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a b s t r a c t

This paper presents a novel mechanism to initiate new views within themap building process for an EKF-
based visual SLAM (Simultaneous Localization and Mapping) approach using omnidirectional images.
In presence of non-linearities, the EKF is very likely to compromise the final estimation. Particularly,
the omnidirectional observation model induces non-linear errors, thus it becomes a potential source of
uncertainty. To deal with this issue we propose a novel mechanism for view initialization which accounts
for information gain and lossesmore efficiently. Themain outcome of this contribution is the reduction of
the map uncertainty and thus the higher consistency of the final estimation. Its basis relies on a Gaussian
Process to infer an information distributionmodel from sensor data. This model represents feature points
existence probabilities and their information content analysis leads to the proposed view initialization
scheme. To demonstrate the suitability and effectiveness of the approach we present a series of real data
experiments conducted with a robot equipped with a camera sensor and map model solely based on
omnidirectional views. The results reveal a beneficial reduction on the uncertainty but also on the error
in the pose and the map estimate.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The problemof SLAMposes a challenge in the framework ofmo-
bile robot applications. It involves a laborious process that deals
simultaneously with the mapping and robot’s localization. This
fact brings a challenge with regard to complexity, as the proce-
dure is expected to work incrementally and to return a coherent
representation of the environment. Besides, the existence of noise
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sources become accountable for undesired effects which aggravate
and jeopardize the final estimation.

Lately, visual sensors have reached a great emergence as the
main tool for collecting information in the field of SLAM. They rep-
resent a promising option compared to classic sensors such as laser
or sonar. They allow us to take the best advantage of cameras due
to their low cost, light weight and low consumption principally.
Nonetheless, their major benefit turns to be their capability to col-
lect a large amount of visual information. Such a quality is espe-
cially remarkable in the case of omnidirectional cameras, whose
field of view ismaximum.Many approaches have exploited this as-
pect of single cameras by means of visual descriptors to encode 3D
visual landmarks [1–3]. Omnidirectional cameras have also been
used within different contexts successfully [4–6].
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Over the last years, great efforts have been made on the study
and research of the EKF-based SLAM methods sustained by visual
sensors [7,1,8,2,9,10]. The main efforts have been concentrated on
the position estimation of a 3D visual landmarks set in a com-
mon reference system. These approaches are liable to encounter
difficulties in assuring the convergence of the solution, particu-
larly in the presence of non-linear errors. Such errors are usually
provoked by sensory input. Omnidirectional sensors are signifi-
cantly susceptible to cause this issue [11], due to its highly non-
linear nature. Their correspondent effects tend to affect severely
the data association problem in SLAM [12]. Other offline algorithms
[13–15] may be seen as an alternative technique to keep stability
under non-linear circumstances for SLAM problems [16]. Within
this last group, there are some other authors who take advantage
of other iterative optimization techniques embedded in the core of
the EKF filter [17,18].

In this approach we rely on an improved version of the EKF
which demonstrates its ability to face these common shortcomings
commented above. In particular, we employ EKF in a non-iterative
way. The most relevant characteristic of this approach is the
definition of the map by omnidirectional images (denoted as
views), which are captured along the path of the robot and stored
with their poses and visual descriptors. This idea is closely related
to the concept of submap. Here, a reduced set of views constitutes a
compact and simpler representation of the environment compared
to traditional 3D landmark map models. The main novelty is a
new mechanism for the initialization of views within the map
building process, aimed at uncertainty reduction. We make use
of the visual information provided by the visual sensor data
in order to construct an information distribution model which
accounts for information gain and losses. This task is carried out
by means of a Gaussian Process (GP), which is included within the
field of non-parametric Bayesian learning techniques. Application
of non-parametric methods, such as GPs has recently proven
great enhancements on the mapping tasks within the context of
autonomous navigation. Continuous frontier maps are obtained
by optimizing the process parameters, which reveal important
uncertainty reduction [19,20]. Therefore, we propose the training
of a GP as a tool to establish a bounded uncertainty scheme
for our approach. By adopting such a technique, we pursue a
positive impact on the uncertainty, which we intend to minimize.
As a result, harmful effects that are likely to appear under high
uncertainty conditions, such as errors induced by non-linearities
and consequently instabilities and convergence difficulties are
mitigated. As a consequence, a more robust and consistent map
and trajectory estimate is obtained for the visual SLAM problem.

Summarizing, the fundamental aspects and contributions of
this approach may be listed as follows:

• A new view initialization mechanism is presented for the map
building process within the problem of EKF-based visual SLAM.

• This strategy accounts for information gain and losses more
efficiently.

• Probabilistic representation of features and learning their
correlations through Gaussian processes regression.

• Bounding the uncertainty leads to the mitigation of harmful
effects induced by non-linearities in the framework of EKF-
based visual SLAM.

This section has introduced the scope and it has also given
a brief outline of the related work. Next, the rest of this paper
has been structured in the following manner: Section 2 briefly
presents the basic theory of an EKF filter within this framework.
Section 3 provides a general explanation to our EKF-based visual
SLAM approach. Next, Section 4 exposes the key points of this
contribution, which is supported by Gaussian Processes and
Information theory. Finally, Section 5 shows the results extracted
from real data experiments. They are aimed at testing the validity
and reliability of this approach in terms of accuracy and robustness,
but they are especially seeking the uncertainty reduction, which
is obviously translated into an improvement on the solution
convergence. Comparison between this proposal and a former
SLAM approach has also been included to support these results.
Further discussion and conclusions are addressed in Section 6.

2. EKF

The principle of the EKF [21] is based on the iterative update
of an augmented state vector which represents the real time
estimate to the problem. Considering our specific visual SLAMcase,
constituted by a view-based map, the estimate returns the pose
of the views in the map and the pose of the robot. Then, the state
vector can be defined as:

x̄(t) = [xv, xl1 , xl2 , . . . , xlN ]
T (1)

where xv represents the current pose of the robot and xlN the
pose of the Nth view in the map. Two linear relations are defined
by F(t) and Hi(t) so as to encode the dependency between x̄(t)
and the observation measurement zi(t) respectively. In addition,
it is essential to bear in mind the information provided by the
odometry of the robot u(t + 1), the uncorrelated Gaussian noise
introduced into the system v(t + 1), and the noise generated by
the sensors, wi(t), being also Gaussian and with covariance R(t).

Three fundamental stages are well differentiated by the EKF
to operate. Firstly, a prediction for x̂(t) and ẑi(t) is proposed.
Then the second stage makes use of this prediction to determine
the deviation between the prior ẑi(t) with respect to the real
observation zi(t). This concept is commonly known as the
innovation, and its meaning is of paramount significance in the
computation of the final solution provided by the filter. Finally, the
third stage takes into account the second stage’s output to produce
the refinement of the estimation obtained during the first stage,
seen as an updating step. These three stages may be described by
their analytic expressions in the following terms:

• Prediction

x̂(t + 1|t) = F(t)x̂(t|t) + u(t) (2)

ẑi(t + 1|t) = Hi(t)x̂(t + 1|t) (3)

P(t + 1|t) = F(t)P(t|t)F T (t) + Q (t) (4)

being P(t|t) and P(t + 1|t) the covariance matrices which
correspond to the uncertainty of the estimation at instants t and
t + 1 respectively. Q (t) is constituted by the noise parameters
which characterize the odometry of the wheels of the vehicle.

• Innovation

vi(t + 1) = zi(t + 1) − ẑi(t + 1|t) (5)

Si(t + 1) = Hi(t)P(t + 1|t)HT
i (t) + Ri(t + 1) (6)

where Si(t + 1) represents the innovation’s covariance.
• Update

x̂(t + 1|t + 1) = x̂(t + 1|t) + Ki(t + 1)vi(t + 1) (7)

P(t + 1|t + 1) = P(t + 1|t) − Ki(t + 1)Si(t + 1)K T
i (t + 1) (8)

being Ki(t + 1) the gain matrix of the filter which plays the role
of weighting. It is computed in the following manner:

Ki(t + 1) = P(t + 1|t)HT
i (t)S−1

i (t + 1). (9)

It is worth noting that Q (t) and R(t) have to be initialized. The
noise parameters which characterize the odometry are introduced
into Q (t) and the experimental accuracy parameters associated
with the visual sensor into R(t). In addition, the odometry u(t) is



D. Valiente et al. / Robotics and Autonomous Systems 72 (2015) 93–104 95
Fig. 1. Map building process. First view in the map, IA , is initiated at the origin A. While the robot traverses the environment, correspondences may be found between IA
and the current image captured at the current robot’s pose. In case that no correspondences are found, a new view is initiated as the current image, for instance IB at B. The
procedure finalizes when the entire environment is represented.
required as an initial seed for the prediction obtention defined by
Eq. (2).

3. Visual SLAM

The main goal of a visual SLAM technique is to retrieve a reli-
able estimate of the position of the robot inside a certain explored
environment,which has to be estimated simultaneously. In this ap-
proach, the map is constituted by a set of omnidirectional images
acquired at different poses in the environment, denoted as views.
Please note that these views do not correspond with information
from any specific physical landmark as it is traditionally under-
stood in vision-based SLAM. They are constituted by an omnidirec-
tional image captured at the pose xl = (xl, yl, θl) and a set of points
of interest extracted from that image. Such arrangement allows us
to take the best advantage of the wider field of view provided by
omnidirectional cameras. A large amount of information may be
encoded by a simple image, fact that leads to a significant reduc-
tion of the required computational resources. In consequence, the
compactness of the map is enhanced thanks to the less number of
variables needed for estimating the solution.

As briefly mentioned in Section 2, the pose of the mobile robot
at time t is expressed as xv = (xv, yv, θv)

T , and each view n
with n ∈ [1, . . . ,N] is constituted by its pose xln = (xl, yl, θl)Tn ,
its uncertainty and a set of feature points expressed in image
coordinates along with their visual descriptors.

Finally, as shown in Eq. (1), the augmented state vector for our
EKF view-based SLAM is:
¯x(t) = [xv, xl1 , xl2 , . . . , xlN ]

T .

3.1. Map building

The map building task is depicted in Fig. 1. The robot starts
exploring the environment at the origin point A, where it captures
an omnidirectional image IA, stored in the map as a view with
pose xlA and being representative of the relevant visual information
around this position. Now IA is assumed to be the first part of
the map, then the robot moves towards the first office room. As
long as there is not any major obstruction, the robot extracts
corresponding points between IA and the omnidirectional image at
its current pose. This fact makes it able to localize itself. However,
once the robot enters the office room, the appearance of the images
varies significantly, so no matches are found on IA. At this point,
the robot initializes a new view named IB at the current robot’s
position xlB . This view aids the robot in localizing itself inside the
office room. Finally, the robot concludes the exploration of the
environment with an accumulated map defined by views IC , ID, IE .
The number of views initiated in the map directly depends on the
sort of environment and its visual appearance. Fig. 1 also provides
a synthesis of the localization procedure. A comparison between
IA and IE is presented, where corresponding points and the motion
transformation given by the relative angles between the pose of
the images are indicated.

It is important that the initialization of a new view in the map
is clearly explained. Our former approach [22] relied on a relative
measurement between images so as to define an initialization
ratio, which was experimentally defined as:

A = k
c

p1 + p2
(10)

being p1 and p2 the feature points detected on each image and c
the correspondences between them. The value of k was aimed at
weighting the measurement according to the visual appearance of
each particular scenario.

Although this strategy assesses the similarity of the environ-
ment, it is empirically suited for scenarios where the matching
process is feasible and few outliers are introduced. This fact leads
us to seek a more reliable and general mechanism. According to
the objectives stated in this work, in order to achieve the uncer-
tainty reduction, new contributions and added value have to be
implemented at this stage.We suggest an initialization ratio which
adapts to information gain and losses. Thus it is based on the cur-
rent uncertainty of the map. To that end, we propose the use of a
regression technique represented by a GP in order to infer a data
information distribution which aids in the definition of this ratio.
In particular, the robot will initialize a new view whenever there
is a high change in the inferred information distribution from the
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Fig. 2. Given a detected point p⃗1 in the first image reference system, a point
distribution is generated to obtain a set of multi-scale points λip⃗1 . By using the EKF
prediction, they can be transformed into q⃗′

i on the second image reference system
by means of a rotation R ∼ N(β̂, σβ ), translation T ∼ N(φ̂, σφ) and scale factor ρ̂.
Finally, q⃗′

i are projected into the image plane to determine a restricted area where
correspondences have to be found. The circled points represent the projection of
the normal point distribution for the multi-scale points that determine this area.

sensor data, in other words, when there exist relevant changes in
the environment’s visual appearance. As a result, the final estima-
tion will benefit from this idea since any new viewwill be initiated
at an optimum pose in the sense of uncertainty. The arrangement
of new views will now assure that the uncertainty of the estima-
tionwill be bounded. This proposal reinforces the value that comes
along with our view-based approach: major information changes
on the environment are encoded by new views in themap. Further
explanation and details are given in Section 4.

3.2. Observation model

The observation model has be to designed in accordance to the
view-based map model presented above. The goal is to retrieve a
motion transformation between images which aids in the robot
localization. The versatility of omnidirectional images enables
to apply epipolar constraints [23] to extract the observation
measurement between two images as shown in Fig. 1. The position
of these images corresponds to the pose where the robot captured
them. To that effect, only two images with a reduced set of
corresponding points between them are required to obtain the
motion transformation. The observation measurement may be
expressed as:

zt =


φ
β


=

arctan

yln − yv

xln − xv


− θv

θln − θv

 (11)

where φ and β are the relative angles which express the bearing
and orientation at which the view n is observed from the current
robot’s pose. Please note that the structure of the view n was
presented as xln = (xl, yl, θl)Tn , whereas the pose of the robot is
given as xv = (xv, yv, θv)

T . Fig. 1 graphically exposes the meaning
of these measurements (φ, β).

3.3. False correspondences avoidance

Matching correct feature points between images it is crucial
for retrieving a reliable and consistent observation model. In this
sense, we set some restrictions which prevent from false corre-
spondences appearance. We make use of epipolar constraints to
delimit the search for correspondences [24]. The same point de-
tected in a first camera reference system, denoted as p = [x, y, z]T ,
may be expressed as p′

= [x′, y′, z ′
]
T in the second camera ref-

erence system. Then, the epipolar condition is used to state the
relationship between both 3D points p and p′ seen from different
views.

p′TEp = 0 (12)

where the matrix E is the essential matrix and it can be computed
from a set of corresponding points in two images.

E =

 0 0 sin(φ)
0 0 − cos(φ)

sin(β − φ) cos(β − φ) 0


(13)

being φ and β the relative angles that determine a planar motion
transformation between twodifferent views, as shown in Fig. 1 and
Eq. (11). We rely on the information provided by the EKF at its
prediction stage to devise a realistic search for valid correspond-
ing points between images. In an idealistic case, the epipolar con-
straint defined by Eq. (12) should equal a fixed threshold, implying
that the epipolar curve defined between images always presents
a little static deviation. However, we consider the propagation of
uncertainties in the map into Eq. (12) by introducing a dynamic
threshold δ(ẑt). This implies a more realistic SLAM approach, since
this threshold depends on the existing error on themap, which dy-
namically varies at each step of the SLAM algorithm. This error is
correlatedwith the error on ẑt . Therefore, given two corresponding
points between images, they must satisfy:

p′T Êp < δ(ẑt). (14)

Finally, as it may be observed in Fig. 2, the information provided
by a predicted state is used to generate a projection of a normal
multi-scale distribution on the sensor frame, where corresponding
points are expected to be detected. This projection determines
a predicted area wherein to search for. The shape of this area
depends on the error of the prediction, which is directly correlated
with the current uncertainty of the map. This approach not only
mitigates the undesired harmful effects associated with false
positives, but also simplifies the search for corresponding points
between images as it restricts the area where correspondences are
expected, instead of a global search along the whole image. See
Fig. 3 to identify this stage within the block diagram associated
with this SLAM approach.

4. Gaussian processes

A GP has been introduced in this work in order to establish
a sensor data distribution, which can be mapped into a global
reference system. GPs entail a non-parametric Bayesian regression
method, which statistically infer the dependencies between points
in a dataset [25], in contrast to conventional functions which
analytically relate inputs and outputs. A GP , denoted as f (x), is
constituted by its mean, m(x), covariance k(x, x′), and the training
and test input vectors, x and x′ respectively.

f (x) ∼ GP [m(x), k(x, x′)] (15)

f (x′) ∼ N (µ, σ 2) (16)

µ = E(f ′
| x, y, x′) = k(x′, x)[k(x, x) + σ 2

n I]
−1y (17)

σ = k(x′, x′) − k(x′, x)[k(x, x) + σ 2
n I]

−1k(x, x′) (18)

being σ 2
n the variance of the Gaussian observation noise and f ′ the

output values at the test points.
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Fig. 3. Block diagram summary for the EKF-based visual SLAM approach, with GP regression and Information-based view initialization.
4.1. Sensor data distribution based on GP

Once theGPs basis and formulation have been presented,we are
able to devise a model to represent our sensor data information
distribution. The inference procedure through a GP takes the
visual information gathered from the environment in the form of
feature points detected on the image frame, as it was explained in
Section 3.

While the robot navigates, a certain observation measurement
is performed at time t . Then, the feature points detected on
the image acquired at the current robot’s pose are considered
as our training dataset xi for the GP . The test points x′

i are
determined by sampling uniformly the space defined in a global
reference system. Finally, the GP returns the mean values µi and
variances σ 2

i inferred for these test points, as stated above. The
most straightforward outcome of GP ′s output is the probability of
existence of a feature point at the locations specified by the test
points.

There are several steps involved in the construction of the
sensor data information distribution:

• Firstly, the feature points are locally processed on the camera
reference system. Secondly they are back-projected into a
global reference system bymeans of the calibration parameters
of the sensor [26].

• Next, they become the input to the GP , which returns the
probability distribution.

• Ultimately, when new points are extracted from images
acquired at new poses, the distribution is fused into the general
information reference system.

We can assume that significant variations on the scenario will
lead to the detection of new feature points which will cause sub-
stantial changes on the information distribution representation,
what in the end it is the key point to analyse.

Before going deeper in illustrating some GP examples, it is
worth mentioning that these results might be seen as a helpful
tool in order to optimize the matching process, detailed in
Fig. 4. Sensor data information distribution: probability of existence of feature
points on the 2D reference system.

Section 3. It might be thought that matching feature points could
be dealt with probability measurements as target (either treated
in combination with visual descriptors or separately). However,
this promising ideawas faded away after considering the following
issues:

• Computational requirements to apply GP regression over
images with hundreds of feature points at every possible
matching case when conducting observation measurements.

• GP regression returns probability on the 2D general reference
system. This means that in order to match points, the scale is
absolutely required, as their exact 2D coordinates are needed.
Currently, the matching process is visually performed on the
image plane (up to scale).

As a consequence, GP regression was exclusively aimed at ob-
taining a bounded uncertainty scheme for themap representation,
as it will be detailed in the following subsections.
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Fig. 5. Map building process using an omnidirectional sensor. The robot explores the environment while simultaneously initiates image views in the map at poses A, B and
C . These images aids in its localization.
4.1.1. Real data example
Concentrating on a more realistic example, Fig. 4 shows the

sensor data distribution generated by theGP in terms of probability
of existence associated to a bunch of feature points. In particular,
it represents the 2D spatial coordinates of a certain scenario.
According to the explanation given in the two last paragraphs, after
GP regression, µi and variances σ 2

i are inferred for the test points.
This permits to represent the probability distribution, where each
feature point may be identified by its probability of existence,
expressed in the normalized range [0, 1], as indicated in the legend.

Fig. 5 presents an illustrative examplewhere the robot explores
the environment, meanwhile the visual information varies along
the path and so does the feature points and the output returned by
the GP . Poses A and B are relatively close so that the scene captured
by the robot at these points is quite similar, and thus many feature
points are coincident between images. By contrast, when the robot
approaches the second room, the appearance of the environment
changes substantially. Therefore, at pose C , new feature points are
detected with respect to images at poses A and B. Fig. 6 provides
an extended explanation to this example. Fig. 6(a) represents the
motion transformation between poses A, B and C . Then Fig. 6(b)
shows the images acquired at A, B and C respectively. The feature
points are projected on the image plane and indicatedwith crosses.
Green crosses mark corresponding feature points between images
and blue crosses mark new feature points detected. The change
on the appearance of the environment at C is notable, as it is
confirmed by the detection of unseen feature points shown in blue.
This fact involves a variation on the information distribution, in
Fig. 7. Here, the current probability of existence of feature points
at poses A, B and C is represented. This figure depicts the evolution
of the sensor data information distribution along these poses.
Please note that a relevant variation appears between poses B and
C . Overlapped areas of high probability denote locations where
feature points have been repeatedly observed several times from
different poses. This region encapsulates the visual information
that has remained steady, being more significant between poses A
and B. By contrast, at pose C the information distribution confirms
that the weight of this overlapped area decreases versus the
areas which represent the probability of existence of new feature
points.

4.1.2. Information gain approach: bounding uncertainty
As seen in the example, at every new pose the robot traverses,

a set of new observation measurements are obtained between its
Fig. 6. Detailed description to example presented in Fig. 5: 6(a) represents the
motion transformation between poses A, B and C and a 3D point, P(x, y, z);
6(b) shows the images acquired at poses A, B and C , where the projection of
P(x, y, z) on every image is indicated by pA(u, v), pB(u, v) and pC (u, v) respectively.
Corresponding points between images are shownby green crosseswhereas the new
feature points are shown by blue crosses. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Evolution of the sensor data information distribution along poses shown in the example presented in Fig. 5: 7(a) A; 7(b) B; 7(c) C . Variation on the probability of
existence of feature points on the 2D reference system.
current pose’s image and the views stored in the map. The visual
information provided from the camera is more likely to overlap at
the nearby poses, thus the comparison of images results in a higher
number of corresponding points. By contrast, the information
varies considerably when the robot discovers unknown areas, and
then the corresponding points decrease dramatically.

A profitable use can be made of this variation of visual
information. We propose an efficient map building process in
terms of uncertainty. The purpose is to study these variations
of visual information in order to decide the initialization of new
views in the map. With this assumption, every new view will
encode themost relevant changes in the environment, according to
their visual informative characteristics. The main expected result
is the reduction of the total uncertainty of the estimated map. The
placement of the new views will be efficiently selected according
to a bounded uncertainty procedure which will be defined by an
updated version of the former initialization ratio defined by Eq.
(10).

To that end, we adopt the tool given by Kullback–Leibler
divergence [27], which is commonly known as Information Gain in
probability theory. The aim is to evaluate the fluctuation expected
in the entropy when a new sample set is introduced to a certain
distribution. In this context, we use the entropy to measure the
uncertainty associated to the feature points given by our GP in
terms of probability of existence. The Kullback–Leibler divergence
(KL) represents the difference of entropy between the information
distribution of current feature points, F1, and the new inferred
feature points, F2, from new images. In other words, the higher
value of KL divergence means that the newly introduced feature
points are less similar. Thus higher is the amount of new visual
information discovered by the robot. Likewise, the uncertainty
on the estimated map will increase as areas of the environment
with new visual appearance are being explored by the robot. The
following equations define their structure:

H(F1) = −


i

F1(i) log F1(i) (19)

KL(F1 ∥ F2) = H(F1, F2) − H(F1) =

k
i=1

F1(i) log
F1(i)
F2(i)

(20)

where H(F1) is the entropy of the information distribution of the
current feature point set at time t . F1(i) represents the probability
of existence of the current i-feature points at time t and so does
F2(i) with new points added at time t + 1 from a new image. The
relevance of their information contribution is directly proportional
to 1/σ 2

i .
The strategy to initialize a new view seeks an upper bound for

the uncertainty so as to get an efficient map in this sense. To that
aim, as we keep the information distribution of the points referred
to a global system, we consider the KL value in its accumulative
format. Then, wemeasure the accumulated increases in the uncer-
tainty, given by the addition of new visual information. The previ-
ous initialization ratio shown by Eq. (10) has been substituted by
the following one:

γ =


t

KL(Pt ∥ Pt + 1) (21)

where Pt refers to the data information distribution obtained up to
time t and Pt + 1 refers to the new data information fused into the
global reference system at time t+1. Establishing different thresh-
olds for γ leads us to obtain different view initializations and thus
different map versions. Obviously, the associated uncertainty also
fluctuates differently depending on the placement of the views. A
more detailed explanationwith real results is presented in the next
section.

5. Results

We have performed two different sets of real data experiments
in an office-like environment. The equipment consists of a Pioneer
P3-AT indoor robot with a 1280 × 960 firewire camera and a
hyperbolic mirror. The optical axis of the camera is installed
approximately perpendicular to the ground plane, as it can be seen
in Fig. 6. We used a SICK LMS range finder in order to compute
a ground truth representation. Firstly, in Section 5.1 we present
results to examine the behaviour of this proposal in terms of its
associated uncertainty. Then, in Section 5.2 we show differentmap
solutions obtained with this SLAM approach. All the set of results
presented here are also comparedwith a former SLAM version [22]
which does not use GP nor data information distribution in order
to initialize views.
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Fig. 8. Evolution of the uncertainty along the robot’s path. Different values for γ

are shown and compared to the uncertainty obtained with the initialization ratio
(Eq. (10)) employed in the former SLAM approach.

Fig. 9. Evolution of the mean uncertainty accumulated on the total map. Different
values for γ are shown and compared to the uncertainty obtained with the
initialization ratio (Eq. (10)) employed in the former SLAM approach.

Fig. 10. RMS error for different initialization ratios γ . The RMS value obtainedwith
the former SLAM approach has been also plotted for comparison.

5.1. Initialization ratio and sampling resolution

Here we evaluate the mechanism for view initialization under
different conditions. The first parameter to consider is the
threshold value for the new initialization ratio γ , defined in Eq.
(21). Intuitively, the less views are initialized in the map when the
higher is this ratio. This means that larger changes on the visual
environment are encoded by less views, without implying any new
initialization. Please note that, from now on, uncertainty values
have been computed as:

σ 2
experiment = trace[P(t) · P(t)T ] (22)
Fig. 11. RMS error for different grid size resolutions. The grid size resolutions are
expressed up to the scale factor of the current map. The RMS value obtained with
the former SLAM approach has been also plotted for comparison.

Fig. 12. 12(a) presents real data results obtained with the presented EKF-based
SLAM approach. The map representation of the environment is formed by N = 12
views. The position of the views is presented with error ellipses. 12(b) shows the
solution and the odometry error in X , Y and θ at each time step.

where P(t) is the current covariance matrix at time t , as presented
in Eq. (4).

A real experiment has been conducted in a scenario with
dimension 25 m × 25 m. Fig. 8 presents the current uncertainty
along the path followed by the robot at each time step. It is now
confirmed that lower values for the initialization threshold help
in the reduction of uncertainty. It is worth noting that the results
provided by this proposal outperform the uncertainty associated
with the former SLAM approach at every case. The main reason
for this to be a more feasible mechanism is the consideration of
information gains and losses rather than the amount of feature
points matched. Fig. 9 shows the mean uncertainty accumulated
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Fig. 13. 13(a) presents real data results obtained with the presented EKF-based
SLAM approach. The map representation of the environment is formed by N = 28
views. The position of the views is presented with error ellipses. 13(b) shows the
solution and the odometry error in X , Y and θ at each time step.

on the total map at each time step. Obviously, the shape and
the evolution is quite similar, however the map uncertainty is
very likely to be higher than the uncertainty on the pose, since
it computes the mean of the entire set of uncertainties associated
with all of the members of the map up to time t . That it is to say,
the current uncertainty of the set of views stored in the map, and
the trajectory traversed by the robot.

Again, the results obtained with this approach confirm a bet-
ter performance with regard to the uncertainty. This means that
the view initialization strategy accomplishes with the proposed
scheme for obtaining a bounded uncertainty. Nonetheless, it is
worth mentioning that low uncertainty values imply larger num-
ber of views in the map, and obviously at a higher computational
cost. Hence a trade-off solution is needed, which usually depends
on the specific application.

Secondly, it is necessary to state the same analysis but now
looking at the estimation error. To that aim, we extract values for
the RMS error (Root Mean Square). Fig. 10 plots RMS values as-
sociated to the different initialization ratios γ . Once again, com-
paring with the former approach, the obtained error with the new
approach is lower at any case.

Finally, another parameter which has a considerable impor-
tance on the efficiency of this approach is the sampling size for
the test points selection. As it was mentioned in Section 4, the
global reference system is sampled uniformly by means of these
test points x′. Then, the data information distribution inferred by
the GP will have a specific resolution which is directly linked with
this sampling size determined by x′. Now, Fig. 11 represents the
RMS (Root Mean Square) error when the sampling size is varied.
It can be observed that higher resolutions ensure better results as
Fig. 14. 14(a) presents real data results obtained with the former SLAM approach.
The map representation of the environment is formed by N = 11 views. The
position of the views is presented with error ellipses. 14(b) shows the solution and
the odometry error in X , Y and θ at each time step.

the probability areas are more accurately determined. However,
a high resolution inference from the GP become very expensive
in terms of computation. It is worth noting that the dimension
of the grid size is up to scale, according to the scale factor of the
map.

5.2. Map building based on data information distribution

At this point, a trade-off parameter set can be extracted from
the study of the results presented above. Hence, we carry out
a complete SLAM experiment. Fig. 12 shows the final map and
path estimation for an office-like environment. Fig. 13 presents
a different solution for the same scenario where a different
initialization ratio has been considered. In order to compare and
prove the benefits of this proposal, Fig. 14 presents results obtained
with the former EKF-based SLAM approach [22]. By inspecting
Figs. 12(a) and 13(a), it can be confirmed that lower initialization
ratios ensure a more robust solution with a larger number of
views, but obviously at a higher computational cost. Figs. 12(b)
and 13(b) show the behaviour of the error along the path. Both
estimations confirm their improvements in comparison with the
former approach as seen in Fig. 14(a) and (b). An important
reduction in terms of uncertainty is achieved.

Finally, the method has been used in a larger scenario with the
aim of testing its robustness and feasibility in large environments.
Fig. 15 provides general details of this scenario, which corresponds
to an indoor trajectory of 180 m. The areas which the robot goes
through consist of office-like rooms, laboratories, corridors and
open spaces. The main challenge is to deal with the big changes
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Fig. 15. Main details of the large scenario where the last dataset was acquired. The layout of the building, real path followed by the robot and some omnidirectional views
of different areas are indicated.
on the visual appearance between rooms, but with the lighting
changes on the images. Some omnidirectional images are also
presented, as well as the real path followed by the robot. Fig. 16
provides results for this 50 m × 50 m scenario when using the
proposed approach. Again, the estimated path and map reveal
their accuracy and similarity to the real path, but also its reduced
uncertainty. Fig. 17 illustrates the evolution of the pose and map
uncertainty respectively.

6. Conclusions

This work has presented a novel mechanism for the view ini-
tialization within the map building process applied to an EKF-
based visual SLAM approach supported by a omnidirectional
sensor. This contribution seeks to provide a more feasible mech-
anism which accounts for information gain and losses so that the
harmful effects suffered by visual SLAM approaches are mitigated.
Particularly, non-linearities and undesired effects induced in the
observation and movement jeopardize the convergence of the es-
timation provided by traditional EKF-based SLAM approaches. In
consequence, it is crucial to keep uncertainty bounded to deal with
this issue. To that aim, we have focused on encoding information
gain and losses to define the proposed mechanism to improve the
view initialization stage in our EKF-based visual SLAM approach.
This new mechanism is achieved by means of the construction
of a data information distribution inferred with a Gaussian Pro-
cess. This distribution represents a probability model for the ex-
istence of feature points which is exploited from an informative
point of view. Thus an Information Gain method is finally intro-
duced to come up with the intended initialization process, which
confirms its capability to bound the uncertainty and to efficiently
initiate new views in the map. The results presented have proven
the validity of this proposal and the expected benefits regarding to
the uncertainty reduction, which is translated into a more robust
and consistentmap and trajectory estimation. Likewise, the results
demonstrate the effectiveness of this approach to set limits to the
estimation error as well. In order to reinforce the value of these
results and the contributions made on this research, we have also
compared them with the results obtained by a former EKF-based
SLAM approach which uses a more empirical initialization mecha-
nism.
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Fig. 16. Real data results obtainedwith the presented EKF-based SLAMapproach in
a large scenario. The map representation of the environment is formed by N = 41
views. The position of the views is presented with error ellipses. 16(b) shows the
solution and the odometry error in X , Y and θ at each time step.

Fig. 17. Evolution of pose and map uncertainty for the large scenario presented
above.
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