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Abstract

In this paper, a novel robotic system that solves the problem of autonomous mapping an underfloor void is presented.
The approach is based on a 3D laser scanner. A real time navigation system and a new high level planner that selects the
next best scanning position controls the motion of the robot. Multiple scans are aligned using ICP and graph optimization
techniques. Finally, a point cloud fusion algorithm creates a global model of the environment from the aligned scans.
The survey robot has been successfully deployed in a commercial application for scanning underfloor voids before and
after the application of thermal insulation. Using this system, the robot was successfully able to autonomously map the
controlled test scenario. For some applications the quantity of rubble within the void caused the real time navigation to
fail and teleoperation and manual initialization of the ICP algorithm was necessary.

1 Introduction

Autonomous exploration and surveying of an underfloor
void or crawl space is a challenge for mobile robots, but
one for where there are many applications such as map-
ping and inspecting services e.g. looking for leaking pipes,
damaged insulation or faulty wiring; checking for hazards
e.g. surveying for the presence of asbestos.
Crawl spaces and under floor voids providemany problems
not encountered in other applications where autonomous
exploration and surveying is more common. This includes
operating in confined spaces with irregular 3D paths, re-
stricted openings, unknown obstacles, rough terrain, rub-
ble, sand and mud. There are also difficulties for vision
systems including dust, poor and inconsistent illumination,
shadows and occlusions.
Due to the nature of these environments umbilical cords
that can get caught on obstacles are not desirable, while
wireless communications have limited range. Therefore
it is highly desirable to create robots that can operate au-
tonomously without relying on operator input.
The first contribution of this paper consists of the devel-
opment and integration of a robotic system that solves
this problem by combining a 3D scanner system, ICP-
based alignment and 3D model reconstruction with a real
time navigation system that includes an autonomous sur-
vey planning system that intelligently selects the next best
scanning position. In this regard, the second contribution
is the extension of the traditional 2D exploration next-best-
view algorithm [1] to 3D models. Our approach considers
travelling costs and information gain and it also includes a
localizability term in order to facilitate the alignments.

2 Related Work

The exploration problem [2] can be defined as the process
of autonomously mapping an unknown area. This is usu-
ally done by repeatedly selecting the best destination from
a subset of candidates according to some criteria such as
the shortest travelling distance [3], or a combination of the
travelling cost with information gain [1]. The set of can-
didate destinations comprise the frontiers between the ex-
plored and the unexplored areas. This is known as frontier
based exploration.
In addition, many authors have focussed in the coordina-
tion of multiple robots to explore the environment faster.
In this sense, different ways of coordinating the robots,
by means of selecting destinations for each robot based on
utility functions that measure the trade of between cost and
information gain, have been proposed [4] [5]. Furthermore,
some authors have studied how the structure of the environ-
ment can be used in order to improve the coordination [6].
Other authors have centred their attention on how the
planned trajectories are related to the mapping process. In
this sense, different trajectories can positively or negatively
affect the localization and therefore the accuracy of the cre-
ated maps [7]. The exploration methods that take into ac-
count the relation of the path planning with the simulta-
neous localization and mapping are normally called inte-

grated exploration approaches [8].
Most of these exploration techniques work with a 2D oc-
cupancy grid map built from laser or sonar readings. How-
ever, with the appearance of new sensors techniques for 3D
dense depth perception such as dense stereo camera sys-
tems, RBGD cameras, or 3D laser scanners, in the recent
years, there has been an increased interest in 3D mapping
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Figure 1 Architecture of the proposed real time system.

with mobile robots. In this regard, many authors have fo-
cussed in developing techniques for quickly registering 3D
depth data and built global 3D models. The iterative clos-
est point algorithm (ICP) [9] and variants of it [10] have
become a quite common choice for registering the data and
it has been integrated in many mapping systems with depth
sensors using differentmap representations as, for instance,
volumetric distance functions [11] or surfel-based repre-
sentations [12]. ICP is used for finding the alignment be-
tween two datasets. In this sense, it can be used in order to
find the alignment between new data and a global model for
a subsequent update of that global model in an incremental
way, or it can be used in order to align multiple datasets,
thus creating a pose graph that can be later optimized [13].

3 Approach Overview

The underfloor void case scenario presents many chal-
lenges from the exploration point of view. While the sce-
nario can vary significantly from one real-case site to an-
other, in general, the confined spaces does not suit well a
multi-robot system for a fast coordinated exploration. In
addition, the relevant features of the environment, e.g. in-
sulation, pipes or other services, jointly with structural fea-
tures like joists or walls require a 3D mapping system. This
makes necessary a different exploration approach than the
traditional 2D map based exploration methods.
Furthermore, the robot has to move in an irregular sur-
face that makes real-time localization difficult and oper-
ate in a poorly illuminated confined space that makes vi-
sion systems more complex. In this regard, depth cam-
eras use to have a limited depth range and a narrow field of
view. Therefore, they are not the best choice for operating
in a confined space with poor illumination. Consequently,
given the difficulties for registering the data in these condi-
tions, it was decided to base the approach on a 3D textured
laser scanner in order to gather a large a amount of data
from a small set of scanning positions.
In this way, the 3D exploration problem is reduced to cap-
turing and aligning multiple scans and fusing them into a
global model. The proposed architecture is illustrated in

Figure 2 Post-processing procedure.

Figure 3 Diagram of the robot and sensors placement.

Figure 1. The 3D scanner consists of a camera and a ver-
tically mounted laser on top of a rotating turret. The depth
and colour data from these two sensors are collected as the
turret rotates and assembled into a 3D textured point cloud.
This system and its calibration is described in Section 4.1.
The multiple scans are sequentially aligned in a pose-tree
using ICP. A low resolution volumetric representation is
updated after each new aligned scan. This SLAM system
will be explained in Section 4.2. However, it only evaluates
the localization of the robot for places where a scan is per-
formed. In this sense, a 2D SLAM system runs in parallel
and is used for navigating between the scanning poses as
presented in Section 4.3. In addition, a new 3D exploration
method is introduced in Section 4.4 for selecting the next
best scanning position using the volumetric representation.
Finally, as illustrated by Figure 2, a post-processing stage
takes place that optimizes the alignment of multiple scans
in a graph and fuses the data in a global is summarized in
Section 4.5.

4 System Description

4.1 Robot Architecture

The surveying robot designed consists of a small 4 wheeled
robotic platform with a front horizontal laser, an IMU and
an actuated camera-laser system (3D scanner). Figure 3
shows a diagram of the robot and the sensors placement.
The ROS framework [14] is used over a distributed sys-
tem between an on-board computer and an external opera-
tor station.
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4.1.1 3D Scanning System

The 3D scanner consists of an actuated camera-laser sys-
tem. The laser scans a vertical plane that turns as the turret
rotates. The camera is used in order to add colour data to
the depth measurements of the laser.
In this sense, the laser provides a set of distance readings
ρi at different angles θi. These readings can be expressed

as 3D points in the laser frame of reference p
[l]
i ∈ R

3 =
[

ρi cosθi ρi sinθi 0
]

⊺
. This is translated to the fixed

frame by:

p
[ f ]
i, j = Rx(φ j)Tlaserp

[l]
i, j (1)

where Tlaser ∈ SE3 is the calibrated position of the laser
in the moving 3D scanner frame of reference and R(φ j) ∈
SO3 is the corresponding rotation of the actuator of an an-
gle φ j. Note that, for simplicity of notation, the conversion
between 3-vectors and the corresponding homogeneous 4-
vectors (needed for multiplication with Tlaser) has been
omitted.
Equation (1) is used in order to project every point acquired
during a 360 degrees turn into the fixed 3D scanner frame
of reference, thus generating a point cloud. Finally, the
colour of the corresponding pixels in the images are asso-
ciated with each point by:

c{i, j},k = Ik

(

π
(

KTcamRx(−φk)p
[ f ]
i, j

))

(2)

where R(−φk) ∈ SO3 is the rotation matrix correspond-
ing to the actuator at the angle φk at which the image was
acquired, Tcam ∈ SE3 is the transformation corresponding
to the calibrated camera pose in the 3D scanner moving
frame, K is the calibrated camera matrix, u = π(x) is a
function that performs the dehomogenisation of x ∈ R

3

= (x, y, z) in order to obtain u ∈ Ω = (x/z,y/z), and
Ik : Ω 7→ N3 is the subpixel mapping between the image
space domain Ω⊂R2 and the colour values corresponding
to the rectified image k.

4.1.2 3D Scanner Calibration

In order to calibrate the pose of the laser in the moving
frame Tlaser ∈ SE3, it is necessary to split the vertical laser
points into two parts (front and rear) as shown in [15]. Then
the laser pose can be calibrated by minimizing the error be-
tween corresponding points of the front and the rear parts of
the scan after a 360 degrees movement of the turret. Thus
the scene is completely covered with each part of the scan.
In this sense, gradient descent is applied in order to mini-
mize the error:

Elaser(Tlaser) =
M

∑
m=1

‖p
[ f ]
m −p

[ f ]
m′
‖2 (3)

where p
[ f ]
m′

is the nearest point in data from the rear part

of the scan to the point p[ f ]m from the front part of the scan
expressed in the fixed frame of reference. In this case, the
gradient is estimated numerically.
Similarly, the camera pose Tcam ∈ SE3 =

[

Rc tc
]

needs to be also calibrated. To achieve this, a planar chess-

board pattern of known dimensions is 3D scanned at mul-
tiple locations. In addition, an image is captured from each
location with the turret positioned at the zero angle (φ = 0).
The equation of the plane containing the pattern can be
easily obtained for each pair of 3D laser scan (referred to
the fixed frame) and image (in the camera frame). While
typical methods from intrinsic camera parameters calibra-
tion can be used for detecting the chessboard in the image,
RANSAC can be applied for plane fitting to the laser scan.
The normals of these planes are arranged as two matri-
ces NL,Nc, one for the laser in the fixed frame and one
for the camera in the camera frame. Then, the covariance
H = cov(NL,Nc) between these two matrices can be de-
composed H = USV′ using SVD in order to obtain the ro-
tation part of the camera transform Rc = VU′ in a simi-
lar way to [16]. In order to find the translation, it is nec-
essary one pair of corresponding points between the laser
and camera data. A possible choice, that can be extracted
directly from the plane equations, is the pair or solutions
corresponding to the least squares problemsNcXc+Dc = 0
and NLXL+DL = 0, where Dc and DL are column vectors
of the independent terms in the plane equations. Then, the
camera translation is tc = RcXL−Xc.

4.2 ICP-SLAM

Different point clouds are aligned using the Iterative Clos-
est Point Algorithm (ICP) [10]. In this case, the goal of
ICP is to find the transformation T ∈ SE3 that minimizes
the point to plane error function:

E(T) =
M

∑
m=1

(

(Tpm−p′m) ·npm

)2
(4)

where pm and p′m are corresponding pairs of points between
two point clouds obtained by nearest neighbour search with
the help of a kd-tree, and npm is the normal vector to point
pm. This non-linear minimization is solved by linearisation
[17].
A tree of aligned 3D scanning positions is incrementally
built by means of aligning the new point clouds with the
closest cloud in the tree according to the initial estimate.
Furthermore, a low resolution volumetric representation of
the occupation is updated with each new aligned 3D scan.
In addition to the occupation state (free, occupied or unob-
served), surface normals are calculated and saved for each
voxel in this representation.

4.3 Autonomous Navigation

The ICP-SLAM system described in the previous section
is only updated at the points where a 3D scan is performed.
Therefore, it is necessary to perform a real time localization
and reactive obstacle modelling in order to control the mo-
tion of the robot when navigating to the next 3D scanning
position. The uneven terrain present in underfloor voids
exacerbates this task.
The main sensors involved in the real time localization and
obstacle modelling are the front laser and the IMU. Typ-
ical laser navigation approaches are not suitable in rough
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terrains since they are designed for planar surfaces. In this
regard, using the IMU, the laser readings of points corre-
sponding to the ground can be filtered and the remaining
points are projected to the horizontal plane before using
laser scan matching for localization and typical occupancy
grids for obstacle modelling [18]. The global position of
the scan matcher is reinitialized after each new 3D scan
has been aligned.
Dijkstra’s Algorithm is used in order to plan the path to the
next scanning position and a dynamic window approach is
applied for low level planning [19].

4.4 Next Best View

The position where the next 3D scan will be performed is
decided from the evaluation of multiple candidate destina-
tions. In [1] the next utility function that considers informa-
tion gain and travelling cost was proposed for performing
this evaluation:

V (q) = G(q)e−λC(q) (5)

where the utility V (q) is proportional to the information
gain term G(q), and has an exponential decay with the
distance to the target C(q), and λ is a design parameter.
The information gain terms is calculated counting the pre-
viously unobserved cells in a 2D occupancy grid map that
could be visible from the evaluated candidate position q,
While it was used for the 2D case in [1], this utility func-
tion can be easily extended to the 3D case by means of
evaluating the G(q) term with a 3D ray trace counter in the
previously explained low resolution volumetric representa-
tion. However, that leads to selecting target destinations
that maximize information gain without considering how
easy would it be to align it with the previous data. In this
regard, it is proposed here to use the next utility function
that introduces a localizability term:

V (q) = G(q)L(q)e−λC(q) (6)

This localizability term L(q) is evaluated as follows:

L(q) = ∑
pv

h

(

npv · (pv−pq)

‖pv−pq‖

)

(7)

where pv is the position of voxel v∈V ⊂N3 from the subset
of visible occupied voxels in sensor range from the candi-
date position pq, and npv are the normal unit vectors asso-
ciated to the voxel v. Note that this term counts the number
of visible occupied voxels weighted by the cosine of the an-
gle between the surface normal vector and the observation
direction. The function h(x) produces that the observations
from behind do not contribute to the count:

h(x) =

{

x, x≥ 0
0, otherwise

(8)

4.5 3D Model Post-Processing

4.5.1 Pose-Graph

The previous systems work online as the robot captures
the data and decides where to move next. However, a bet-
ter model can be created from a pose-graph including loops

with multiple alignments between scans than with the sim-
ple pose-tree. Since the ICP alignment is a computation-
ally expensive step, it is left for a post-processing stage to
find all the extra alignments for building a pose-graph of
the scanning positions. In this sense, additional edges are
added to the initial tree for each new valid alignment found
with ICP. An alignment is considered to be valid to be in-
serted in the graph, if the residual error (Equation 4) is low
while the number of inlier points in the alignment is above
a threshold.
Next, the pose-graph is optimized using stochastic gradi-
ent descent (SGD) using the tree-based network optimizer
[13]. This solves the loop closure discrepancies that appear
with the accumulation of error as the new data is incremen-
tally aligned.

4.5.2 Point Cloud Fusion

The next step is to fuse the aligned point cloud data asso-
ciated to each pose in the graph. A surface in the scene
would have been likely observed from multiple poses, hav-
ing therefore redundant data of the same area with different
resolutions, noise and texture due to changes in exposure
and illumination. In this sense, in order to facilitate the
fusion process, a radius that depends on the distance is as-
sociated to each point (similar to the radius used in surfel
representations of point clouds [12]).
The fusion process is summarized in Algorithm 1. The
global point cloud is initialized with the point cloud corre-
sponding to the first node in the pose graph. This global
point cloud is incrementally updated with the other nodes.
A set of correspondences is found by associating to each
point in the global cloud the nearest point in the input cloud
inside its radius. Next, the points in the input cloud that
remain without correspondence are inserted in the global
cloud. The points with correspondence are ignored if they
have a larger radius than the corresponding point in the
global cloud. In case they have a smaller radius, they are
inserted in the global cloud and the corresponding point re-
moved.

5 Experiments

The robot has been evaluated in a controlled test scenario
and also in real world underfloor voids. The main goals
of the experiments was to study the validity of the system
as a 3D mapping tool for measuring depth of installed un-
derfloor insulation and the viability of it being fully au-
tonomous in such challenging scenarios. Next the main
results of these tests are presented.

5.1 Experiments in a test scenario

Figure 4 shows an example of the functioning of the pre-
sented next-best scanning position algorithm. The light-
ness of the green colour represents the normalized values of
the profit function of Equation 6. The previously scanned
area is shown as a yellow point cloud. The red square repre-
sents the selected next best scanning position. As it can be
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Algorithm 1 Point Cloud Fusion

GlobalCloud← Node[0].PointCloud
for n ∈ [1,N− 1] do
for p ∈ GlobalCloud do

q← Node[n]. f indNearestPoint(p)
if ‖p− q‖< p.radius then
q.match← true

q.corr← p

end if

end for

for q ∈ Node[n] do
if q.match then
if q.radius< q.corr.radius then
GlobalCloud.remove(q.corr)
GlobalCloud.insert(q)

end if

else

GlobalCloud.insert(q)
end if

end for

end for

Figure 4 Next-best scanning position example.

seen, this method selects a point not too far away in order
to reduce navigation time and assure a good ICP alignment
of the next scan but also selects a point between the joists
of the void that were occluded in the previous scan.
Using this system, the robot was successfully able to map
the controlled test scenario using a total of 7 scans with an
average time of 6 minutes for each scan. These 6 minutes
consisted of the scanning time (4 min), the ICP-SLAM up-
date time (45 sec), planning time (45 sec) and trajectory
following time (30 sec).

5.2 Experiments in a real underfloor void

The tests in real world underfloor voids presented sig-
nificant problems regarding the navigation algorithms de-
scribed in Section 4.3. The amount of rubble in the void
could cause the scan matcher to fail. This has a signifi-
cant impact in the full automation of the approach, since
the selected scanning position were sometimes not reached
correctly or appeared as unreachable because of the poor
real-time localization. In addition, this also caused a good

Figure 5 ICP-SLAM example.

Figure 6 Point cloud fusion example.

position guess to not be available to initialize the ICP pro-
cess. This generates an incorrect global model that conse-
quently influences the goal generation algorithm.
In this regard, input from the operator was necessary for
teleoperating the robot to the selected scanning positions
and manual initialization of the ICP algorithm. Figure 5
shows the results of the alignment of several point clouds
generated from 3D scans in a real world underfloor void.
The fusion process described in Section 4.5 was applied
and the resulting global textured point cloud is shown in
Figure 6.

5.3 Results measuring insulation depth

One of the goals of the surveying of underfloor voids with
the robot was to perform coverage and depth measure-
ments of underfloor insulation. This enables the void to be
mapped before and after the installation of the insulating
foam. By aligning these two models the depth measure-
ments can be obtained.
Figure 7 shows an example of insulation depth measure-
ment. For a better visualization, the figure shows only the
points corresponding to the top surface of the void where
the foam is installed. The two different surfaces that ap-
pear in the figure correspond with the before model and af-
ter model. The colour code shows the difference in height,
and it can be clearly observed an average of 150 mm of
depth in the installed insulation.
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Figure 7 Insulation depth measurement example.

6 Conclusions and Future Work

A novel solution for the autonomous survey of underfloor
voids has been proposed and demonstrated in this paper.
The solution presented is based on a 3D scanner system
that with an associated calibration procedure. A real time
navigation system was integrated in the robot and a new
high level planner, that selects the next best scanning po-
sition, has been designed. Multiple 3D scans are aligned
using ICP to provide the necessary models for the target
selection and later global model generation. In this sense,
a fusion algorithm was designed in order to consistently
combine all the data.
The tests performed show that the solution is viable for
mapping the void and measuring insulation depth. How-
ever, some improvements are necessary for a robust auto-
mated survey. While tests in a controlled scenario were
successful, the real-time localization was found unreliable
for real world scenarios with large amounts of rubble in the
floor. This leads to missing the selected scanning position
and having a poor initial estimate for the ICP algorithm.
When the ICP algorithm produces a bad alignment, this af-
fects the next-best scanning position generation that affects
the full approach for autonomous data acquisition.
Consequently, one of the points for further research is the
design of a better real-time localization of the robot in these
difficult conditions. Despite it being influenced by real time
localization, the initialization of the ICP algorithm can be
considered a different issue. In this sense, visual features
could be used in the alignment. In addition, the total time
between scans would be improved by using a faster 3D
scanner and parallelization of some of the algorithms in-
volved in the ICP-SLAM and next-best scanning position
algorithm.
Furthermore, while the angular resolution of commercial
laser scanners is about 0.25-0.36 degrees, a high resolu-
tion camera can provide more angular resolution even us-
ing wide angle lenses. In this sense, there is more texture
colour data available in the 3D scanner than depth data.
While the process explained in Section 4.1 was being lim-
ited to only points with depth data, the remaining image
points can still be used with interpolated depth producing a
higher definition point cloud. In this way, the proposed de-

sign that provides initially about 8× 105 points with depth
data, can generate about 9× 106 points clouds using inter-
polated depth. However increasing the number of points by
one order of magnitude slows the system too much for on-
line processing and therefore only can be used during the
post-processing stage. In this sense, different alignments
techniques could be applied using the photometric data.
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