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A Comparison of Appearance-Based 
Descriptors in a Visual SLAM Approach

INTRODUCTION

The problem of Simultaneous Localization and Map-
ping (SLAM) has been studied thoroughly in the past 
decade in the field of mobile robotics. Taking into 
account the information that we can find on literature, 
it is possible to face the SLAM problem from three 
different points of view: the Metric SLAM, the To-
pological SLAM and the hybrid Metric-Topological 
SLAM. When we use the metric approach, we represent 
the environment and we compute the robot location 
through geometrical information with certain accuracy. 
On the other hand, when we face the problem using the 
topological approach, the objective is to represent the 
environment information by means of a list of locations 
within a graph, maintaining connectivity relationships 
between them. Finally, the metric-topological approach 
consists of a combination of the both techniques, trying 
to take advantage of both methods.

Nowadays, the use of computer vision is usual when 
we want to build a map and localize the robot in the 
map, because of several advantages (they are passive 
sensors, have a low cost and provide us with a great 
amount of information). When we use a vision sensor 
on a SLAM problem, we can approach the problem 
from two points of view: using the local appearance 
(landmarks) or using the global appearance to extract 
the necessary information from the scenes. The use of 
local appearance implies the extraction of distinctive 

landmarks from the images. When we use techniques 
based on local appearance, we typically need more 
computational time to build the map and locate the 
robot within the map. It is due to the fact that we need 
to extract the distinctive landmarks from each image 
and find each landmark extracted, in all images that 
compose the map. However, it presents an advantage: 
the possibility of including metric information to the 
system. Conversely, the global appearance methods 
need a lower time to work (they allow us to work 
in real time) but they do not directly include metric 
information in the map.

The main objective of this work is to build and 
test an algorithm to solve the SLAM problem us-
ing the global appearance of omnidirectional visual 
information and the robot internal odometry. Taking 
into account the advantages and disadvantages of the 
methods previously listed, we have decided to use a 
hybrid metric-topological approach to solve the SLAM 
problem.

BACKGROUND

The SLAM problem is a task studied extensively in 
the field of mobile robotics. One of the first works we 
find corresponds to Moravec and Elfes (1985), where 
a metric map is built by means of wide-angle sonar 
range measurements and a probabilistic approach. 
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Subsequently laser sensors are introduced to improve 
the accuracy and velocity in the algorithms created. 
For example, Thrun (2001) presents an algorithm for 
the SLAM problem in which a team of robots builds 
a map online using laser sensors and a Monte Carlo 
approach. However, the use of laser sensors implies an 
important contribution of radiation to the environment, 
and the laser sensors also use mechanical systems, 
which introduce errors.

Later, due to the numerous advantages offered (pas-
sive sensors, low cost, large amount of information, 
low power consumption, etc.), the use of cameras in 
the field of mobile robotics became widespread. For 
example, Murillo et al. (2007) make use of omnidirec-
tional images to localize a robot within a previously 
created map, using SURF (Speed Up Robust Features) 
(Bay et al., 2006). Nevertheless, in most cases, when a 
robot needs to perform a task it does not possess any 
information about the environment and therefore the 
robot must build a map while it is located in it (SLAM). 
In this line, Gil et al. (2010) present an algorithm for 
the visual SLAM problem in which a robot builds a 
map online using a stereo-camera and SURF features. 
The main problem presented by the use of the extrac-
tion of distinctive landmarks corresponds to the high 
computational cost required. As a feasible alternative, 
the use of topological approaches is a field of great 
interest in the construction of maps by means of the 
global appearance of visual information, due to the 
numerous advantages it presents in terms of simplicity 
and computational cost. For example, Menegatti et al. 
(2004) carried out a study on robot navigation using the 
omnidirectional visual information captured from the 
environment, by applying a global appearance descrip-
tor. In this work, they carried out a task of mapping and 
localization, without conducting a close loop, where the 
authors claim not high accuracy. In this sense, Werner 
et al. (2009) carried out a task of topological SLAM 
using vision-based techniques and global appearance. 
They also make use of omnidirectional images, and 
furthermore they propose a Bayesian approach that 
combines the odometry information of the robot with 
the visual information to improve the accuracy.

In this work we present a comparison of three 
global appearance descriptors in a process of robotic 
mapping, using a hybrid topological/metric SLAM.

APPEARANCE-BASED SLAM

In the approach we present in this work, we have 
decided to fuse the metric and the topological ap-
proach, with the goal of getting the advantages of each 
method. The topological method allows us to build a 
global compact representation of the environment and 
the metrical approach uses the information provided 
from the topological method to detect loop closures, 
so that it is possible to correct the possible errors in 
the position of the robot.

Constructing a Topological Map

Since we have decided to work with the global appear-
ance of the images, we need to represent the global 
information that each image has, building a specific 
descriptor. The descriptor should retain the information 
in a compact and efficient manner, it must be computed 
quickly and it must be robust against changes in the 
environmental lighting conditions. In this work we 
make use of and compare three different global im-
age descriptors: Fourier Signature (FS) (Payá et al., 
2009), Gist-Gabor (Friedman, 1979) and Histogram 
of Oriented Gradient (HOG) (Amorós et al., 2010).

With the objective of representing the environment, 
we have used a graph, so that, each node of the graph 
represents an area of the environment with similar 
visual appearance (containing one or more images), 
and each edge indicates the connectivity relationships 
between the nodes (Romero et al., 2010). Taking into 
account that each node can contain one or more im-
ages, we have decided to compute the most represen-
tative image of each node. With this objective we use 
the following equations to compute the similarity 
between every two images in the node S i j( , ) :

S i j
D i j

D i j Des m n Des m n
i j

nm

( , )
( , )

( , ) ( ( , ) ( , )) ,

=

= −∑∑

1

2
	

(1)

where Des
i
 represents the descriptor of the pan-

oramic image I
i
, and m  and n  are the number of 



A Comparison of Appearance-Based Descriptors in a Visual SLAM ApproachCategory: Global Information Technology

 G

3189

components the descriptor has in rows and columns, 
respectively. Then, the closer the images are, the 
smaller the distance D  is and the greater the similar-
ity S  is. Once we have computed the similarity between 
every two images in the node, we use the following 
equations to compute the most representative image:

R S i j

N S i j
i P j P i j

R i P j P i j

=

=
∈ ∈ ≠

∈ ∈ ≠

argmax( min ( ( , )))

max( min ( ( , )
,

,
))),

	 (2)

where P  represents the set of nodes in the graph, R  
is the image that best represents the node and N

R
 is 

its minimum similarity factor.
Then, to build the topological map we use the fol-

lowing algorithm:

1. 	 Whenever the robot captures a new image I
K

, 
it computes the descriptor Des

K
and compares 

it with the descriptor of the image that represents 
the current node R

c
, Des

C
. If the similarity 

S K R
c

( , )  is over certain threshold (Th
min

), it 
is added to the current node, and the node rep-
resentative is re-calculated.

2. 	 If the computed similarity S K R
c

( , )  does not 
exceed the threshold Th

min
, we compare Des

K
 

with the node representative of all the neighbor 
nodes to the current one. The node with the 
higher similarity is chosen, S K R

nei
( , ) , so that 

if the new similarity exceeds the threshold, the 
current image is added to that adjacent node, and 
the node representative is re-calculated.

3. 	 In the case that the similarity S K R
nei

( , )  does 
not exceed the threshold, the current image de-
scriptor is compared with the representative 
descriptor of the rest of the nodes. If the similar-
ity exceeds the threshold in any case, it is added 
to that node, and the node representative is 
re-calculated.

4. 	 If no match is found, a new node is added to the 
system, so an edge between the new node and 
the previous one is added too (in the following, 
they are neighbor nodes). The new node includes 
the current image, which is also the node repre-
sentative until a new image arrives, when this 
representative will be updated.

Constructing a Metric Map

We compute the metric map using a visual SLAM 
algorithm based in Payá et al. (2010). We combine 
a Monte-Carlo localization (MCL) algorithm with a 
landmark estimation process, so that, the robot decides 
when its current location is included as a metric map 
landmark. The main improvements over previous work 
mainly lie in the combination of a mapping process 
and a localization process simultaneously, combining 
a topological method with a metric method.

In a Monte-Carlo localization problem, the aim is 
the estimation of the robot’s pose x x y

t+ =1 ( , , )θ  at 
t ime t + 1  using a set  of measurements 
z z z z
t t1 1 1 2 1:

{ , , , }+ += … from the environment and 

the movements u u u u
t t1 1 1 2 1:

{ , , , }+ += …  of the robot 
(Fox et al., 1999). The probability density function 
p x z u

t t t
( | , )

: :+ + +1 1 1 1 1
 is represented by a set of M  

random samples x x i M
t t

i
+ += =
1 1

1, …  extracted 
from it (particles), where each particle can be under-
stood as a hypothesis of the true state of the robot 
x x y
t
i i i i
+ =1 ( , , )θ . The weight of each particle de-

termines the importance of the particle and the set of 
particles defines a discrete probability function that 
approximates the continuous belief. The original MCL 
algorithm consists of three main phases: Prediction 
phase, in which a set of particles χ

t+1  is generated 

based on the set of particles χ
t

 and a control signal 
u
t+1 ; Update phase, in which the weight w

t
i
+1  of each 

particle in the set χ
t+1  is computed using the observa-

tion z
t+1 ; and Resampling phase, in which the result-

ing set χ
t+1 is computed by resampling with replace-

ment from the set χ
t+1 , where the probability of 

resampling each particle is proportional to its impor-
tance weight w

t
i
+1 , in accordance with the literature 

on the SIR algorithm (Sampling Importance Resam-
pling) (Smith et al., 1992). Finally, the set χ

t+1  rep-

resents the distribution p x z u
t t t
( | , )

: :+ + +1 1 1 1 1
.

In our algorithm, as we want to build a map of the 
environment while the position of the robot is com-
puted (SLAM), we begin the experiment without a 
map of the environment. Taking into account this 
consideration, the initial set of samples is represented 
by a set of samples drawn from a narrow Gaussian 
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centered at the initial point ( , )x y= =0 0 . At the 
start of the experiment, the first map landmark (l

0
) 

corresponds with the first pose of the robot x
0

 and 
when the robot moves and captures a new image, the 
set of particles of the initial pose also moves adding 
some error to the movement of each particle, taking 
into account the movements u u u u

t t1 1 1 2 1:
{ , , , }+ += …  

of the robot. Moreover, the topological algorithm 
computes the representative pose of the node every 
time a new image is added, and it will appear on the 
metric map as the set of particles that represents the 
metric localization of the node. This way, each repre-
sentative pose of the topological map has one metric 
map landmark (l

i
) associated. So, although we compute 

each set of particles that represents each movement of 
the robot, we only add to the metric map the set of 
particles that represents the node. On the other hand, 
our MCL algorithm differs with respect to the tradi-
tional MCL algorithm in that we do not carry out an 
update and resampling process in each movement of 
the robot but only when the topological algorithm 
detects a loop closure, even though we perform a 
prediction phase at each movement of the robot.

When the topological algorithm detects a loop 
closure, an update and resampling process is activated. 
To compute the weight of each particle w

t
i
+1  we use 

as input both, the metric information (odometry) and 
the visual information (global image descriptor) through 
the following equation:

w v v h h
t
i

i l
T
i j d

T
j+

− −= − −
1

1 1exp{ }exp{ },Σ Σ 	
(3)

where v
i

 represents the difference between the posi-
tion of the landmark l

j
 and the position ( , )x y

i i
 of 

each particle i  ( ( , ) ( , ))v l l x y
i x

j
y
j j j= − , Σ

l
is a 

diagonal matrix Σ
l l l
diag= ( , )σ σ2 2  where σ

l
2  has 

been chosen in order to minimize the error in the lo-
calization of the robot. On the other hand, h d d

j t
= −| |  

is the difference between the appearance descriptor 
associated to the current observed image and the de-
scriptor associated to the landmark l

j
. Once the weight 

of each particle has been computed, the resulting set 
χ
t+1  is computed by resampling with replacement 

from the set χ
t+1 , where the probability of resampling 

each particle is proportional to its importance weight 
w
t
i
+1 .

Results and Discussion

With the objective of evaluating our SLAM algorithm, 
we performed a realistic experiment with a mobile 
robot in an indoor environment. We captured a data 
set with all the data we need and we carried out several 
sets of experiments using a desktop PC (Figure 1). The 
robot was manned to travel a specified route into the 
environment, so that several loop closures occur. The 
ground truth is computed using the method presented 
in Stachniss et al. (2004) from the data collected with 
a laser.

Based on previous work (Payá et al., 2010) and to 
evaluate our method, we have decided to use the Pro-
crustes analysis (Seber, 1984), where we get a measure 
of how accurate is the layout of the landmark after the 
SLAM process, comparing to the real layout. As a 
result of this process we obtain a parameter µ ∈ [ , ]0 1  
(shape difference), where µ  is a measure of the shape 
correspondence between the sets of points A and B, so 
that the lower isµ , the more similar are A and B.

In our experiments, we have compared the perfor-
mance of our hybrid algorithm when we use three 
different appearance-based descriptors (FS, GIST and 
HOG). We use the robot odometry as the input of the 
prediction phase in Monte-Carlo algorithm. In the 
simulation we have tested the influence of the number 
of components of each descriptor, as well as the influ-
ence of the number of particles used in the Monte-
Carlo algorithm. We have used the µ  factor to evalu-
ate the accuracy of the resulting map (metric), and the 
step time needed by the algorithm to evaluate the 
feasibility of the algorithm to work in real time. In 
Figure 2 we can see the µ  factor and the step time 
needed by the algorithm t , depending on the charac-
teristics of the descriptor used. We have performed 
several series of experiments using the three descrip-
tors (separately) and a number of particles equal to 
200. When we build the descriptor of each image, we 
have to decide the number of components that we want 
to store. In the case of Fourier Signature (FS) we have 
to decide the number of components of each row of 
the signature that we store. In the case of GIST descrip-
tor, we can change the size of the mask used to calcu-
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late the descriptor. This will change the size of the 
descriptor. At last, in the case of HOG descriptor, it is 
possible to modify the size of the descriptor by means 
of changing the size of the window used to compute 

the descriptor. It can be seen that for FS and GIST, the 
accuracy depends of the components used to compute 
the descriptor greater extent than in the case of HOG. 
However, in general, we can say that we get a good 

Figure 1. Bird’s eye view of the environment where the experiments have been carried out. We can see the path 
followed by the robot to get the necessary data to test the performance of our algorithm (green dots) and some 
examples of the images captured along this path.

Figure 2. (a) Shape difference μ versus number of components using the FS (left), GIST (center), and HOG (right); 
(b) processing step time to build the map versus number of components using the FS (left), GIST (center), and 
HOG (right)
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performance in accuracy for the three methods, even 
in the worst case. The µ  factor is lower than 0.0075 
in all the cases. We must take into account that the µ  
factor we get by using only the internal odometry 
without our algorithm is around 0.1421. With respect 
to the time t , FS clearly improves the other two de-
scriptors. Anyway, with all three descriptors it is pos-
sible to work in real time since the times obtained are 
under 0.25 sec per iteration.

On the other hand, Figure 3 shows the µ  factor 
and the step time needed by the algorithm t , versus 
the number of particles in the Monte Carlo algorithm 
for each descriptor. It can be seen that for the three 
descriptors as the number of particles increases, the 
shape factor decreases but it reaches a minimum value 
from which the decrease is hardly noticeable (µ  equal 
to 0.0020 using FS and 2000 particles, µ  equal to 
0.0036 using GIST and 2000 particles, and µ  equal 
to 0.0033 using HOG and 2000 particles). Although 
the µ  factor is lower when the FS is used, the results 
obtained when using the three descriptors are very 
similar in terms of the µ  factor. With respect to the 
time, we can see that when the number of particles 
increases, so does the time required for each step of 
the process for the three descriptors. Nevertheless, the 
time is lower in the case of FS, and better in HOG than 
GIST, although the time grows in a similar manner 
using the three descriptors. It is due to the fact that the 
time depends mainly of the Monte-Carlo algorithm. It 

is necessary to emphasize that to obtain the graphs 
shown in Figures 2 and 3, we have performed a num-
ber of simulations equal to 500 for each case in each 
descriptor and for each number of samples, respec-
tively, where the starting point for each simulation has 
been changed.

Finally, Figure 4 shows an example of some in-
termediate steps during a simulation experiment us-
ing the FS, 32 components per row and a number of 
particles equal to 200. As expected, the dispersion in 
the particles of each landmark grows when the robot 
moves from the initial position until the robot detects 
a loop closure, when the dispersion of the samples 
decreases because at this moment the algorithm carries 
out a resampling of these samples. It can be observed 
that the map obtained by means of our algorithm is 
considerably more accurate than the map obtained 
through the internal odometry.

FUTURE RESEARCH DIRECTIONS

We are working now in the improvement of our hybrid 
algorithm to get a better accuracy including new mea-
sures in the sampling process when we detect a loop 
closure. In this sense, we try to add the information of 
other images that are included in the node where we 
detect the loop closure. Moreover, it can be interesting 
to incorporate a hypothesis tree during the topological 

Figure 3. (a) Shape difference μ versus number of samples using the FS (blue line), GIST (red line), and HOG 
(black line); (b) processing step time to build the map versus number of samples using the FS (blue line), GIST 
(red line), and HOG (black line)
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map building, so that it can be possible to maintain mul-
tiple hypotheses with the aim of reducing the number 
of incorrect associations when we close a loop. On the 
other hand, we will also try to test our algorithm in a 
large and outdoors dynamic environment.

CONCLUSION

In this article we have presented and evaluated a hybrid 
metric-topological SLAM algorithm to compute a map 
of the environment. We show how it is possible to get 
a good performance using three different appearance-

based descriptors. The main contributions of our work 
include: 1) the development of a method to detect a 
loop closure by means of a topological graph, 2) the 
development of an algorithm to build a metric map 
using the robot internal odometry and the information 
provided by the topological graph, and 3) a evaluation 
of our method using three different appearance-based 
descriptors (FS, GIST, HOG).

We have carried out a realistic experiment in a 
typical laboratory environment under realistic lighting 
conditions. We demonstrate that we get a correct map 
using the three descriptors, even if the parameters 
chosen are not the most optimal. Notwithstanding, we 

Figure 4. Example of some intermediate steps during a simulation experiment using the FS. The particles that 
represent the actual position of the robot are plotted as red points and their position is represented as a green 
circle. The particles that represent the position of the landmarks are plotted as green points and their position is 
represented as a blue cross. The internal odometry is plotted as a blue line where the blue squares represent the 
current position of the robot computed using the internal odometry. Finally, the ground truth is represented with 
a black line where the black square represent the position of the robot according the ground truth.
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show that a minimum of µ  factor can be reached us-
ing a minimum number of particles, but it is necessary 
to reach a balance between accuracy and computa-
tional cost. We also show an example of a good per-
formance simulation using the descriptor that gets the 
best results, FS. On the other hand we believe the ap-
proach we propose is useful when we work in large 
indoor environments, which are, in general, the most 
common environments where robots have to operate. 
Also, we demonstrate that our method is generalizable 
to other different kinds of descriptors.
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KEY TERMS AND DEFINITIONS

Appearance Descriptor: It is a descriptor of an 
image that represents the global information of the 
same without extracting landmarks.

Gist: It is the meaning of a scene, or in other words, 
the spatial envelope of the scene.

Localization: It is the estimation of the position 
of an autonomous agent in a given map.

Mapping: It is the creation of an internal repre-
sentation of any given environment.

Metrical Map: It is a representation of the envi-
ronment through geometrical information with certain 
accuracy.

Mobile Robot: It is an autonomous vehicle that 
is capable of movement in any given environment.

Omnidirectional Vision: It is a vision system that 
is capable of capturing all the information surrounding 
the system with a single image (360º).

Probabilistic Localization: It is a localization task, 
where the information of all previous robot locations 
is used to estimate its current location.

SLAM: It is the process of building a map of an 
environment while simultaneously the localization of 
the agent that compute the map is estimated.

Topological Map: It is a representation of the 
environment by means of a list of locations within a 
graph with connectivity relationships between them.


