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Nowadays, the field of mobile robotics is experiencing a quick evolution, and a variety of autonomous vehicles is available to solve
different tasks. The advances in computer vision have led to a substantial increase in the use of cameras as the main sensors in
mobile robots. They can be used as the only source of information or in combination with other sensors such as odometry or
laser. Among vision systems, omnidirectional sensors stand out due to the richness of the information they provide the robot
with, and an increasing number of works about them have been published over the last few years, leading to a wide variety of
frameworks. In this review, some of the most important works are analysed. One of the key problems the scientific community is
addressing currently is the improvement of the autonomy of mobile robots. To this end, building robust models of the environment
and solving the localization and navigation problems are three important abilities that any mobile robot must have. Taking it into
account, the review concentrates on these problems; how researchers have addressed them bymeans of omnidirectional vision; the
main frameworks they have proposed; and how they have evolved in recent years.

1. Introduction

Over the last few years, the range of applications of mobile
robots has significantly increased and they can be found
in diverse environments, such as households, industrial and
educational, where they are able to carry out a variety of
tasks. The improvements performed both in perception and
computation have had an important contribution to increase
the range of environments where mobile robots can be used.

In order to be fully functional, a mobile robot must be
capable of navigating safely through an unknown environ-
ment while simultaneously carrying out the task it has been
designed for. With this aim, the robot must be able to build
a model or map of this previously unknown environment, to
estimate its current position and orientation making use of
this model, and to navigate to the target points. Mapping,
localization, and navigation are three classical problems in
mobile robotics that have received a great deal of attention in
the literature and keep on being very active research areas at
present. Finding a robust solution to these three key problems
is crucial to increase the autonomy and adaptability of mobile

robots to different circumstances and definitely expand their
range of applications.

To address the mapping, localization, and navigation
problems, it is necessary that the robot has some relevant
information about the environment where it moves, which
is a priori unknown in most applications. The robots can be
equipped with diverse sensorial systems that allow them to
extract the necessary information from the environment to be
able to carry out their tasks autonomously.This way, from the
first works on mobile robotics [1], the control systems have
made use of the information collected from the environment,
to a greater or lesser extent. The methods used to process
this information have evolved as new algorithms have come
out and the capabilities of the perception and computation
systems have increased. As a result, very different approaches
have emerged, considering different kinds of sensory infor-
mation and processing techniques. Among them, in recent
years, the use of omnidirectional vision systems has become
popular in many works on mobile robots, and it is worth
studying their main properties and applications in mapping,
localization, and navigation.
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In the light of the above, the purpose of this review is
to present the most relevant works carried out in the field
of mapping and localization using computer vision, paying
special attention to those developments that make use of
omnidirectional visual information.

The remainder of the paper is structured as follows.
First, Section 2 presents the kinds of sensors that can be
used to extract information from the mobile robot and from
the environment. Then, Section 3 outlines some preliminary
concepts about omnidirectional vision, the possible geome-
tries, and the transformations that can be made with the
visual information.After that, Section 4presents the necessity
of describing the information of the scenes and the main
approaches that can be used. Later, Section 5 focuses on the
problems of map creation, localization, and navigation of
mobile robots. To conclude, a final discussion is carried out
in Section 6.

2. Sensors in Mobile Robotics

In this section, we analyse first the types of sensors that
have been traditionally used in mobile robotics to solve the
mapping, localization, and navigation problems (Section 2.1).
After that, we focus on vision sensors; we study their
advantages (Section 2.2), the possible configurations they
offer (Section 2.3), and some current trends in the creation
of visual models (Section 2.4).

2.1. Types of Sensors. The solution to the mapping, localiza-
tion, and navigation ofmobile robots depends strongly on the
information which is available on the state of the robot and
the environment.Many types of sensors have been used so far
with this aim, both proprioceptive and exteroceptive. On the
one hand, proprioceptive sensors, such as odometry, measure
the state of the robot. On the other hand, exteroceptive
sensors, such as GPS, SONAR, laser, and infrared sensors,
measure some external information from the environment.
First, odometry is usually calculated from the measurements
of encoders installed in the wheels. It can estimate the dis-
placement of the robot, but the accumulation of errors makes
its application infeasible, as a unique source of information,
in real applications. This is the reason why it is usually
used in combination with other kinds of sensors. Second,
GPS (Global Positioning System) constitutes a good choice
outdoors, but it loses fiability close to buildings, on narrow
streets, and indoors. Third, SONAR (Sound Navigation and
Ranging) sensors have a relatively low cost and permit
measuring distances to the objects situated around, through
the emission of sound pulses and measuring the reception
of echoes from these pulses [2, 3]. However, their precision
is relatively low, because they tend to present a high angular
uncertainty and some noise introduced by the reflection of
the sound signals [4]. Fourth, laser sensors determine the
distance by measuring the flight time of a laser pulse when
it is reflected onto the neighbour objects. Their precision
is higher than SONAR’s, and they can measure distances
from centimeters to dozens of meters with a relatively good
precision and angular resolution. Nevertheless, the cost, the
weight, and the power consumption of such equipment are

considerably high. Lasers have been used to create both 2D
[5, 6] and 3D maps [7, 8], combined often with the use of
odometry [9]. Finally, it is also possible to find some works
that use infrared sensors in navigation tasks, whose range of
detection arrives to several tens of centimeters [10].

2.2. Vision Sensors. As an alternative to the perception
systems presented in the previous subsection, vision sensors
have gained popularity because they present some inter-
esting advantages. The cameras provide a big quantity of
information from the environment, and 3D data can be
extracted from it. Also, they present a relatively low cost and
power consumption, comparing to laser rangefinders, which
is specially relevant to the design of autonomous robotswhich
need toworkwith batteries during long periods of time.Their
behaviour is stable both outdoors and indoors, unlike GPS,
whose signal tends to degrade in some areas. Finally, the
availability of images permits carrying out additional high
level tasks, apart from mapping and localization. These tasks
include people detection and recognition and identification
of the state of some objects which are relevant in robot
navigation, such as doors and traffic lights.

Vision systems can be used either as the only perception
system of the robot or in conjunction with the informa-
tion provided by other sensors. For example, Choi et al.
[11] present a system that combines SONAR with visual
information in a mobile robot navigation application while
Hara et al. [12] combine it with laser. Chang and Chuang
[13] present a laser-vision system composed of a projector
of laser lines and a camera whose information is processed
to avoid obstacles and to extract relations between the
points identified by the visual sensor and the laser. Some
authors have reflected the wide variety of solutions proposed
by researchers, depending on the visual techniques used,
the combination with other sensors, and the algorithms to
process the information. The evolution of the techniques in
these fields is widely documented in [14], which shows the
developments carried out in map building, localization, and
navigation using computer vision until the mid-1990s, and
[15], which complements this workwith a state of the art from
the 1990s.

Traditionally, the solutions based on the use of vision
have been applied to Autonomous Ground Vehicles (AGV).
However, more recently, these sensors have gained presence
in the development of Unmanned Aerial Vehicles (UAV),
which have great prospects of use in some applications such
as surveillance, search and rescue, inspection of some areas
or buildings, risky aerial missions, map creation, or fire
detection. The higher quantity of degrees of freedom these
kinds of vehicles tend to have makes it necessary a deeper
study about how to analyse the sensory information.The aim
is to obtain robust data that permit localization with all these
necessary degrees of freedom.

2.3. Configuration of Vision Systems. As far as vision sensors
are concerned, different configurations have been proposed,
depending on the number of cameras used and the field of
view they offer. Among them, there are systems based on
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monocular configurations [16–18], binocular systems (stereo
cameras) [19–21], and even trinocular configurations [22, 23].
Binocular and trinocular configurations permit measuring
depth from the images. However, the limited field of view
of these systems causes the necessity of employing several
images of the environment in order to acquire complete infor-
mation from it, which is necessary to create a completemodel
of an unknown environment. In contrast, more recently, the
systems that provide omnidirectional visual information [24]
have gained popularity thanks, mainly, to the great quantity
of information they provide the robot with, as they usually
have a field of view of 360 deg around the robot [25].They can
be composed of several cameras pointing towards different
directions [26] or a unique camera and a reflective surface
(catadioptric vision systems) [27].

Omnidirectional vision systems have further advantages,
comparing to conventional vision systems. The features that
appear in the images aremore stable, since they remain longer
in the field of view as the robot moves. Also, they provide
information that permits estimating the position of the robot,
independently on its orientation, and they permit estimating
this orientation too. In general, omnidirectional vision sys-
tems have the ability to capture a more complete description
of the environment in only one scene, which permits cre-
ating exhaustive models of the environment with a reduced
number of views. Finally, even if some objects or persons
occlude partially the scene, omnidirectional images contain
some environment information from other directions.

These systems are usually based on the combination of
a conventional camera and a convex mirror which can have
various shapes. These structures are known as catadioptric
vision systems, and the raw information they provide is
known as omnidirectional image. However, some transforma-
tions can be carried out to obtain other kinds of projections
which may be more useful depending on the task to develop
and the degrees of freedom of the movement of the robot.
They include the spherical, cylindrical, or orthographic pro-
jections [25, 28]. This issue will be addressed in Section 3.

2.4. Trends in the Creation of Visual Models. Using any of
the configurations and projections presented in the previous
subsections, a complete model of the environment can be
built. Traditionally, three different approaches have been
proposed with this aim: metric, topological, or hybrid. First,
a metric map usually defines the position of some relevant
landmarks extracted from the scenes with respect to a
coordinate system and permits estimating the position of the
robot with geometric accuracy. Second, a topological model
consists generally of a graph where some representative
localizations appear as nodes, along with the connectivity
relations that permit navigating between consecutive nodes.
Comparing to metric models, they usually permit a rougher
localization with a reasonable computational cost. Finally,
hybrid maps arrange the information into several layers, with
different degrees of detail. They usually combine topological
models in the top layers, which permit a rough localization,
with metric models in the bottom layers, to refine this
localization. This way, they try to combine the advantages of
metric and topological maps.

The use of visual information to create models of the
environment has an important disadvantage: the visual
appearance of the environment changes not only when the
robot moves, but also under other circumstances, such as
variations in lighting conditions, which are present in all
real applications and may produce substantial changes in
the appearance of the scenes. The environment may also
have some changes after the model has been created, and
sometimes, the scenes may be partially occluded by the
natural presence of people or other robots moving in the
environment which is beingmodelled. Taking these facts into
account, independently on the approach used to create the
model, it is necessary to extract some relevant information
from the scenes. This information must be useful to identify
the environment and the position of the robot when it was
captured, independently on any other phenomena that may
happen. The extraction and description of this information
can be carried out using two different approaches: based on
local features or based on global appearance. On the one
hand, the approaches based on local features try to extract
some landmarks, points, or regions from the scenes and,
on the other, global methods create a unique descriptor per
scene that contains information on its global appearance.This
problem is analysed more deeply in Section 4.

3. Omnidirectional Vision Sensors

As stated in the previous section, the expansion of the field
of view that can be achieved with vision sensors is one of the
reasons that explains the extensive use of computer vision in
mobile robotics applications. Omnidirectional vision sensors
stand out because they present a complete field of view
around the camera axis. The objective of this section is
twofold. On the one hand, some of the configurations that
permit capturing omnidirectional images are presented. On
the other hand, the different formats that can be used to
express this information and their application in robotic tasks
are detailed.

There are several configurations that permit capturing
omnidirectional visual information. First, an array of cameras
can be used to capture information from a variety of direc-
tions. The ladybug systems [29] constitute an example. They
are composed of several vision sensors distributed around
the camera and, depending on the model, they can capture a
visual field covering more than 90% of a sphere whose centre
is situated in the sensor.

Fisheye lenses can also be included within the systems
that capture a wide field of view [30, 31]. These lenses can
provide a field of view higher than 180 deg. The Gear 360
camera [32] contains two fisheye lenses, each one capturing
a field of view of 180 deg both horizontally and vertically.
Combining both images, the camera provides images with
a complete 360 deg field of view. Some works have shown
how several cameras with such lenses can be combined to
obtain omnidirectional information. For example, Li et al.
[33] present a vision system equipped with two cameras
with fisheye lenses whose field of view is a complete sphere
around the sensor. However, using different cameras to create
a spherical image can be challenging, taking the different
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Figure 1: Projection model of central catadioptric systems. (a) Hyperbolic mirror and perspective projection lens and (b) parabolic mirror
and orthographic lens.

lighting conditions of each camera into account. This is why
Li developed a new system [34] to avoid this problem.

Catadioptric vision sensors are another example [35].
They make use of convex mirrors where the scene is pro-
jected. These mirrors may present different geometries, such
as spherical, hyperbolic, parabolic, elliptic, or conic, and the
camera takes the information from the environment through
its reflection onto the mirrors. Due to their importance, the
next subsection describes them in depth.

3.1. Catadioptric Vision Sensors. Catadioptric vision systems
make use of convex reflective surfaces to expand the field
of view of the camera. The vision sensors capture the
information through these surfaces. The shape, position, and
orientation of the mirror with respect to the camera will
define the geometry of the projection of the world onto the
camera.

Nowadays, many kinds of catadioptric vision sensors can
be found. One of the first developments was done by Rees in
1970 [36]. More recent examples of catadioptric systems can
be found in [37–40]. Most of them permit omnidirectional
vision, which means having a vision angle equal to 360 deg
around the mirror axis. The lateral angle of view depends
essentially on the geometry of the mirror and the relative
position with respect to the camera.

In the related literature, several kinds of mirrors can be
found, as a part of catadioptric vision systems, such as spheri-
cal [41], conic [42], parabolic [27], or hyperbolic [43]. Yoshida
et al. [44] present a work about the possibility of creating
a catadioptric system composed of two mirrors, focusing

on the study on how the changes in the geometry of the
system are reflected in the final image captured by the camera.
Also, Baker and Nayar [45] present a comparative analysis
about the use of different mirror geometries in catadioptric
vision systems. According to this work, it is not possible
to state, in general, that a specific geometry outperforms
the others. Each geometry presents characteristic reflection
properties that may be advantageous under some specific
circumstances. Anyway, parabolic and hyperbolic mirrors
present some particular properties that make them specially
useful when perspective projections of the omnidirectional
image are needed, as the next paragraph details.

There are two main issues when using catadioptric vision
systems for mapping and localization: the single effective
viewpoint property and calibration. On the one hand, when
using catadioptric vision sensors, it is interesting that the
system has a unique projection centre (i.e., that they con-
stitute a central camera). In such systems, all the rays that
arrive to the mirror surface converge into a unique point,
which is the optical centre. This is advantageous because,
thanks to it, it is possible to obtain undistorted perspective
images from the scene captured by the catadioptric system
[39]. This property appears in [45] referred to as single
effective viewpoint. According to both works, there are two
ways of building a catadioptric vision system that meets
this property: with the combination of a hyperbolic mirror
and a camera with perspective projection lens (conventional
lens or pin-hole model), as shown in Figure 1(a) or with a
system composed of a parabolic mirror and an orthographic
projection lens (Figure 1(b)). In both figures, 𝐹 and 𝐹󸀠 are the



Journal of Sensors 5
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Figure 2: Two sample omnidirectional images captured in the same room, from the same position, and using two different catadioptric
systems.

foci of the camera and themirror, respectively. In other cases,
the rays that arrive to the camera converge into different focal
points, depending on their vertical incidence angle (this is the
case of noncentral cameras). Ohte et al. studied this problem
with spherical mirrors [41]. In the case of objects that are
relatively far from the axis of the mirror, the error produced
by the existence of different focal points is relatively small.
However, when the object is close to the mirror, the errors
in the projection angles become significant and the complete
projection model of the camera must be used.

On the other hand, many mapping and localization
applications work correctly only if all the parameters of the
system are known. With this aim, the catadioptric system
needs to go under a calibration process [46]. The result of
this process can be either (a) the intrinsic parameters of
the camera, the coefficients of the mirror, and the relative
position between them or (b) a list of correspondences
between each pixel in the image plane and the ray of light of
the world that has projected onto it. Many works have been
developed on calibration of catadioptric vision systems. For
example, Gonçalves and Araújo [47] propose a method to
calibrate both central and noncentral catadioptric cameras
using an approach based on bundle adjustment. Ying and
Hu [48] present a method that uses geometric invariants,
extracted from projections of lines or spheres in the world.
This method can be used to calibrate central catadioptric
cameras. Also, Marcato Jr. et al. [49] develop an approach to
calibrate a catadioptric system composed of a wide-angle lens
camera and a conicmirror that takes into account the possible
misalignment between the camera and mirror axes. Finally,
Scaramuzza et al. [50] develop a framework to calibrate
central catadioptric cameras using a planar pattern shown at
a number of different orientations.

3.2. Projections of the Omnidirectional Information. The raw
information captured by the camera in a catadioptric vision
system is the omnidirectional image that contains the infor-
mation of the environment previously reflected onto the mir-
ror. This image can be considered as a polar representation
of the world whose origin is the projection of the focus of
the mirror onto the image plane. Figure 2 shows two sample
catadioptric vision systems, composed of a camera and a
hyperbolic mirror, and the omnidirectional images captured
with each one. The mirror (a) is the model Wide 70 of the

manufacturer Eizoh and (b) is the model Super-Wide View
Large, manufactured by Accowle.

The omnidirectional scene can be used directly to obtain
useful information in robot navigation tasks. For example,
Scaramuzza et al. [51] present a description method based on
the extraction of radial lines from the omnidirectional image,
to characterize omnidirectional scenes captured in real envi-
ronments. They show how radial lines in omnidirectional
images correspond to vertical lines of the environment, while
circumferences whose centre is the origin of coordinates of
the image correspond to horizontal lines in the world.

From the original omnidirectional image, it is possible to
obtain different scene representations through the projection
of the visual information onto different planes and surfaces.
To make it possible, in general, it is necessary to calibrate
the catadioptric system. Using this information, it is possible
to project the visual information onto different planes or
surfaces that show different perspectives of the original scene.
Each projection presents specific properties that can be useful
in different navigation tasks.

The next subsections present some of the most important
representations and some of the works that have been
developed with each of them in the field of mobile robotics.
A completemathematical description of these projections can
be found in [39].

3.2.1. Unit Sphere Projection. An omnidirectional scene can
be projected onto a unit sphere whose centre is the focus of
the mirror. Every pixel of this sphere takes the value of the
ray of light that has the same direction with respect to the
focus of themirror. To obtain this projection, the catadioptric
vision system has to be previously calibrated. Figure 3 shows
the projection model of the unit sphere projection when a
hyperbolic mirror and a perspective lens are used.Themirror
and the image plane are shown with blue color. 𝐹 and 𝐹󸀠 are
the foci of the camera and the mirror, respectively. The pixels
in the image plane are back-projected onto the mirror (to do
it, the calibration of the catadioptric systemmust be available)
and after that, each point of themirror is projected onto a unit
sphere.

This projection has been traditionally useful in those
applications that make use of the Spherical Fourier Trans-
form, which permits studying 3D rotations in the space,
as Geyer and Daniilidis show [52]. Friedrich et al. [53, 54]
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Figure 3: Projection model of the unit sphere projection.

present an algorithm for robot localization and navigation
using spherical harmonics. They use images captured with a
hemispheric camera. Makadia et al. address the estimation
of 3D rotations from the Spherical Fourier Transform [55–
57], using a catadioptric vision system to capture the images.
Finally, Schairer et al. present several works about orientation
estimation using this transform, such as [58–60], where they
develop methods to improve the accuracy in orientation
estimation, implement a particle filter to solve this task, and
develop a navigation system that combines odometry and the
Spherical Fourier Transform applied to low resolution vision
information.

3.2.2. Cylindrical Projection. This representation consists in
projecting the omnidirectional information onto a cylinder
whose axis is parallel to the mirror axis. Conceptually, it can
be obtained by changing the polar coordinate system of the
omnidirectional image into a rectangular coordinate system.
This way, every circumference in the omnidirectional image
will be converted into a horizontal line in the panoramic
scene. This projection does not require the previous calibra-
tion of the catadioptric vision system.

Figure 4 shows the projection model of the cylindrical
projection when a hyperbolic mirror and a perspective lens
are used. The mirror and the image plane are shown with
blue color. 𝐹 and 𝐹󸀠 are the foci of the camera and the mirror,
respectively.The pixels in the image plane are back-projected
onto a cylindrical surface.

The cylindrical projection is commonly known as
panoramic image and it is one of the most used representa-
tions in mobile robotics works, to solve some problems such
as map creation and localization [61–63], SLAM [64], and
visual servoing and navigation [65, 66]. This is due to the
fact that this representation is more easily understandable
by human operators and it permits using standard image
processing algorithms, which are usually designed to be used
with perspective images.

3.2.3. Perspective Projection. From the omnidirectional
image, it is possible to obtain projective images in any

F
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Figure 4: Projection model of the cylindrical projection.

direction. They would be equivalent to the images captured
by virtual conventional cameras situated in the focus of
the mirror. The catadioptric system has to be previously
calibrated to obtain such projection. Figure 5 shows the
projection model of the perspective projection when a
hyperbolic mirror and a perspective lens are used. The
mirror and the image plane are shown with blue color. 𝐹 and
𝐹󸀠 are the foci of the camera and the mirror, respectively. The
pixels in the image plane are back-projected to the mirror
(to do it, the calibration of the catadioptric system must be
available) and after that, each point of the mirror is projected
onto a plane. It is equivalent to capturing an image from the
virtual conventional camera placed in the focus 𝐹󸀠.

The orthographic projection, also known as bird’s eye
view, can be considered as a specific case of the perspective
projection. In this case, the projection plane is situated
perpendicularly to the camera axis. If the world reference
system is defined in such a way that the floor is the plane
𝑥𝑦 and the 𝑧-axis is vertical, and the camera axis is parallel
to the 𝑧-axis, then the orthographic projection is equivalent
to having a conventional camera situated in the focus of
the mirror pointing to the floor plane. Figure 6 shows the
projection model of the orthographic view. In this case, the
pixels are back-projected onto a horizontal plane.

In the literature, some algorithms which make use of
the orthographic projection in map building, localization,
and navigation applications can be found. For example,
Gaspar et al. [25] make use of this projection to extract
parallel lines from the floor of corridors and other rooms to
perform navigation indoors. Also, Bonev et al. [67] propose a
navigation system that combines the information contained
in the omnidirectional image, cylindrical projection, and
orthographic projection. Finally, Roebert et al. [68] showhow
a model of the environment can be created using perspective
images and how this model can be used for localization and
navigation purposes.

To conclude this section, Figure 7 shows (a) an omni-
directional image captured by the catadioptric system pre-
sented in Figure 2(a) and the visual appearance of the projec-
tions calculated from this image: (b) unit sphere projection,
(c) cylindrical projection, (d) perspective projection onto a
vertical plane, and (e) orthographic projection.
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Figure 5: Projection model of the perspective projection.
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Figure 6: Projection model of the orthographic projection.

4. Description of the Visual Information

As described in the previous section, numerous authors have
studied the use of omnidirectional images or any of their
projections both in map building and in localization tasks.
The images are highly dimensional data that change not only
when the robot moves, but also when there is any change in
the environment, such as changes in lighting conditions or in

the position of some objects. Taking these facts into account,
it is necessary to extract relevant information from the scenes,
to be able to solve robustly the mapping and localization
tasks. Depending on the method followed to extract this
information, the different solutions can be classified into two
groups: solutions based on the extraction and description
of local features and solutions based on global appearance.
Traditionally, researchers have focused on the first family of
methods, but more recently some global appearance algo-
rithms have been demonstrated to be also a robust alternative.

Many algorithms can be found in the literature working
bothwith local features andwith global appearance of images.
All these algorithms imply many parameters that have to
be correctly tuned so that the mapping and localization
processes are correct. In the next subsections, some of these
algorithms and their applications are detailed.

4.1. Methods Based on the Extraction and
Description of Local Features

4.1.1. General Issues. Local features approaches are based on
the extraction of a set of outstanding points, objects, or
regions from each scene. Every feature is described by means
of a descriptor, which is usually invariant against changes
in the position and orientation of the robot. Once extracted
and described, the solution to the localization problem is
addressed usually in two steps [69]. First, the extracted
features are tracked along a set of scenes, to identify the zones
where these features are likely to be in themost recent images.
Second, a feature matching process is carried out to identify
the features.

Many different philosophies can be found depending on
the type of features which are extracted and the procedure
followed to carry out the tracking and matching. As an
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Figure 7: (a) Sample omnidirectional image and some projections calculated from it: (b) unit sphere projection, (c) cylindrical projection,
(d) perspective projection onto a vertical plane, and (e) orthographic projection.

example, Pears and Liang [70] extract corners which are
located in the floor plane in indoor environments and use
homographies to carry out the tracking. Zhou and Li [71]
also use homographies, but they extract features through
the Harris corner detector [72]. Sometimes, geometrically
more complex features are used, as Saripalli et al. do [73].
They carry out a segmentation process to extract predefined
features, such as windows, and a Kalman filtering to carry out
the tracking and matching of features.

4.1.2. Local Features Descriptors. Among the methods for
feature extraction and description, SIFT and SURF can be
highlighted. On the one hand, SIFT (Scale Invariant Feature
Transform) was developed by Lowe [74, 75] and provides
features which are invariant against scaling, rotation, changes
in lighting conditions, and camera viewpoint. On the other
hand, SURF (Speeded-Up Robust Features), whose standard
version was developed by Bay et al. [76, 77], is inspired in

SIFT but presents a lower computational cost and a higher
robustness against image transformations.More recent devel-
opments include BRIEF [78], which is designed to be used
in real-time applications at the expense of a lower tolerance
to image distortions and transformations; ORB [79], which
is based on BRIEF, trying to improve its invariance against
rotation and resistance to noise, but it is not robust against
changes of scale; BRISK [80] and FREAK [81], which try
to have the robustness of SURF but with an improved
computational cost.

These descriptors have become popular in mapping and
localization tasks using mobile robots, as many researchers
show, such as Angeli et al. [82] and Se et al. [83], who make
use of SIFTdescriptors to solve these problems, and theworks
of Valgren and Lilienthal [84] and Murillo et al. [85], who
employ SURF features extracted fromomnidirectional scenes
to estimate the position of the robot in a previously built map.
Also, Pan et al. [86] present a method based on the use of
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BRISK descriptors to estimate the position of an unmanned
aerial vehicle.

4.1.3. Using Methods Based on Local Features to Build Visual
Maps. Using feature-based approaches in combination with
probabilistic techniques, it is possible to build metric maps
[87]. However, these methods present some drawbacks; for
example, it is necessary that the environment be rich in
prominent details (otherwise, artificial landmarks can be
inserted in the environment, but this is not always possible);
also, the detection of such points is sometimes not robust
against changes in the environment and their description is
not always fully invariant to changes in robot position and
orientation. Besides, camera calibration is crucial in order
to incorporate new measurements in the model correctly.
This way, small deviations in either the intrinsic or the
extrinsic parameters add some error to the measurements.
At last, extracting, describing, and comparing landmarks
are computationally complex processes that often make it
infeasible building the model in real time, as the robot
explores the environment.

Feature-based approaches have reached a relative matu-
rity and some comparative evaluations of their performance
have been carried out, such as [88] and [89]. These evalu-
ations are useful to choose the most suitable extractor and
descriptor to a specific application.

4.2. Methods Based on the Global Appearance of Scenes

4.2.1. General Issues. The approaches based on the global
appearance of scenes work with the images as a whole,
without extracting any local information. Each image is
represented by means of a unique descriptor, which contains
information on its global appearance. This kind of methods
presents some advantages in dynamic and/or poorly struc-
tured environments, where it is difficult to extract stable
characteristic features or regions from a set of scenes. These
approaches lead to conceptually simpler algorithms since
each scene is described by means of only one descriptor.
Map creation and localization can be achieved just storing
and comparing pairwise these descriptors. As a drawback,
extracting metric relationships from this information is
difficult; thus this family of techniques is usually employed
to build topological maps (unless the visual information
is combined with other sensory data, such as odometry).
Despite their simplicity, several difficulties must be faced
when using these techniques. Since no local information
is extracted from the scenes, it is necessary to use any
compression and description method that make the process
computationally feasible. Nevertheless, the current image
description and compression methods permit optimising
the size of the databases to store the necessary information
and carrying out the comparisons between scenes with a
relative computational efficiency. Occasionally, these descrip-
tors do not present invariance neither to changes in the
robot orientation or in the lighting conditions nor to other
changes in the environment (position of objects, doors,
etc.). They will also experience some problems in environ-
ments where visual aliasing is present, which is a common

phenomenon in indoor environments with repetitive visual
structures.

In spite of these disadvantages, techniques based on
global appearance constitute a systematic and intuitive alter-
native to solve the mapping and localization problems. In the
works that make use of this approach, these tasks are usually
addressed in two steps. The first step consists in creating a
model of the environment. In this step, the robot captures a
set of images and describes each of thembymeans of a unique
descriptor and, from the information of these descriptors,
a map is created and some relationships are established
between images or robot poses.This step is known as learning
phase. Once the environment has been modelled, in the
second step, the robot carries out the localization by capturing
an image, describing it, and comparing this descriptor with
the descriptors previously stored in the model. This step is
also known as test or auto-localization phase.

4.2.2. Global Appearance Descriptors. The key to the proper
functioning of this kind of methods is in the global descrip-
tion algorithmused.Different alternatives can be found in the
related literature. Some of the pioneer works on this approach
were developed by Matsumoto et al. [90] and make a direct
comparison between the pixels of a central region of the
scenes using a correlation process. However, considering the
high computational cost of this method, the authors started
to build some descriptors that stored global information from
the scenes, using depth information estimated through stereo
divergence [91].

Among the techniques that try to compress globally the
visual information, Principal Components Analysis (PCA)
[92] can be highlighted as one of the first robust alternatives
used. PCA considers the images as multidimensional data
that can be projected onto a lower dimension space, retaining
most of the original information. Some authors, like Kröse et
al. [93, 94] and Štimec et al. [95], make use of this method to
create robustmodels of the environment usingmobile robots.
The first PCA developments presented two main problems.
On the one hand, the descriptors were variant against changes
in the orientation of the robot in the ground plane and, on
the other hand, all the images had to be available to build the
model, which means that the map cannot be built online, as
the robot explores the environment. If a new image has to
be added to the previously built PCA model (e.g., because
the robot must update this representation as new relevant
images are captured) it is necessary to start the process from
the scratch, using again all the images captured so far. Some
authors have tried to overcome these drawbacks. First, Jogan
and Leonardis [96] proposed a version of PCA that provides
descriptors which are invariant against rotations of the robot
in the ground plane when omnidirectional images are used,
at the expense of a substantial increase of the computational
cost. Second, Artač et al. [97] used an incremental version
of PCA that permits adding new images to a previously built
model.

Other authors have proposed the implementation of
descriptors based on the application of the Discrete Fourier
Transform (DFT) to the images, with the aim of extracting
the most relevant information from the scenes. In this field,
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some alternatives can be found. On the one hand, in the case
of panoramic images, both the two-dimensional DFT or the
Fourier Signature can be implemented, as Payá et al. [28] and
Menegatti et al. [98] show, respectively. On the other hand,
in the case of omnidirectional images, the Spherical Fourier
Transform (SFT) can be used, as Rossi et al. [99] show. In all
the cases, the resulting descriptor is able to compress most
of the information contained in the original scene in a lower
number of components. Also, these methods permit building
descriptors which are invariant against rotations of the robot
in the ground plane. Apart from this, they contain enough
information to estimate not only the position of the robot,
but also its relative orientation. At last, the computational cost
to describe each scene is relatively low and each descriptor
can be calculated independently on the rest of descriptors.
Taking these features into account, in this moment DFT
outperforms PCA as far as mapping and localization are
concerned. As an example, Menegatti et al. [100] show how
a probabilistic localization process can be carried out within
a visual memory previously created by means of the Fourier
Signature of a set of panoramic scenes, as the only source of
information.

Other authors have described globally the scenes through
approaches based on gradient, either the magnitude or the
orientation. As an example, Košecká et al. [101] make use of a
histogram of gradient orientation to describe each scene with
the goal of creating a map of the environment and carrying
out the localization process. However, some comparisons
between local areas of the candidate zones are performed to
refine these processes. Murillo et al. [102] propose to use a
panoramic gist descriptor [103] and try to optimise its size
while keeping most of the information of the environment.
The approaches based on gradients and gist tend to present a
performance similar to Fourier Transform methods [104].

The information stored in the color channels also consti-
tutes a useful alternative to build global appearance descrip-
tors. The works of Zhou et al. [105] show an example of use
of this information. They propose building histograms that
contain information on color, gradient, edges density, and
texture to represent the images.

4.2.3. Using Methods Based on Global Appearance to Build
Visual Maps. Finally, when working with global appearance,
it is necessary to consider that the appearance of an image
strongly depends on the lighting conditions of the environ-
ment represented.This way, the global appearance descriptor
should be robust against changes in these conditions. Some
researchers have focused on this topic and have proposed
different solutions. First, the problem can be addressed by
means of considering sets of images captured under different
lighting conditions. This way, the model would contain
information on the changes that appearance can undergo.
As an example, the works developed by Murase and Nayar
[106] solved the problem of visual recognition of objects
under changing lighting conditions using this approach. The
second approach consists in trying to remove or minimise
the effects produced by these changes during the creation of
the descriptor, to obtain a normalised model. This approach
is mainly based on the use of filters, for example, to detect

and extract edges [107], since this information tends to be
more insensitive to changes in lighting conditions than the
information of intensity, or homomorphic filters [108], which
try to separate the luminance and reflectance components
and minimise the first component, which is the one that is
more prone to change when the lighting conditions do.

5. Mapping, Localization, and Navigation
Using Omnidirectional Vision Sensors

This section addresses the problems of mapping, localization,
andnavigation using the information provided by omnidirec-
tional vision sensors. First, themain approaches to solve these
tasks are outlined and then some relevant works developed
within these approaches are described.

While the initial works tried tomodel the geometry of the
environment with metric precision, from visual information,
and arranging the information through CAD (Computer
Assisted Design) models, these approaches gave way to sim-
pler models that represent the environment through occu-
pation grids, topological maps, or even sequences of images.
Traditionally, the problems of map building and localization
have been addressed using three different approaches:

(i) Map building and subsequent localization: in these
approaches, first, the robot goes through the envi-
ronment to map (usually in a teleoperated way)
and collects some useful information from a variety
of positions. This information is then processed to
build the map. Once the map is available, the robot
captures information from its current position and
comparing this information with the map, its current
pose (position and orientation) is estimated.

(ii) Continuous map building and updating: in this
approach, the robot is able to explore autonomously
the environment to map and build or update a
model while it is moving. The SLAM algorithms
(Simultaneous Localization And Mapping) fit within
this approach.

(iii) Mapless navigation systems: the robot navigates
through the environment by applying some analysis
techniques to the last captured scenes, such as optical
flow, or through visual memories previously recorded
that contain sequences of images and associated
actions, but no relation between images. This kind
of navigation is associated, basically, with reactive
behaviours.

The next subsections present some of the most relevant
contributions developed in each of these three frameworks.

5.1. Map Building and Subsequent Localization. Pretty usu-
ally, solving the localization problem requires having a
previously built model of the environment, in such a way
that the robot can estimate its pose by comparing its sensory
information with the information captured in the model.
In general, depending on how this information is arranged,
these models can be classified into three categories: metric,
topological, or hybrid [109]. First, metric approaches try to
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create a model with geometric precision, including some
features of the environment with respect to a reference
system. These models are created usually using local features
extracted from images [87] and they permit estimating met-
rically the position of the robot, up to a specific error. Second,
topological approaches try to create compact models that
include information from several characteristic localizations
and the connectivity relations between them. Both local
features and global appearance can be used to create such
models [104, 110]. They usually permit a rough localization
of the robot with a reasonable computational cost. Finally,
hybrid maps combine metric and topological information to
try to have the advantages of both methods. The information
is arranged into several layers, with topological information
that permits carrying out an initial rough estimation and
metric information to refine this estimation when necessary
[111].

The use of information captured by omnidirectional
vision sensors has expanded in recent years to solve the
mapping, localization, and navigation problems. The next
paragraphs outline some of these works.

Initially, a simple way to create a metric model consists
in using some visual beacons which can be seen from a
variety of positions and used to estimate the pose of the
robot. Following this philosophy, Li et al. [112] present a
system for the localization of agricultural vehicles using some
visual beacons which are perceived using an omnidirectional
vision system. These beacons are constituted by four red
landmarks situated in the vertices of the environment where
these vehicles may move. The omnidirectional vision system
makes use of these four landmarks as beacons situated on
specific and previously known positions to estimate its pose.
In other occasions, a more complete description of the
environment is previously available, as in the work of Lu et
al. [113]. They use the model provided by the competition
RoboCup Middle Size League. Taking this competition into
account, the objective consists in carrying out an accurate
localization of the robot. With this aim, a Monte Carlo
localization method is employed to provide a rough initial
localization and, once the algorithmhas converged, this result
is used as the initial value of a matching optimisation algo-
rithm in order to perform accurate and efficient localization
tracking.

The maps composed of local visual features have been
extensively used along the last few years. Classical approaches
have made use of monocular or stereo vision to extract and
track these local features or landmarks. More recently, some
researchers have shown that it is feasible to extend these
classical approaches to be used with omnidirectional vision.
In this line, Choi et al. [114] propose an algorithm to create
maps, which is based on an object extraction method, using
Lucas-Kanade optical flowmotion detection from the images
obtained by an omnidirectional vision system.The algorithm
uses the outer point of motion vectors as feature points of the
environment. They are obtained based on the corner points
of an extracted object and using Lucas-Kanade optical flow.

Valgren et al. [115] propose the use of local features that
are extracted from images captured in a sequence. These
features are used both to cluster the images into nodes and

to detect links between the nodes. They employ a variant of
SIFT features that are extracted and matched from different
viewpoints. Each node of the topological map contains a
collection of images which are considered similar enough
(i.e., a sufficient number of feature matches must exist
among the images contained in the node). Once the nodes
are constructed, they are connected taking into account
feature matching between the images in the nodes. This way,
they build a topological map incrementally, creating new
nodes as the environment is explored. In a later work [84],
the same authors study how to build topological maps in
large environments both indoors and outdoors, using the
local features extracted from a set of omnidirectional views,
including the epipolar restriction and a clustering method to
carry out localization in an efficient way.

Goedemé et al. [116] present an algorithm to build a
topological model of complex environments. They also pro-
pose algorithms to solve the problems of localization (both
global, when the robot has no information about its previous
position and local, when this information is available) and
navigation. In this approach, the authors propose two local
descriptors to extract the most relevant information from
the images: a color enhanced version of SIFT and invariant
column segments.

The use of bag-of-features approaches has also been
considered by some researchers in mobile robotics. As an
example, Lu et al. [117] propose the use of a bag-of-features
approach to carry out topological localization. The map is
built in a previous process, consisting mainly in clustering
the visual information captured by an omnidirectional vision
system. It is performed in two steps. First, local features are
extracted from all the images, and they are used to carry out a
𝐾-means clustering, obtaining the 𝑘 clusters’ centres. Second,
these centres constitute the visual vocabulary which is used
subsequently to solve the localization problem.

Beyond these frameworks, the use of omnidirectional
vision systems has contributed to the emergence of new
paradigms to create visual maps, using some different fun-
damentals to those traditionally used with local features.
One of these frameworks consists in creating topological
maps using a global description of the images captured by
the omnidirectional vision system. In this area, Menegatti
et al. [98] show how a visual memory can be built using
the Fourier Signature, which presents rotational invariance
when used with panoramic images. The map is built using
global appearance methods and a system of mechanical
forces, calculated from the similitude between descriptors.
Liu et al. [118] propose a framework that includes a method
to describe the visual appearance of the environment. It
consists in an adaptive descriptor based on color features
and geometric information. Using this descriptor, they create
a topological map based on the fact that the vertical edges
divide the rooms in regions with a uniform meaning, in the
case of indoor environments. These descriptors are used as
a basis to create a topological map through an incremental
process in which similar descriptors are incorporated into
each node. A global threshold is considered to evaluate
the similitude between descriptors. Also, other authors have
studied the localization problem using color information, as
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Ulrich and Nourbakhsh do in [119], where a topological
localization framework is proposed, using panoramic color
images and color histograms in a voting schema.

Payá et al. [63] propose a method to build topologi-
cal maps from the global appearance of panoramic scenes
captured from different points of the environment. These
descriptors are analysed, to create a topological map of
the environment. On the one hand, each node in the map
contains an omnidirectional image representing the visual
appearance of the place where the image was captured. On
the other hand, links in the graph are neighbourly relations
between nodes so that when two nodes are connected,
the environment represented in one node is close to the
environment represented by the other node. In this way, a
process based on a mass-spring-damper model is developed
and the resulting topological map incorporates geometrical
relationships that situate the nodes close to the real positions
in which the omnidirectional images were captured. The
authors develop algorithms to build this model either in a
batch or in an incremental way. Subsequently, Payá et al.
[120] also propose a topological map building algorithm,
and a comparative evaluation of the performance of some
global appearance descriptors is included. The authors study
the effect of some usual phenomena that may happen in
real applications: changes in lighting conditions, noise, and
occlusions. Once the map is built, a Monte Carlo localization
approach is accomplished to estimate the most probable pose
of the vehicle.

Also, Rituerto et al. [121] propose the use of a semantic
topological map created from the global appearance descrip-
tion of a set of images captured by an omnidirectional
vision system. These authors propose the use of a gist-
based descriptor to obtain a compact representation of the
scene and estimate the similarity between two locations
based on the Euclidean distance between descriptors. The
localization task is divided into two steps: a first step, or
global localization, in which the system does not consider
any a priori information about the current localization, and a
second step or continuous localization, in which they assume
that the image is acquired from the same topological region.

Ranganathan et al. [122] introduce a probabilistic method
to perform inference over the space of topological maps.
They approximate the posterior distribution over topologies,
from the available sensor measurements. To do it, they
perform Bayesian inference over the space of all the possible
topologies.The application of this method is illustrated using
Fourier Signatures of panoramic images obtained from an
array of cameras mounted on the robot.

Finally, Štimec et al. [95] present a method based on
global appearance to build a trajectory-based map by means
of a clustering process with PCA features obtained from a set
of panoramic images.

While the previous approaches suppose that the robot
trajectory is contained on the ground plane (i.e., they contain
information of 3 degrees of freedom), some works have
also shown that it is possible to create models that contain
information with a higher number of degrees of freedom. As
an example, Huhle et al. [123] and Schairer et al. [60] present
algorithms formapbuilding and 3D localization, based on the

use of the Spherical Fourier Transform and the unit sphere
projection of the omnidirectional information.

5.2. Continuous Map Building and Updating. The process to
build amap and continuously update it while the robot simul-
taneously estimates its position with respect to the model
is one of the most complex tasks in mobile robotics. Along
the last few years, some approaches have been developed
to solve it using omnidirectional visual systems and some
authors have proposed comparative evaluations to know
the performance of omnidirectional imaging comparing to
other classic sensors. In this field, Rituerto et al. [124] carry
out a comparative analysis between visual SLAM systems
using omnidirectional and conventional monocular vision.
This approach is based on the use of the Extended Kalman
Filter (EKF) and SIFT points extracted from both kinds of
scenes. To develop the comparison between both systems,
the authors made use of a spherical camera model, whose
Jacobian is obtained and used in the EKF algorithm. The
results provided show the superiority of the omnidirectional
systems in the experiments carried out. Also, Burbridge et
al. [125] performed several experiments in order to quantify
the advantage of using omnidirectional vision compared to
narrow field of view cameras. They also made use of the
EKF but, instead of characteristic points, their landmarks
are the vertical edges of the environment that appear in the
scenes. In this case, the experiments were conducted using
simulated data, and they offer results about the accuracy
in localization taking some parameters into account, such
as the number of landmarks they integrate into the filter,
the field of view of the camera, and the distribution of the
landmarks. One of the main advantages of the large field
of view of the omnidirectional vision systems is that the
extracted features remain in the image longer as the robot
moves. Thanks to it, the estimation of the pose of the robot
and the features can be carried out more precisely. Some
other evaluations have compared the efficacy of a SLAM
system using an omnidirectional vision sensor with respect
to a SLAM system using a laser range finder, such as the
work developed by Erturk et al. [126]. In this case, the authors
have employed multiple simulated environments to provide
the necessary visual data to both systems. Omnidirectional
vision proves to be a cost-effective solution that is suitable
specially for indoor environments (since outdoor conditions
have a negative influence on the visual data).

In the literature, we can also find some approaches which
are based on the classical visual SLAM schema, adapted
to be used with omnidirectional visual information, and
introducing some slight variations. For example, Kim and
Oh [127] propose a visual SLAM system in which vertical
lines extracted from omnidirectional images and horizontal
lines extracted from a range sensor are integrated. Another
alternative is presented by Wang et al. [128], who propose
a map which is composed of many submaps, each one
consisting of all the feature points extracted from an image
and the position of the robot with respect to the global coor-
dinate system when this image was captured. Furthermore,
some other proposals that have provided good results in
the SLAM area, such as Large-Scale Direct- (LSD-) SLAM,



Journal of Sensors 13

have been proposed and adapted using omnidirectional
cameras, computing dense or semidense depth maps in an
incremental fashion, and tracking the camera using direct
image alignment. Caruso et al. [129] propose an extension
of LSD-SLAM to a generic omnidirectional camera model,
along with an approach to perform stereo operations directly
on such omnidirectional images. In this case, the proposed
method is evaluated on images captured with a fisheye lens
with a field of view of 185 deg.

More recently, some proposals that go beyond the clas-
sical approaches have been made. In these proposals, the
features provided by the omnidirectional vision system are
used. In this area, Valiente et al. [130] suggest a representation
of the environment that tries to optimise the computa-
tional cost of the mapping process and to provide a more
compact representation. The map is sustained by a reduced
set of omnidirectional images, denoted as views, which
are acquired from certain poses of the environment. The
information gathered by these views permits modelling large
environments and, at the same time, they ease the observation
process by which the pose of the robot is retrieved. In
this work, a view 𝑛 consists of a single omnidirectional
image captured from a certain pose of the robot 𝑥𝑙𝑛 =
(𝑥𝑙, 𝑦𝑙, 𝜃𝑙)𝑛 and a set of interest points extracted from that
image. Such arrangement permits exploiting the capability
of an omnidirectional image to gather a large amount of
information in a simple snapshot, due to its large field of view.
So, a view 𝑛 is constituted by the pose where it was acquired,
with 𝑛 ∈ [1, . . . , 𝑁], with𝑁 being the number total of views
constituting the final map. The number of views initialized
in the map directly depends on the sort of environment and
its visual appearance. In this case, the process of localization
is solved by means of an observation model that takes the
similarity between the omnidirectional images into account.
In a first step, a subset of candidate views from the map is
selected, based on the Euclidean distance between the pose
of the current view acquired by the robot and the position
of each candidate. Once the set of candidates have been
extracted, a similarity measure can be evaluated in order
to determine the highest similarity with the current image.
Finally, the localization of the robot can be accomplished
taking into account the correspondences between both views
and the epipolar restriction.

An additional step in building topological maps with
omnidirectional images is to create a hierarchical map
structure that combines metric and topology. In this area,
Fernández et al. [131] present a framework to carry out
SLAM (Simultaneous Localization And Mapping) using
panoramic scenes. The mapping is approached in a hybrid
way, constructing simultaneously amodelwith two layers and
checking if a loop closure is produced with a previous node.

5.3. Mapless Navigation Systems. In this case, the model of
the environment can be represented as a visual memory
that typically contains sequences or sets of images with no
other underlying structure among them. In this area, several
possibilities can be considered, taking into account if the
visual information is described through local features of
global appearance.

First, some approaches that use local features can be
found. Thompson et al. [132] propose a system that learns
places by automatically selecting reliable landmarks from
panoramic images and uses them with localization pur-
poses. Also, they employ normalised correlation during the
comparisons to minimise the effect of changing lighting
conditions. Argyros et al. [133] develop a vision basedmethod
for robot homing, using panoramic images too. With this
method, the robot can calculate a route that leads it to
the position where an image was captured. The method
tracks features in panoramic views and exploits only angular
information of these features to calculate a control strategy.
Long range homing is achieved by organizing the features’
trajectories in a visual memory. Furthermore, Lourenço et
al. [134] propose an alternative approach to image-based
localization which goes beyond, since it takes into account
that, in some occasions, it would be possible that the images
stored in the database and the query image could have been
acquired using different omnidirectional imaging systems.
Due to the introduction of nonlinear image distortion in such
images, the difference of the appearance between both of
them could be significant. In this sense, the authors propose
a method that employs SIFT features extracted from the
database images and the query image in order to determine
the localization of the robot.

Second, as far as the use of global appearance is con-
cerned, Matsumoto et al. [135] propose a navigation method
that makes use of a sequence of panoramic images to store
information from a route and a template matching approach
to carry out localization, steering angle determination, and
obstacle detection. This way, the robot can navigate between
consecutive views by using global information from the
panoramic scenes. Also, Menegatti et al. [100] present a
method of image-based localization from the matching of
the robot’s currently captured view with the previously stored
reference view, trying to avoid perceptual aliasing. Their
method makes use of the Fourier Signature to represent the
image and to facilitate the image-based localization. They
make use of the properties that this transform presents when
it is used with panoramic images, and they also propose a
Monte Carlo algorithm for robust localization. In a similar
way, Berenguer et al. [136] propose two methods to estimate
the position of the robot by means of the omnidirectional
image captured. On the one hand, the first method represents
the environment through a sequence of omnidirectional
images, and the Radon transform is used to describe the
global appearance of the scenes. A rough localization is
achieved carrying out the pairwise comparison between the
current scene and this sequence of scenes. On the other hand
the second method tries to build a local topological map of
the area where the robot is located and this map is used to
refine the localization of the robot. This way while the first
method is a mapless localization, the second one would fit in
themethods presented in Section 5.1. Bothmethods are tested
under different lighting conditions and occlusions and the
results show their effectiveness and robustness. Murillo et al.
[137] propose an alternative approach to solve the localization
problem through a pyramidal matching process. The authors
indicate that the method can work with any low dimensional
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Table 1: Main features of the frameworks that use omnidirectional vision systems to solve the mapping and localization problems.

Reference Approach Type of image Type of map Features Description
[112] 5.1 Omnidirectional Metric Local Colour
[113] 5.1 Omnidirectional Metric Local FAST-CSLBP
[114] 5.1 Omnidirectional Metric Local LKOF
[84, 115] 5.1 Omnidirectional Topological Local MSIFT

[116] 5.1 Omnidirectional Topological Local SIFT
Invariant column segments

[98] 5.1 Panoramic Topological Global Fourier Signature
[118] 5.1 Panoramic Topological Global FACT descriptor
[119] 5.1 Panoramic Topological Global Color histograms
[63] 5.1 Panoramic Topological Global Fourier Signature
[120] 5.1 Panoramic Topological Global Various
[121] 5.1 Omnidirectional Topological Global GIST
[122] 5.1 Panoramic Topological Global Fourier Signature
[95] 5.1 Panoramic Topological Global PCA features
[60, 123] 5.1 Omnidirectional Topological Global Spherical Fourier Transform
[124] 5.1 Omnidirectional Metric Local SIFT
[125] 5.2 Panoramic Metric Local Vertical edges
[126] 5.2 Panoramic Metric Local Contours of objects
[127] 5.2 Omnidirectional Metric Local Vertical + horizontal lines
[128] 5.2 Omnidirectional Metric Local SURF
[129] 5.2 Omnidirectional Metric Global Distance map
[130] 5.2 Omnidirectional Metric Local SURF
[131] 5.2 Panoramic Hybrid Global Fourier Signature
[132] 5.2 Panoramic Sequence images Local Landmarks after reliability test
[133] 5.3 Panoramic Sequence images Local KLT corner detection
[134] 5.3 Omnidirectional Sequence images Local SIFT (improved)
[135] 5.3 Panoramic Sequence images Global Portion of the image
[100] 5.3 Panoramic Sequence images Global Fourier Signature

[136] 5.1, 5.3 Omnidirectional Topological
sequence images Global Radon transform

[137] 5.3 Omnidirectional Sequence images Global SURF

[138] 5.3 Unit sphere proj.
panor., orthographic Sequence images Global Spherical Fourier Transform

Discrete Fourier Transform

features descriptor. They proposed the use of descriptors for
the features detected in the images combining topological and
metric information in a hierarchical process performed in
three steps. In the first step, a descriptor is calculated over
all the pixels in the images. All the images in the database
with a difference over a threshold are discarded. In a second
step, a set of descriptors of each line in the image is used
to build several histograms per image. A matching process
is performed, obtaining a similarity measurement between
the query image and the images contained in the database.
Finally in a third step, a more detailed matching algorithm is
used taking into account geometric restrictions between the
lines.

Finally, not only is it possible to determine the 2D
location of the robot based on these approaches, but also
3D estimations can be derived from them considering the
description of the omnidirectional images. In this regard,
Amorós et al. [138] present a collection of different techniques
that provide the relative height between the real pose of the
robot and a reference image. In this case, the environment is
represented through sequences of images that store the effect
of changes in the altitude of the robot and the images are
described using their global appearance.

To conclude this section, Table 1 presents an outline of
the frameworks presented in this section and their main
features: the kind of approach (Sections 5.1, 5.2, or 5.3), the
type of image, the type of map, the kind of features (local
or global), and the specific description method employed to
extract information from the images.

6. Conclusion

During the last decades, vision sensors have become a
robust alternative in the field of mobile robotics to capture
the necessary information from the environment where the
robot moves. Among them, omnidirectional vision systems
have experienced a great expansion more recently, mainly
owing to the big quantity of data they are able to capture
in only one scene. This wide field of view leads to some
interesting properties that make them specially useful as the
only source of information in mobile robotics applications,
which leads to improvements in power consumption and
cost.

Consequently, the number of works thatmake use of such
sensors has increased substantially, and many frameworks
can be found currently to solve the mapping, localization,
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and navigation tasks. This review has revolved around these
three problems and some of the approaches that researches
have proposed to solve them using omnidirectional visual
information.

To this end, this work has started focusing on the
geometry of omnidirectional vision systems, specially on
catadioptric vision systems, which are the most common
structures to obtain omnidirectional images. It has led to
the study of the different shapes of mirrors and the projec-
tions of the omnidirectional information. This is specially
important because the majority of works have made use of
perspective projections of the information to build models
of the environment, as they can be interpreted more easily
by a human operator. After that, the review has homed in
on how visual information can be described and handled.
Two options are available: methods based on the extraction,
description, and tracking of local features andmethods based
on global appearance description. While local features were
the reference option in most initial works, global methods
have gained presence more recently as they are able to build
intuitive models of the environment in which the localization
problem can be solved using more straightforward methods,
based on the pairwise comparison between descriptors.
Finally, the work has concentrated on the study of the
mapping, localization, and navigation of mobile robots using
omnidirectional information. The different frameworks have
been classified into three approaches: (a) map building and
subsequent localization, (b) continuous map building and
updating, and (c) mapless navigation systems.

The great quantity of works on these topics shows how
omnidirectional vision and mobile robotics are two very
active areas, where this quick evolution is expected to con-
tinue during the next years. In this regard, finding a relatively
robust and computationally feasible solution to some current
problems would definitively help to improve the autonomy
of mobile robots and expand their range of applications
and environments where they can work. Among them, the
mapping and localization problems in considerably large and
changing environments and the estimation of the position
and orientation in the space and under realistic working
conditions are worth being addressed to try to arrive at closed
solutions.
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tion of visual maps with a robot network equipped with vision
sensors,” Sensors, vol. 10, no. 5, pp. 5209–5232, 2010.

[88] A. Gil, O. M. Mozos, M. Ballesta, and O. Reinoso, “A compara-
tive evaluation of interest point detectors and local descriptors
for visual SLAM,” Machine Vision and Applications, vol. 21, no.
6, pp. 905–920, 2010.

[89] M. Ballesta, A.Gil, O. Reinoso, andD. Úbeda, “Analysis of visual
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[95] A. Štimec, M. Jogan, and A. Leonardis, “Unsupervised learning
of a hierarchy of topological maps using omnidirectional
images,” International Journal of Pattern Recognition and Arti-
ficial Intelligence, vol. 22, no. 4, pp. 639–665, 2008.

[96] M. Jogan and A. Leonardis, “Robust localization using
eigenspace of spinning-images,” in Proceedings of the IEEE
Workshop onOmnidirectional Vision (OMNIVIS ’00), pp. 37–44,
Hilton Head Island, SC, USA, June 2000.
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[138] F. Amorós, L. Payá, O. Reinoso, D. Valiente, and L. Fernández,
“Towards relative altitude estimation in topological navigation
tasks using the global appearance of visual information,” in
Proceedings of the 9th International Conference on Computer
Vision Theory and Applications (VISAPP ’14), vol. 1, pp. 194–
201, SciTePress—Science and Technology Publications, January
2014.



Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive  
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal of

Volume 201

Submit your manuscripts at
https://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 201

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation 
http://www.hindawi.com

Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of  Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and 
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of


