús Martínez-Gómez, Élisa Fromont and Marc Sebban	673
Keypoint Detection in RGB-D Images Using Binary Patterns Cristina Romero-González, Jesus Martínez-Gómez, Ismael García-Varea and Luis Rodríguez-Ruiz	685
Unsupervised Method to Remove Noisy and Redundant Images in Scene Recognition	605
David Santos-Saavedra, Roberto Iglesias and Xose M. Pardo	095
Part XIII 16th Workshop on Physical Agents	
Procedural City Generation for Robotic Simulation Daniel González-Medina, Luis Rodríguez-Ruiz and Ismael García-Varea	707
A New Cognitive Architecture for Bidirectional Loop Closing Antonio Jesús Palomino, Rebeca Marfil, Juan Pedro Bandera and Antonio Bandera	721
A Unified Internal Representation of the Outer World for Social Robotics	733
Pablo Bustos, Luis J. Manso, Juan P. Bandera, Adrián Romero-Garcés, Luis V. Calderita, Rebeca Marfil and Antonio Bandera	
A Navigation Agent for Mobile Manipulators Mario Haut, Luis Manso, Daniel Gallego, Mercedes Paoletti, Pablo Bustos, Antonio Bandera and Adrián Romero-Garcés	745
Building a Warehouse Control System Using RIDE Joaquín López, Diego Pérez, Iago Vaamonde, Enrique Paz, Alba Vaamonde and Jorge Cabaleiro	757
Author Index	769

Monte-Carlo Workspace Calculation of a Serial-Parallel Biped Robot

Adrián Peidró, Arturo Gil, José María Marín, Yerai Berenguer, Luis Payá and Oscar Reinoso

Abstract This paper presents the Monte-Carlo calculation of the work-space of a biped redundant robot for climbing 3D structures. The robot has a hybrid serial-parallel architecture since each leg is composed of two parallel mechanisms connected in series. First, the workspace of the parallel mechanisms is characterized. Then, a Monte-Carlo algorithm is applied to compute the reachable workspace of the biped robot solving only the forward kinematics. This algorithm is modified to compute also the constant-orientation workspace. The algorithms have been implemented in a simulator that can be used to study the variation of the workspace when the geometric parameters of the robot are modified. The simulator is useful for designing the robot, as the examples show.

Keywords Climbing robots · Hybrid robots · Monte-Carlo · Redundant robots · Workspace

1 Introduction

The workspace of a manipulator can be defined as the set of positions and orientations that can be attained by the end-effector, and it plays a crucial role when designing the robot or planning its movements. Methods for determining the workspace can be classified as analytic or numerical. Analytic methods obtain closed-form descriptions of the boundaries of the workspace, they are more efficient but limited to specific classes of manipulators [5, 16]. Numerical methods [4, 11] can be applied to wider classes of robots and are more flexible. Amongst the numerical methods, Monte-Carlo algorithms [1] are specially interesting for complex and redundant robots, such as humanoid robots [9].

A. Peidró(\boxtimes) · A. Gil · J.M. Marín · Y. Berenguer · L. Payá · O. Reinoso

Systems Engineering and Automation Department, Universidad Miguel Hernández, Elche, Spain e-mail: {apeidro,arturo.gil,jmarin,yberenguer,lpaya,o.reinoso}@umh.es

[©] Springer International Publishing Switzerland 2016

L.P. Reis et al. (eds.), Robot 2015: Second Iberian Robotics Conference,

Advances in Intelligent Systems and Computing 418, DOI: 10.1007/978-3-319-27149-1 13

In this paper, we apply a well-known Monte-Carlo algorithm [1] to compute the workspace of a robot designed to climb and explore 3D structures, with the purpose of studying how this workspace is affected by the geometric design parameters of the robot. 3D structures, such as metallic bridges or power transmission lines, require periodic maintenance and inspection tasks that are dangerous for human workers due to risks such as falling from height. To avoid these risks, many climbing robots have been developed to execute these tasks. Climbing robots can have serial [3, 8, 12, 14, 17], parallel [2] or hybrid [7, 15] architecture. Serial architectures have smaller load capacity than parallel robots, but have larger workspaces, which is useful for exploring complex 3D structures. Parallel robots have a limited workspace, but a high load-to-weight ratio that is useful for climbing robots since they must carry their own weight. Finally, hybrid robots have the advantages of both architectures, which makes them very interesting for climbing 3D structures.

The robot studied in this paper is shown in Figure 1a. The robot is biped and hybrid, since each leg is composed of two serially connected parallel mechanisms. Its legs are specially designed to facilitate the execution of the typical movements that are necessary to explore 3D structures, such as movements along beams or columns, or transitions between planes with different spatial orientation. Also, the robot is redundant, because it has 10 degrees of freedom between its feet. Due to the complexity of this robot, it is difficult to obtain an analytic description of its workspace, hence we decided to use a simple Monte-Carlo method.

This paper is organized as follows. Section 2 briefly describes the architecture of the robot and analyzes the workspace of the parallel mechanisms of the legs. In Section 3, the solution to forward kinematics is used with a Monte-Carlo method to compute the workspace of the robot. Then, Section 4 presents a simulation tool developed to study the relation between the design parameters of the robot and its workspace. Finally, the conclusions are exposed in Section 5.

2 Robot Architecture and Workspace of the Parallel Mechanisms

Figure 1a shows the studied robot. It has two legs $\{A, B\}$ connected to a hip H through revolute joints (angles θ_A and θ_B). Each leg j is composed of a core link C_j and two platforms P_{1j} and P_{2j} . Each platform is connected to C_j through a passive slider and two linear actuators in parallel, constituting the parallel mechanism of Figure 1b. Thus, each leg is composed of two parallel mechanisms of this type connected in series. The robot has 10 degrees of freedom: eight linear actuators in the legs and two revolute joints in the hip. The reference frames E_A and E_B of Figure 1a are attached to the platforms P_{1A} and P_{1B} , which are the feet. The reference frames H_A and H_B are fixed to the hip. All these reference frames have their origins in the middle plane of the legs, as shown in Figure 1a.

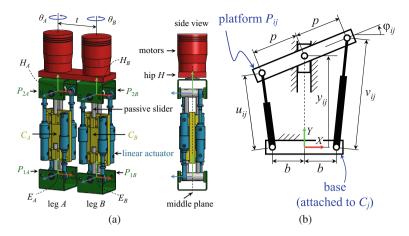
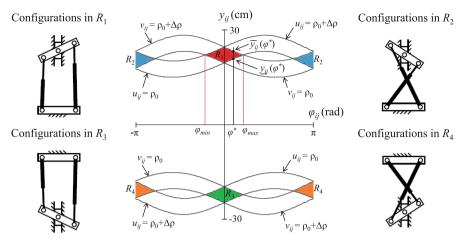


Fig. 1 (a) CAD model of the studied climbing robot. The X, Y, and Z axes of the reference frames are indicated with red, green, and blue colors, respectively. (b) 2-DOF parallel mechanism of the legs of the robot.


Next, we will analyze the workspace of the parallel mechanisms. Figure 1b shows the *i*-th parallel mechanism of the leg j ($i \in \{1, 2\}, j \in \{A, B\}$), which has a platform P_{ij} connected to the core link C_j through a passive slider and two linear actuators of lengths u_{ij} and v_{ij} . The forward kinematics of this mechanism consists in computing $\{y_{ij}, \varphi_{ij}\}$ in terms of $\{u_{ij}, v_{ij}\}$, and this problem was solved in [10]. The inverse problem can be easily solved analyzing Figure 1b:

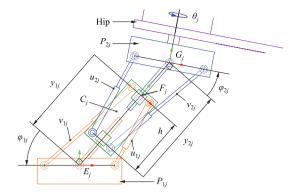
$$u_{ij} = \sqrt{(p \cos \varphi_{ij} - b)^2 + (y_{ij} - p \sin \varphi_{ij})^2}$$
(1)

$$v_{ij} = \sqrt{(p \cos \varphi_{ij} - b)^2 + (y_{ij} + p \sin \varphi_{ij})^2}$$
(2)

In practice, the linear actuators have a minimum length $\rho_0 > 0$ and a stroke $\Delta \rho > 0$, which means that $u_{ij}, v_{ij} \in [\rho_0, \rho_0 + \Delta \rho]$. Thus, the workspace can be defined as the set of pairs (y_{ij}, φ_{ij}) for which the right-hand side of both Eqs. (1) and (2) is in $[\rho_0, \rho_0 + \Delta \rho]$. For example, Figure 2 shows the workspace for $b = p = 4, \rho_0 = 19.5$, and $\Delta \rho = 5$ (all in cm). This workspace is composed of four regions R_i enclosed by the curves where u_{ij} or v_{ij} equal ρ_0 or $\rho_0 + \Delta \rho$. The configuration of the mechanism is different in each region, as shown in Figure 2. Only the configurations of R_1 are valid, since the configurations of the other regions require mechanical interferences: y_{ij} cannot be negative (regions R_3 and R_4), and the linear actuators cannot interfere with the passive slider (regions R_2 and R_4). Thus, for this example the workspace is defined as follows:

$$WS = \left\{ (\varphi_{ij}, y_{ij}) \in \mathbb{R}^2 : \varphi_{min} \le \varphi_{ij} \le \varphi_{max}, \underline{y_{ij}}(\varphi_{ij}) \le y_{ij} \le \overline{y_{ij}}(\varphi_{ij}) \right\}$$
(3)

Fig. 2 Workspace of a parallel mechanism with b = p = 4, $\rho_0 = 19.5$, $\Delta \rho = 5$ (cm)


where $y_{ij}(\varphi^*)$ and $\overline{y_{ij}}(\varphi^*)$ are the lower and upper bounds of the variable y_{ij} for $\varphi_{ij} = \overline{\varphi^*}$, respectively (see Figure 2). In the following, we will assume that the workspace of the parallel mechanisms has the form of Eq. (3), which defines a more general set. Although this type of workspace has been derived from a particular geometry, the workspace of the parallel mechanisms will be similar to the region R_1 of Figure 2 if *b*, *p*, and $\Delta \rho$ are similar and small compared to ρ_0 .

3 Monte-Carlo Workspace Calculation

In this section, we will use the equations of forward kinematics with a Monte-Carlo method to compute the workspace. The workspace considered here is the set of points that can be attained by one foot of the robot (free foot) when the other foot is fixed. Since the robot is symmetric, we can consider, without loss of generality, foot A as the fixed foot and foot B as the free one.

3.1 Forward Kinematics

Next, we will compute the position and orientation of the foot *B* relative to the foot *A* in terms of the rotations of the hip (angles θ_A and θ_B) and the rotations φ_{ij} and translations y_{ij} of the parallel mechanisms ($i \in \{1, 2\}, j \in \{A, B\}$). First, we will obtain the relative position and orientation between the hip and the foot of a generic leg *j*. According to Figure 3, the position and orientation of the hip relative to the

Fig. 3 Kinematics of the generic leg $j \in \{A, B\}$.

foot of the leg *j* can be obtained multiplying the following matrices, which relate the reference frames E_i , F_i , G_j , and H_j :

where $\Phi_j = \varphi_{1j} - \varphi_{2j}$, $y_j = y_{1j} + y_{2j} - h$, and *h* is the size of the core link of the leg *j*. The symbols s_x and c_x denote respectively $\sin(x)$ and $\cos(x)$, and θ_j is the angle that the frame G_j must be rotated about its *Y* axis to align that frame with the frame H_j of the hip (shown in Figure 1a). Particularizing the previous matrix for the two legs of the robot (j = A and j = B), we obtain the position and orientation of the foot *B* with respect to the foot *A* as follows:

$${}^{E_{A}}\mathbf{T}_{E_{B}} = {}^{E_{A}}\mathbf{T}_{H_{A}}{}^{H_{A}}\mathbf{T}_{H_{B}}{}^{H_{B}}\mathbf{T}_{E_{B}} = {}^{E_{A}}\mathbf{T}_{H_{A}} \begin{bmatrix} \mathbf{I} & [t, 0, 0]^{T} \\ \mathbf{0}_{1 \times 3} & 1 \end{bmatrix} \begin{pmatrix} {}^{E_{B}}\mathbf{T}_{H_{B}} \end{pmatrix}^{-1}$$
(5)

where **I** is the 3 × 3 identity matrix, $\mathbf{0}_{1\times3} = [0, 0, 0]$, and ${}^{H_A}\mathbf{T}_{H_B}$ encodes the position and orientation of the frame H_B relative to the frame H_A (see Figure 1a). Performing the products of Eq. (5), the matrix that encodes the position and orientation of the frame E_B relative to the frame E_A can be written as follows:

$${}^{E_{A}}\mathbf{T}_{E_{B}} = \begin{bmatrix} {}^{E_{A}}\mathbf{R}_{E_{B}} \begin{bmatrix} p_{x} & p_{y} & p_{z} \end{bmatrix}^{T} \\ \mathbf{0}_{1\times 3} & 1 \end{bmatrix}$$
(6)

The position vector of the previous matrix has the following expression:

$$\begin{bmatrix} p_x \\ p_y \\ p_z \end{bmatrix} = y_A \begin{bmatrix} s_{\varphi_{1A}} \\ c_{\varphi_{1A}} \\ 0 \end{bmatrix} + y_B \begin{bmatrix} -c_{\Theta}c_{\Phi_A}s_{\varphi_{2B}} - s_{\Phi_A}c_{\varphi_{2B}} \\ c_{\Theta}s_{\Phi_A}s_{\varphi_{2B}} - c_{\Phi_A}c_{\varphi_{2B}} \\ s_{\Theta}s_{\varphi_{2B}} \end{bmatrix} + t \begin{bmatrix} c_{\theta_A}c_{\Phi_A} \\ -c_{\theta_A}s_{\Phi_A} \\ -s_{\theta_A} \end{bmatrix}$$
(7)

where $\Theta = \theta_A - \theta_B$. The rotation submatrix of ${}^{E_A}\mathbf{T}_{E_B}$ has the following form:

$${}^{E_{A}}\mathbf{R}_{E_{B}} = \begin{bmatrix} s_{\Phi_{A}}s_{\Phi_{B}} + c_{\Theta}c_{\Phi_{A}}c_{\Phi_{B}} & s_{\Phi_{A}}c_{\Phi_{B}} - c_{\Theta}c_{\Phi_{A}}s_{\Phi_{B}} & s_{\Theta}c_{\Phi_{A}} \\ c_{\Phi_{A}}s_{\Phi_{B}} - c_{\Theta}s_{\Phi_{A}}c_{\Phi_{B}} & c_{\Phi_{A}}c_{\Phi_{B}} + c_{\Theta}s_{\Phi_{A}}s_{\Phi_{B}} & -s_{\Theta}s_{\Phi_{A}} \\ -s_{\Theta}c_{\Phi_{B}} & s_{\Theta}s_{\Phi_{B}} & c_{\Theta} \end{bmatrix}$$
(8)

Next, Eqs. (7) and (8) will be used to compute the following workspaces:

- Reachable workspace: the set of points $\mathbf{P} = [p_x, p_y, p_z]^T$ that can be reached by the free foot with at least one orientation
- Constant-orientation workspace: the set of points $\mathbf{P} = [p_x, p_y, p_z]^T$ that can be reached by the free foot with a specific orientation

3.2 Computation of the Reachable Workspace

Once the solution to forward kinematics of the complete biped robot is available, the reachable workspace can be easily generated using a Monte-Carlo method [1]. This approach consists in varying randomly the following variables in their ranges: $\{\varphi_{1A}, \varphi_{2A}, \varphi_{1B}, \varphi_{2B}, y_A, y_B, \theta_A, \theta_B\}$, generating a point $\mathbf{P} = [p_x, p_y, p_z]^T$ for each value of these variables. The generated points form a 3D cloud point in space that constitutes a discrete approximation of the workspace.

To apply this method, we must find the variation ranges of the previous variables, for each leg *j*. It will be assumed that $\theta_j \in [-\pi, \pi]$ (the legs can perform complete revolutions about the axes of the hip). The angles φ_{ij} must belong to the workspace of the parallel mechanisms of the legs. It will be assumed that such workspaces are of the type studied in Section 2, which implies that $\varphi_{min} \leq \varphi_{ij} \leq \varphi_{max}$. Finally, the valid ranges for y_j can be found as follows: given $\varphi_{ij} \in [\varphi_{min}, \varphi_{max}]$ ($i \in \{1, 2\}$), then according to Eq. (3), y_{ij} must satisfy:

$$y_{ij}(\varphi_{ij}) \le y_{ij} \le \overline{y_{ij}}(\varphi_{ij}) \tag{9}$$

Since $y_j = y_{1j} + y_{2j} - h$, then the variables y_j must verify:

$$\underline{y_{1j}}(\varphi_{1j}) + \underline{y_{2j}}(\varphi_{2j}) - h \le y_j \le \overline{y_{1j}}(\varphi_{1j}) + \overline{y_{2j}}(\varphi_{2j}) - h \tag{10}$$

Once the variation ranges of all the variables are known, the Monte-Carlo algorithm to compute the reachable workspace can be summarized in Algorithm 1. In this algorithm, N_r is the number of sampled random points.

Algorithm 1. Monte-Carlo calculation of the reachable workspace

1: $WS = \emptyset \rightarrow$ The reachable workspace is initialized as an empty set. 2: for k = 1 to N_r do Randomly sample θ_A and θ_B in $[-\pi, \pi]$ 3: 4: Randomly sample $\varphi_{1A}, \varphi_{2A}, \varphi_{1B}$, and φ_{2B} in $[\varphi_{min}, \varphi_{max}]$ 5: Compute the lower and upper limits for y_j ($j \in \{A, B\}$): 6: $y_j = y_{1j}(\varphi_{1j}) + y_{2j}(\varphi_{2j}) - h$ 7: $\overline{\overline{y_i}} = \overline{\overline{y_{1i}}}(\varphi_{1i}) + \overline{\overline{y_{2i}}}(\varphi_{2i}) - h$ Randomly sample y_j in $[y_j, \overline{y_j}]$ $(j \in \{A, B\})$ 8: Compute the position $\mathbf{P} = [p_x, p_y, p_z]^T$ of the free foot using Eq. (7) 9: 10: Add the point **P** to WS 11: end for

To sample the variables θ_A and θ_B in line 3 of Algorithm 1, a uniform distribution can be used. However, the variables y_j and φ_{ij} (whose limits define the limits of the workspace) should be sampled using a beta distribution with parameters α , $\beta \in$ (0, 1). Using this non-uniform distribution for these variables favors the generation of random points close to the boundaries of the workspace, which results in a better definition of these boundaries [6].

3.3 Computation of the Constant-Orientation Workspace

The constant-orientation workspace is the set of points of the space that can be reached with a desired orientation, which can be specified as:

$${}^{E_{A}}\mathbf{R}_{E_{B}} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
(11)

where r_{ij} are known quantities. Algorithm 1 can still be used to generate random points in the constant-orientation workspace. However, unlike in Algorithm 1, not all the angles { φ_{ij} , θ_j } can be sampled independently now: these angles must satisfy certain relations to guarantee that the generated random points have the desired orientation. Two cases are distinguished:

Case 1: $r_{33}^2 \neq 1$. Equating the element (3,3) of matrices (8) and (11) permits computing the angle Θ as follows:

$$c_{\Theta} = r_{33} \longrightarrow s_{\Theta} = \sigma \sqrt{1 - r_{33}^2} \longrightarrow \Theta = \theta_A - \theta_B = \operatorname{atan2}(s_{\Theta}, c_{\Theta})$$
 (12)

where $\sigma \in \{-1, 1\}$. Once s_{Θ} is known, Equating the elements (1,3), (2,3), (3,1) and (3,2) of Eqs. (8) and (11) allows for the calculation of Φ_A and Φ_B :

$$c_{\Phi_A} = r_{13}/s_{\Theta}, \quad s_{\Phi_A} = -r_{23}/s_{\Theta} \longrightarrow \Phi_A = \varphi_{1A} - \varphi_{2A} = \operatorname{atan2}(s_{\Phi_A}, c_{\Phi_A}) \quad (13)$$

$$c_{\Phi_B} = -r_{31}/s_{\Theta}, \quad s_{\Phi_B} = r_{32}/s_{\Theta} \longrightarrow \Phi_B = \varphi_{1B} - \varphi_{2B} = \operatorname{atan2}(s_{\Phi_B}, c_{\Phi_B}) \quad (14)$$

Note that Eqs. (12), (13), and (14) fix the differences $\theta_A - \theta_B$, $\varphi_{1A} - \varphi_{2A}$, and $\varphi_{1B} - \varphi_{2B}$, respectively. Thus, we cannot give random values to the six angles $\{\varphi_{1A}, \varphi_{2A}, \varphi_{1B}, \varphi_{2B}, \theta_A, \theta_B\}$ simultaneously. Instead, we can give values to the angles $\{\theta_B, \varphi_{2A}, \varphi_{2B}\}$ and compute the other three angles using the previous equations to guarantee that the generated points have the desired orientation. Note that, after calculating $\{\varphi_{1A}, \varphi_{1B}\}$, these angles may not be in $[\varphi_{min}, \varphi_{max}]$, in which case the point must be discarded since it does not satisfy the joint limits.

Case 2: $r_{33}^2 = 1$. In this case, Θ can be calculated from Eq. (12), but Φ_A and Φ_B cannot be computed from Eqs. (13) and (14) since $s_{\Theta} = 0$. To compute these angles, we substitute $c_{\Theta} = r_{33}$ into the elements (1,2) and (2,2) of Eq. (8) and equate these elements to r_{12} and r_{22} :

$$\begin{bmatrix} r_{12} \\ r_{22} \end{bmatrix} = \begin{bmatrix} s_{\Phi_A} c_{\Phi_B} - r_{33} c_{\Phi_A} s_{\Phi_B} \\ c_{\Phi_A} c_{\Phi_B} + r_{33} s_{\Phi_A} s_{\Phi_B} \end{bmatrix} = \begin{bmatrix} \sin(\Phi_A - r_{33} \Phi_B) \\ \cos(\Phi_A - r_{33} \Phi_B) \end{bmatrix}$$
(15)

where the last equality is true because $r_{33} = 1$ or $r_{33} = -1$. In this case, Algorithm 1 can also be used with the following modification: { φ_{1B} , φ_{2B} , φ_{2A} } are randomly sampled, whereas φ_{1A} is computed as $\varphi_{1A} = \varphi_{2A} + r_{33} \Phi_B + \operatorname{atan2}(r_{12}, r_{22})$, discarding the point if $\varphi_{1A} \notin [\varphi_{min}, \varphi_{max}]$.

Finally, the previous methods compute discrete approximations of the solid workspace. However, for practical purposes (e.g., for visualization) it is sufficient to know the surfaces that delimit these solids. The boundaries of the computed workspaces can be extracted using the algorithm described in [1], which defines a 3D grid composed of N_g boxes in each dimension. The boxes that contain workspace points are marked with "1", whereas the remaining boxes are marked with "0". Then, the workspace boundary is composed of the boxes that are marked with "1" and have at least one neighboring box marked with "0".

4 Simulation Tool and Examples

This section presents a simulation tool developed in Java to study the workspace of this robot. The tool can be downloaded from http://arvc.umh.es/parola/climber.html and may require the latest version of Java.

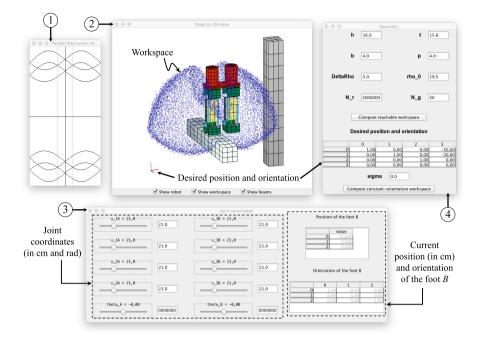


Fig. 4 Simulator developed to study the workspace of the biped robot.

The tool, which has four windows, is shown in Figure 4. Window 1 shows the workspace of the parallel mechanisms, as defined in Section 2, so that the user can see if this workspace has the form of Eq. (3). Window 2 shows the biped robot in a virtual environment composed of two beams, along with the workspace calculated using the previous Monte-Carlo method. In the simulator, the foot *A* is fixed to the horizontal beam, and the foot *B* is free. Window 3 has some sliders and numeric fields to modify the value of the joint coordinates. When a joint coordinate is modified, the forward kinematics is solved and the posture of the robot in Window 2 is modified accordingly. Window 3 also shows the current position and orientation of the foot *B* (vector $[p_x, p_y, p_z]^T$ and matrix ${}^{E_A}\mathbf{R}_{E_B}$). Finally, Window 4 can be used to design the robot: in it, the six design parameters $\{h, b, t, p, \Delta\rho, \rho_0\}$ (in cm) can be modified to study how the shape and size of the workspace varies with these parameters.

Next, we will analyze some examples that show how this tool can be used to design the robot. In the following examples, the shown workspaces have been obtained using $N_r = 2 \cdot 10^6$ random points and $N_g = 50$.

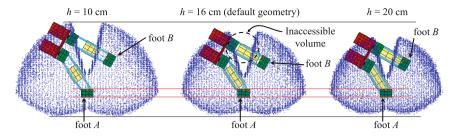


Fig. 5 Variation of the reachable workspace when h is modified.

4.1 Example 1: Sensitivity of the Reachable Workspace with Respect to the Design Parameters

In this example, we will study the changes in the shape and size of the reachable workspace when perturbing the design parameters from their default values: $\rho_0 = 19.5$, $\Delta \rho = 5$, b = p = 4, t = 15.6, h = 16 (all in cm). The reachable workspace for this geometry is shown in Figure 5 (center), which shows that the points above the fixed foot A cannot be reached by the foot B. Next, we will vary the design parameters (one at a time, keeping the rest at their default values) to obtain a larger workspace in which the region above the foot A is accessible.

Figure 5 shows that increasing *h* reduces the size of the reachable workspace, leaving its shape practically unaffected. If the parameters *t* and ρ_0 are respectively varied in the intervals [10, 20] cm and [15, 25] cm in the simulator, it can be checked that the size of the workspace increases with these parameters, but its shape hardly varies with them. Also, it can be checked that varying *b* in (0, 10] cm hardly affects the shape or size of the reachable workspace. Thus, varying these four parameters generates workspaces where the points above the foot *A* are still inaccessible. However, varying the parameter *p* modifies noticeably the shape of the workspace, as shown in

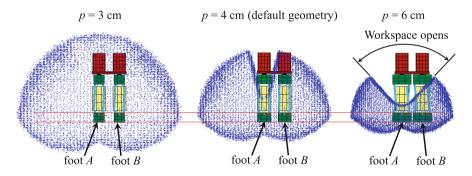


Fig. 6 Variation of the reachable workspace when p is modified.

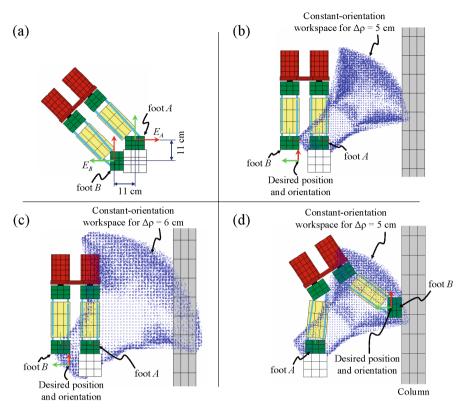


Fig. 7 (a) Desired position and orientation to change between different faces of a beam. For $\Delta \rho = 5$ cm (b), the constant-orientation workspace for the desired orientation does not contain the desired point, but it contains the point for $\Delta \rho = 6$ cm (c). (d) Performing transitions between different beams using the default geometry.

Figure 6. This figure shows that the reachable workspace opens as p increases. Thus, it is convenient to reduce p as shown in Figure 6 in order to eliminate the inaccessible region above the foot A. It can be checked that varying $\Delta \rho$ in [3, 6] cm produces a similar effect in the opposite direction: the workspace opens as $\Delta \rho$ decreases.

4.2 Example 2: Transition Between Different Faces of a Beam

In this example, we assume that all the design parameters are fixed at their default values except $\Delta \rho$, whose value must be chosen so as to permit the robot to perform

a transition between different faces of a beam, as shown in Figure 7a. According to this figure, the desired position and orientation for the foot B relative to the fixed foot A are given by the following matrices:

$${}^{E_{A}}\mathbf{R}_{E_{B}} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad \begin{bmatrix} p_{x} \\ p_{y} \\ p_{z} \end{bmatrix} = \begin{bmatrix} -11 \\ -11 \\ 0 \end{bmatrix} \text{ cm}$$
(16)

Introducing these matrices in the simulator, and using $\Delta \rho = 5$ cm (default stroke) yields the constant-orientation workspace of Figure 7b. Note that, for the default stroke, the desired point cannot be attained with the desired orientation because it lies outside the computed constant-orientation workspace. However, if the workspace is recalculated for $\Delta \rho = 6$ cm, we obtain the workspace of Figure 7c, which contains the desired point. Thus, choosing a linear actuator with a stroke of 6 cm would permit the robot to change between different faces of the beam in this example.

Note that the orientation defined in Eq. (16) is also necessary to attach the foot *B* to the column, as indicated in Figure 7d. As shown in this figure, the constant-orientation workspace for $\Delta \rho = 5$ cm contains points that are near the surface of the column. Thus, it is possible to attach the foot *B* to the column using the default geometry.

5 Conclusions and Future Work

This paper has presented a Monte-Carlo workspace analysis of a serial-parallel climbing robot. First, the workspace of the parallel mechanisms has been calculated to use it in the calculation of the workspace of the complete robot. Then, the solution to forward kinematics has been used together with a Monte-Carlo method to compute the reachable and constant-orientation workspaces of the robot. These calculations have been implemented in a simulator, which has been used to manually and visually study the sensitivity of the shape and size of the workspace with respect to the design parameters. In the future, an algorithm to automatically perform the sensitivity analysis and optimization of the design of the robot will be devised, similar to [13]. Also, we will compute other types of workspace (such as the orientation workspace) and study the singularities.

Acknowledgements This work has been supported by the Spanish Ministry of Education, Culture and Sport through an FPU grant (Ref: FPU13/00413), by the Spanish Ministry of Economy and Competitiveness through Project DPI2013-41557-P, and by the Generalitat Valenciana through project AICO/2015/021.

References

- Alciatore, D., Ng, C.: Determining manipulator workspace boundaries using the Monte Carlo method and least squares segmentation. ASME Robotics: Kinematics, Dynamics and Controls 72, 141–146 (1994)
- 2. Aracil, R., Saltaren, R.J., Reinoso, O.: A climbing parallel robot: a robot to climb along tubular and metallic structures. IEEE Robotics & Automation Magazine **13**(1), 16–22 (2006)
- Balaguer, C., Giménez, A., Pastor, J.M., Padrón, V.M., Abderrahim, M.: A climbing autonomous robot for inspection applications in 3D complex environments. Robotica 18(3), 287–297 (2000)
- Bohigas, O., Manubens, M., Ros, L.: A complete method for workspace boundary determination on general structure manipulators. IEEE Transactions on Robotics 28(5), 993–1006 (2012)
- Bonev, I.A., Gosselin, C.M.: Analytical determination of the workspace of symmetrical spherical parallel mechanisms. IEEE Transactions on Robotics 22(5), 1011–1017 (2006)
- 6. Cao, Y., Lu, K., Li, X., Zang, Y.: Accurate numerical methods for computing 2D and 3D robot workspace. Int. J. of Advanced Robotic Systems **8**(6), 1–13 (2011)
- Figliolini, G., Rea, P., Conte, M.: Mechanical design of a novel biped climbing and walking robot. In: Parenti-Castelli, V., Schiehlen, W. (eds.) ROMANSY 18 Robot Design, Dynamics and Control, pp. 199–206. Springer, Vienna (2010)
- Guan, Y., Jiang, L., Zhu, H., Zhou, X., Cai, C., Wu, W., Li, Z., Zhang, H., Zhang, X.: Climbot: a modular bio-inspired biped climbing robot. In: Proceedings of the 2011 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1473–1478, September 2011
- Guan, Y., Kazuhito, Y., Zhang, X.: Numerical methods for reachable space generation of humanoid robots. Int. J. of Robotics Research 27(8), 935–950 (2008)
- Kong, X., Gosselin, C.M.: Generation and Forward Displacement Analysis of RPR-PR-RPR Analytic Planar Parallel Manipulators. ASME J. Mech. Design 124(2), 294–300 (2002)
- 11. Merlet, J.P.: Determination of 6D workspaces of Gough-type parallel manipulator and comparison between different geometries. Int. J. of Robotics Research **18**(9), 902–916 (1999)
- 12. Shvalb, N., Moshe, B.B., Medina, O.: A real-time motion planning algorithm for a hyperredundant set of mechanisms. Robotica **31**(8), 1327–1335 (2013)
- Silva, V.G., Tavakoli, M., Marques, L.: Optimization of a Three Degrees of Freedom DELTA Manipulator for Well-Conditioned Workspace with a Floating Point Genetic Algorithm. Int. J. Natural Computing Research 4(4), 1–14 (2014)
- Tavakoli, M., Marques, L., De Almeida, A.T.: 3DCLIMBER: Climbing and manipulation over 3D structures. Mechatronics 21(1), 48–62 (2011)
- Tavakoli, M., Zakerzadeh, M.R., Vossoughi, G.R., Bagheri, S.: A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Industrial Robot: An International Journal 32(2), 171–178 (2005)
- Wang, Q., Wang, D., Tan, M.: Characterization of the analytical boundary of the workspace for 3–6 SPS parallel manipulator. In: Proceedings of the 2001 IEEE Int. Conf. on Robotics and Automation, pp. 3755–3759 (2001)
- Yoon, Y., Rus, D.: Shady3D: a robot that climbs 3D trusses. In: Proceedings of the 2007 IEEE Int. Conf. on Robotics and Automation, pp. 4071–4076 (2007)