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Preface

This book contains a selection of papers accepted for presentation and discussion at
“Robot 2017: Third Iberian Robotics Conference,” held in Seville, Spain,
November 22–24, 2017. Robot 2017 is part of a series of conferences that are a
joint organization of Sociedad Española para la Investigación y Desarrollo de la
Robótica/Spanish Society for Research and Development in Robotics (SEIDROB)
and Sociedade Portuguesa de Robótica/Portuguese Society for Robotics (SPR). The
conference organization had also the collaboration of several universities and
research institutes, including University of Seville, Polytechnic University of
Catalonia, University of Zaragoza, University of Aveiro, and University of Lisbon.

Robot 2017 builds upon several successful events, including three biennial
workshops (Zaragoza–2007, Barcelona–2009, and Sevilla–2011) and two Iberian
Robotics Conferences (Madrid–2013 and Lisbon–2015).

The conference is focused on the robotics scientific and technological activities
in the Iberian Peninsula, although open to research and delegates from other
countries.

Robot 2017 featured three plenary talks by:

– Oussama Khatib, Director of Stanford Robotics Lab, Stanford University, USA,
President of the International Foundation of Robotics Research (IFRR)

– Dario Floreano, Director of the Laboratory of Intelligent Systems, EPFL,
Switzerland, Director of the Swiss National Center of Competence in Robotics,
Switzerland

– Alin Albu-Schäffer, Head of the Institute of Robotics and Mechatronics at the
German Aerospace Center (DLR), Germany.

Robot 2017 featured 27 special sessions, four of them with two slots in the
Conference Program, plus 5 sessions coming from the General Track. The con-
ference had an industrial track with four sessions. The main purpose of this track is
to present industrial needs and recent achievements in robotic industrial applica-
tions looking to promote new collaborations between industry and academia. Six
papers of the industrial track have been included in this book.
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The Special Sessions were about Aerial Robotics for Inspection, Agricultural
Robotics and Field Automation, Autonomous Driving and Driver Assistance
Systems, Challenges in Medical Robotics in the Frame of Industry 4.0, Cognitive
Architectures, Communication-Aware Robotics, Cooperative and Active Perception
for Robotics, Educational Robotics, Legged Locomotion Robots, Machine Learning
in Robotics, Marine Robotics, Ontologies and Knowledge Representation for
Robotics, Rehabilitation and Assistive Robotics, Robotics and Cyber-Physical
Systems for Industry 4.0, Robotic and Unmanned Vehicles for Security, Robot
Competitions, Robots Cooperating with Sensor Networks, Robots for Health care,
Sensor Technologies oriented to Computer Vision Applications, Simulation in
Robotics, Vision and Learning for Robotics, and Visual Perception for Robotics.

Additionally, the four industrial Special Sessions were about Application of
Robotics to Manufacturing Processes in the Aeronautic Industry, Application of
Robotics to Shipbuilding, Integration of Drones in Low Altitude Aerial Space, and
Robotics Solutions for Flexible Manufacturing.

Finally, the sessions in the General Track were about the following topics: Aerial
Robotics (double slot), Manipulation, Mobile Robotics, and Mobile Robotics
Applications.

The Robot 2017 Call for papers received 201 papers. After a careful review
process with at least three independent reviews for each paper, 141 of them have
been selected to be included in this book. There are over 500 authors from 21
countries including Australia, Brazil, Colombia, Croatia, Czech Republic,
Denmark, Ecuador, Finland, France, Germany, Ireland, Italy, Luxembourg, Macao,
Mexico, Poland, Portugal, Spain, United Arab Emirates, UK, and USA.

We would like to thank all Special Sessions’ organizers for their hard work on
promoting their special session, inviting the Program Committee, organizing the
Special Session review process, and helping to promote the ROBOT 2017
Conference. This acknowledgment goes especially to the members of the Program
Committee, Organizers of the Special Sessions, and Reviewers for the hard work
required to prepare this volume as they were crucial for ensuring the high scientific
quality of the event and to all the authors and delegates whose research work and
participation made this event a success. The work of the Local Organizing
Committee was also crucial to produce the Robot 2017 Program and this book.

Last but not the least, we acknowledge and thank our editor, Springer, that was
in charge of these proceedings, and in particular to Dr. Thomas Ditzinger.

November 2017 Anibal Ollero
Alberto Sanfeliu
Luis Montano

Nuno Lau
Carlos Cardeira
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Abstract. This paper presents a graphical and intuitive tool for simu-
lating the forward kinematics of planar parallel 3RPR robots with arbi-
trary geometric design. The proposed tool allows the user to visualize
the singularity locus of the robot and the evolution of all the solutions to
its forward kinematic problem in the complex plane. The user can mod-
ify all the geometric design parameters of the robot and instantaneously
visualize the effect of these modifications on the singularity locus. As
the presented examples illustrate, the proposed tool is especially useful
for visualizing the coalescence of different solutions of the forward kine-
matic problem when approaching higher-order singularities, as well as
for visualizing how these special singularities transform when perturbing
the different geometric parameters of the robot.

Keywords: Assembly modes · Forward kinematics · Parallel robot ·
Simulator · Singularity

1 Introduction

Parallel robots are manipulators in which two or more legs, connected in par-
allel, are used to control the position and/or orientation of a mobile platform.
Generally, these robots offer high dynamic characteristics, a high payload-to-
weight ratio, and high stiffness. Currently, there exist different simulation tools
and packages for studying diverse aspects of parallel robots, such as: work- and
configuration-spaces and singularities (GIM [14], CUIK Suite [15], SinguLab
[2]), forward kinematics and assembly modes (Bertini [1]), dynamics and con-
trol (Matlab/Simulink [7] and ADAMS [5]), and path planning [15].

A central topic in the study of parallel robots is the analysis of parallel
singularities, which are the configurations at which it is not possible to control
the motion of the mobile platform of the robot by means of its actuators. All
parallel singularities are gathered to form the singularity locus, whose concrete
shape depends on the geometric design of the robot. When modifying the design
c© Springer International Publishing AG 2018
A. Ollero et al. (eds.), ROBOT 2017: Third Iberian Robotics Conference, Advances in Intelligent
Systems and Computing 693, https://doi.org/10.1007/978-3-319-70833-1_42
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of the robot, the shape and features of the singularity locus vary, which may
affect the ability of the robot to reconfigure itself in a controlled manner [16].

PaRoLa (Parallel Robotics Laboratory, http://arvc.umh.es/parola) is a Java-
based educational virtual laboratory, developed for simulating and facilitating
the comprehension and analysis of diverse kinematic [9] and dynamic [12,13]
aspects of parallel robots. One of the main objectives of PaRoLa is to facilitate
the graphical analysis of the relationship between the geometric design of the
robot and its singularity locus, as mentioned in the previous paragraph. By using
PaRoLa, it is possible to vary the different design parameters of a parallel robot
and instantaneously visualize how the singularity locus of the robot transforms
as a consequence. This feature is very useful for designing parallel robots.

This paper contributes a new graphical and intuitive simulation tool of the
virtual laboratory PaRoLa, for simulating the forward kinematics and visualizing
the parallel singularities of general 3RPR planar parallel robots. The 3RPR robot
is one of the most widely studied parallel robots, since its forward kinematics
and singularity locus present the sufficient richness and simplicity to facilitate
the study of important problems, such as higher-order singularities [18] and non-
singular transitions between different solutions of the forward kinematic problem
[19]. The tool presented in this paper is especially useful for graphically studying
problems like these, as it will be shown through diverse illustrative examples.

This paper is organized as follows. Section 2 presents the forward kinematics
and singularities of the general 3RPR parallel robot. Section 3 describes the
tool developed to simulate this robot. Section 4 illustrates the usefulness of the
proposed tool through three examples. Finally, Sect. 5 concludes this paper.

2 The 3RPR parallel robot

This section presents the 3RPR planar parallel robot, as well as two aspects
of this robot which can be analyzed through the simulation tool presented in
this paper, namely: its forward kinematic problem and its parallel singularities.
Figure 1 depicts a general 3RPR planar parallel robot. This robot is composed of
a fixed platform ACF, a mobile platform BDE, and three actuated legs {AB, CD,
EF} of type RPR (Revolute-Prismatic-Revolute), which connect both platforms
and control the position and orientation of the mobile platform. The geometry
of the fixed platform is defined by parameters {c2, c3, d3}, whereas the geometry
of the mobile platform is defined by {l1, l3, β} (see Fig. 1).

By regulating the lengths {ρ1, ρ2, ρ3} of the actuated legs, one can control
the position and orientation of the mobile platform in the plane. The position
of the mobile platform can be defined by the polar coordinates (ρ3, θ3) of joint
E, whereas its orientation can be defined by the angle φ between edges BE and
AC (see Fig. 1). The forward kinematic problem consists in finding the position
and orientation of the mobile platform for known lengths {ρ1, ρ2, ρ3} (inputs).
The unknown angles {θ3, φ} (outputs) can be solved from Eqs. (1) and (2):

∥
∥
∥
∥

[
c3 + ρ3 cos θ3 − l3 cos φ
d3 + ρ3 sin θ3 − l3 sinφ

]∥
∥
∥
∥

2

− ρ21 = 0 (1)

http://arvc.umh.es/parola
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Fig. 1. General 3RPR planar parallel robot, following the notation used in [4].

∥
∥
∥
∥

[
c3 − c2 + ρ3 cos θ3 + l1 cos(φ + π − β)

d3 + ρ3 sin θ3 + l1 sin(φ + π − β)

]∥
∥
∥
∥

2

− ρ22 = 0 (2)

Equations (1) and (2) express the conditions that the lengths of legs AB and CD
must be ρ1 and ρ2, respectively. These equations can be solved via elimination
[8]: by using Eqs. (1) and (2) to eliminate θ3, one can arrive at a sextic polyno-
mial equation in tan(φ/2), from which 6 solutions for φ can be obtained. These
solutions will be real or complex depending on {c2, c3, d3, l1, l3, β, ρ1, ρ2, ρ3}. For
each solution of φ (either real or complex), one can use Eqs. (1) and (2) to obtain
a unique solution for θ3 [8]. Thus, the forward kinematics of this robot has 6
different solutions or assembly modes yj = [θj3, φ

j ]T (j = 1, . . . , 6), where each
solution has two components θj3 and φj , which are complex numbers in general:

θj3 = Re(θj3) + i · Im(θj3), φj = Re(φj) + i · Im(φj) (i = imaginary unit) (3)

Note that, when any of the two components of a given solution yj is complex,
this means that the robot cannot be physically assembled in yj for the consid-
ered geometry and inputs {ρ1, ρ2, ρ3}, i.e., in this case the solution yj is not
valid (only real solutions are physically possible configurations for the robot).
Nevertheless, although complex solutions have no physical meaning, it is inter-
esting to consider and represent also these solutions, to visualize how they evolve
when the configuration of the robot approaches different singular configurations.
Unlike other existing tools and packages, the tool presented in Sect. 3 allows the
user to graphically visualize the trajectories described by the complex solutions
of the forward kinematic problem as the inputs {ρ1, ρ2, ρ3} are varied along the
joint space. This feature of the proposed tool is especially useful for visualizing
how different solutions of the forward kinematic problem coalesce into higher-
multiplicity solutions when approaching higher-order kinematic singularities.

2.1 Parallel Singularities of the 3RPR parallel robot

Parallel singularities of the 3RPR robot occur when [8]:

∂e1
∂θ3

∂e2
∂φ

− ∂e1
∂φ

∂e2
∂θ3

= 0 (4)
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where e1 and e2 denote the left-hand sides of Eqs. (1) and (2), respectively.
Equation (4) defines the singularity locus of robot 3RPR, which generically is a
surface in space (ρ3, θ3, φ), which contains all singular configurations at which
it is not possible to control the motion of the mobile platform by means of
the linear actuators {AB, CD, EF}. Geometrically, these singular configurations
occur when the three lines {AB, CD, EF} are parallel or intersect at the same
point. This can be visualized using the tool presented in Sect. 3.

By solving the inverse kinematic problem using Eqs. (1) and (2), it is possible
to represent the surface defined by Eq. (4) in the joint space (ρ1, ρ2, ρ3). The pla-
nar slices of the surface of singularities in the joint space are singularity curves,
which contain special points such as cusps, self-intersections, isolated points,
and other higher-order singularities [3,16]. These special points are related to
the ability of the robot to perform transitions between different solutions of the
forward kinematic problem without crossing singularities (non-singular transi-
tions), which is useful for enlarging the workspace of the robot [17]. When the
joint coordinates approach these singularity curves, at least two different solu-
tions of the forward kinematic problem coalesce.

The shape of the singularity curves depends on the geometric design para-
meters of the robot: {c2, c3, d3, l1, l3, β}. When altering the design of the robot,
the shape of the singularity curves changes and, as a consequence, they may
acquire or lose special points like those mentioned in the previous paragraph
(cusps, isolated points, self-intersections, etc.). Hence, some kinematic charac-
teristics of the robot may be affected when altering the design of the robot (e.g.,
the robot may lose the ability to perform non-singular transitions if all its cusps
disappear). The tool presented in the next section allows the user to visualize
how the singularity curves transform when modifying the design of the 3RPR
robot. In particular, the proposed tool is especially useful for visualizing how
the mentioned special points of these curves transform, as we will demonstrate
later through some examples.

3 The Developed Tool

This section describes the virtual tool developed for simulating the forward kine-
matic problem of the 3RPR parallel robot and visualizing its singularity locus
for any geometric design. The tool has been developed using Easy Java Simula-
tions (http://fem.um.es/Ejs) and can be downloaded from http://arvc.umh.es/
parola/3RPR.html (the latest version of Java may be required).

The developed tool is shown in Fig. 2. The tool has two windows (w1) and
(w2). Window (w1) has three panels (p1), (p2), and (p3). Panel (p1) repre-
sents the 3RPR robot, whereas panel (p3) presents sliders and numeric fields
for modifying the geometry of the robot or the joint coordinates. Central panel
(p2) represents the coordinate planes of the joint space, i.e., the planes (ρ1, ρ2),
(ρ2, ρ3), and (ρ1, ρ3). Each plane (ρm, ρn) represents the singularity locus assum-
ing that the remaining joint coordinate ρk is kept constant (i.e., planar slices of

http://fem.um.es/Ejs
http://arvc.umh.es/parola/3RPR.html
http://arvc.umh.es/parola/3RPR.html
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Fig. 2. Tool developed for simulating and studying the kinematics and singularities
of 3RPR robots. When placing the mouse pointer on any element of the developed
interface (e.g., a button or numerical field), a small message explaining the function of
that element pops up below the pointer.

the surface of singularities are represented). Therefore, when ρk (or any geomet-
ric parameter) is varied in the simulator, the singularity curves shown in plane
(ρm, ρn) transform instantaneously.

The forward kinematics can be simulated by dragging the tiny magenta
square available in any of the coordinate planes of panel (p2), or by dragging the
sliders of panel (p3). When modifying the joint coordinates through any of these
methods, the simulator automatically solves the forward kinematic problem and
represents graphically in window (w2) the six solutions to this problem.

Window (w2) also has three panels (p4), (p5), and (p6). Panel (p4) repre-
sents the θ3 component of the six solutions of the forward kinematic problem
in the complex plane. Similarly, panel (p5) represents the φ component of the
six solutions in the complex plane. Note that in both these panels, the solutions
wrap around the horizontal real axis (whose length is 2π rad), because the real
parts of all solutions are angles [10,12]. In panels (p4) and (p5), each of the six
solutions is represented by a different color (red, green, blue, cyan, magenta, and
yellow). Finally, panel (p6) allows the user to select which solution should be
adopted by the robot in panel (p1). Alternatively, the desired solution can also
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be selected by directly clicking on the colored points in panels (p4) or (p5) (the
currently selected solution is indicated by an orange square enclosing it in these
panels). Note that, if a non-real solution is selected, the configuration adopted
by the robot in panel (p1) will be incorrect.

4 Illustrative Examples

This section presents three examples that illustrate the usefulness of the proposed
tool to visually analyze the forward kinematics and singularities of 3RPR parallel
robots. Although the presented tool can be used for analyzing any geometric
design of the 3RPR robot, it is especially useful and interesting for studying non-
generic or special designs, for which the singularity curves exhibit higher-order
unstable singularities, which disappear when one of the geometric parameters of
the robot is perturbed [16]. Next, the presented tool will be used to analyze the
forward kinematics and singularities of three designs of the 3RPR robot that
exhibit higher-order singularities.

4.1 Example 1: Deltoid Singularity

Consider first a 3RPR robot with the following geometric design G1: c2 = 1.5,
c3 = 0.5, d3 = 0, l1 = l3 = 0.5, β = π rad. This design, analyzed in [8],
corresponds with a 3RPR robot in which both the mobile (β = π) and fixed
(d3 = 0) platforms are flat segments instead of triangles, as shown in Fig. 3.
This design is interesting for working in vertical planes [4]. For this geometry,
and for ρ3 = 1, the singularity locus of the robot in the (ρ1, ρ2) plane exhibits an
isolated point S1 = (ρ1 = 1, ρ2 = 1.5), as indicated in Fig. 4a. This isolated point
is a singularity with multiplicity four [10], which means that, when approaching
S1 in the (ρ1, ρ2) plane, four different solutions of the forward kinematic problem
converge to a single real solution whose multiplicity is four. This convergence can
be verified using the presented simulator. For example, setting ρ2 = 1.5 in the
simulator and using the slider to vary ρ1 from 1.2 to 1 (describing a horizontal
trajectory T1 that approaches S1 in the (ρ1, ρ2) plane, as indicated in Fig. 4a),
then the solutions of the forward kinematic problem will evolve as depicted in
Fig. 3, which shows the evolution of the θ3 component of the six solutions in
the complex plane. As Fig. 3 shows, when approaching the isolated singularity
S1 along trajectory T1 (i.e., when ρ1 → 1), four (two real and two complex)
different solutions converge to a single real solution (θ3 = π). This coalescence
of four solutions occurs not only for the θ3 component of these solutions, but
also for their φ components, which converge to φ = 0 (this can be verified
using the proposed simulator). The coalescence of different solutions in only one
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Fig. 3. When approaching the isolated singularity S1 of Fig. 4a, real solutions {1, 2}
and complex solutions {3, 4} converge to a real quadruple solution (θ3 = π, φ = 0).
The evolution of the posture of the robot for real solution #1 is represented. As shown
in (c), both flat platforms are aligned at the quadruple solution.

component (θ3 or φ) is not a kinematic singularity but a self-intersection of a
reduced configuration space1 of the robot [10].

Besides representing the evolution of the solutions to the forward kinematic
problem, the proposed tool also allows the user to visualize how the singularity
curves transform when altering the geometry of the robot. In particular, we can
use the presented tool to visualize how the isolated singularity S1 transforms
when perturbing each of the six geometric parameters of the robot. If, departing
from the geometry G1, any of the four parameters {c2, c3, l1, l3} is varied using
the sliders of the simulator, it can be observed that the isolated singularity S1
moves along the (ρ1, ρ2) plane, without changing its shape (it always remains
as a point). However, if d3 or β are perturbed away from their original values
(d3 = 0 and β = π) in any direction (such that at least one of the two platforms is
no longer a segment but a triangle, see Fig. 4), the isolated singularity S1 always
transforms into a deltoid curve (i.e., a closed curve with three cusps) whose
size increases with the perturbation, as depicted in Fig. 4. The transformation

1 Reduced configuration spaces are typically used for analyzing non-singular transitions
in robots with 2 degrees of freedom, which can be accomplished in the 3RPR robot
by keeping constant one input (e.g., ρ3 = constant). In that case, the (complete)
configuration space is the real solution set S of Eqs. (1) and (2) in the 4D space
(ρ1, ρ2, θ3, φ). The projection of S on a 3D subspace whose axes are the two inputs (ρ1

and ρ2) and one output (θ3 or φ) is a reduced configuration space, which is a surface.
For example, the self-intersection of this surface in the 3D subspace (ρ1, ρ2, φ) means
that the φ components of different solutions coincide, but this is not a kinematic
singularity unless the θ3 components of these very solutions also meet.
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Fig. 4. Transformation of the singularity locus when perturbing geometry G1. When
increasing β, the mobile platform is no longer flat and the isolated singularity S1
transforms into a deltoid curve.

of this isolated singularity into a deltoid only depends on d3 and β [11], which
are precisely the only two parameters that determine if the mobile and fixed
platforms are flat (d3 = 0, β = π) or triangular (d3 �= 0, β �= π).

4.2 Example 2: Lips Singularity

Consider the following geometry G2: c2 = 1.4, c3 = 2, d3 = −1.5, l1 = 1.06,
l3 = 1.1, β = 5.65 rad. Unlike in the previous example, in this case both the
fixed and mobile platforms are triangular (see Fig. 6). For a robot with this
geometry, and for ρ3 ≈ 2.8003041, the singularity locus in the (ρ1, ρ2) plane
exhibits an isolated singularity at S2 = (ρ1 ≈ 0.9541219110, ρ2 ≈ 0.3033191642)
(see Fig. 5b). This isolated singularity is a higher-order singularity of the lips
type, such that the perturbation of any geometric design parameter of the robot
either destroys this isolated singularity or transforms it into a bicuspid closed
curve, depending on which geometric parameter is perturbed and on the sign
of its perturbation [11,16]. This behavior can be verified using the proposed
tool. For example, departing from the geometry G2 and slightly decreasing c2
using the presented simulator, the isolated point S2 becomes a small bicuspid
closed curve (a magnified and rotated view of this curve is shown in Fig. 5a,
since this curve is too flat to properly distinguish its shape in this figure). On
the contrary, slightly increasing c2 (departing from the geometry G2) destroys
the isolated singularity S2, which disappears from the (ρ1, ρ2) plane (Fig. 5c).

To check the behavior of the solutions of the forward kinematic problem
at the isolated singularity S2 of Fig. 5b, we can simulate in the proposed tool a
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Fig. 5. Transformation of the singularity locus when perturbing geometry G2. The
isolated singularity S2 shown in (b) transforms into a closed bicuspid curve when
decreasing c2 (a), whereas it disappears when increasing c2 (c).

Fig. 6. Coalescence of three solutions when approaching the isolated singularity S2.
The convergence of solutions 1 (magenta), 2 (yellow), and 3 (green) occurs in the
complex planes of both components θ3 and φ, although this figure only shows the
coalescence of the φ components. The evolution of the posture of the robot is shown
for real solution #3.

trajectory in the (ρ1, ρ2) plane that approaches this singularity. For example, set-
ting ρ1 = 0.9541219110 in the simulator and varying ρ2 from 0.6 to 0.3033191642
using the slider (i.e., describing a vertical trajectory T2 that approaches S2 in
the (ρ1, ρ2) plane, as shown in Fig. 5b), we can observe the coalescence of three
different solutions, as shown in Fig. 6. Therefore, the isolated singularity S2 of
Fig. 5b presents a triple solution to the forward kinematic problem (besides a
simple solution, also indicated in Fig. 6c). This can be easily understood consid-
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ering that the isolated point S2 is a (stable) cusp point (at which a triple solution
occurs) when visualized in the other two joint planes (ρ2, ρ3) and (ρ1, ρ3) (this
can be easily visualized in the proposed tool).

4.3 Example 3: Swallowtail Singularity

Consider now the following geometry G3, studied in [18]: c2 = 1, c3 = 0.203832,
d3 = 0.0508422, l1 = 1.839226003, l3 = 0.3876449159, β = 2.968 rad. As
shown in Fig. 7, this geometry corresponds with a 3RPR robot which has almost
flat platforms, similar to the example of Subsection 4.1 (in which both plat-
forms were exactly flat). For this geometry, and for ρ3 = 0.891465, the sin-
gularity locus in the (ρ1, ρ2) plane exhibits a higher-order singularity at point
S3 = (ρ1 ≈ 0.9500311490225363, ρ2 ≈ 1.6500225946172906), indicated in Fig. 8b.
This singularity S3 has third degree of shakiness [18], which corresponds to
a solution of the forward kinematic problem with multiplicity four [6]. Next,
we will verify the occurrence of such a quadruple solution using the simulator
presented in this paper. Setting ρ2 = 1.6500225946172906 in the correspond-
ing numeric field of the simulator, and using the slider to vary ρ1 from 1.2 to
0.9500311490225363, a horizontal trajectory T3 is described in the (ρ1, ρ2) plane
(see Fig. 8b). The evolution of the six solutions of the forward kinematic prob-
lem along trajectory T3 is depicted in Fig. 7, which shows the coalescence of
four different solutions (two real and two complex) into a quadruple solution.
Although Fig. 7 only shows the coalescence of the θ3 component of four solutions,

Fig. 7. Coalescence of four solutions (real solutions 1 and 2, and complex solutions 3
and 4) when approaching the singularity S3. The evolution of the posture of the robot
for real solution #1 (blue) is represented.
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Fig. 8. Transformation of the singularity locus when perturbing geometry G3.

the φ components of these solutions also coalesce (this can be checked using the
simulator).

To conclude, we can visualize in the proposed tool how singularity S3 trans-
forms when altering geometry G3. For example, decreasing angle β transforms
S3 into a self-intersecting loop with two cusps (see Fig. 8a). On the contrary,
increasing β destroys the singularity S3, such that the portion of the singularity
curves in the proximity of S3 becomes smooth (see Fig. 8c). This shows that the
singularity S3 is of the swallowtail type [16].

5 Conclusions and Future Work

This paper has presented a graphic and intuitive simulation tool for studying
the forward kinematics of general 3RPR planar parallel robots. When varying
the joint coordinates of the robot, the tool shows the trajectories described in
the complex plane by the different solutions of the forward kinematic prob-
lem. Also, the user can freely modify any geometric parameter of the robot and
instantaneously visualize how this deforms its singularity locus. Through some
examples, we have demonstrated the usefulness of the proposed tool for visualiz-
ing the coalescence of different assembly modes when approaching higher-order
singularities, as well as for visualizing how these singularities transform when
perturbing the geometric design of the robot.

In the future, new features will be added to the presented tool. We will
allow the user to load arbitrary 3D joint trajectories in the simulator, so that
the forward kinematics can be simulated along any trajectory in the joint space.
Also, the dynamics of the robot will be implemented in order to properly simulate
singular transitions between different assembly modes, as suggested in [13].
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between assembly modes in analytic parallel manipulators by enclosing quadruple
solutions. ASME J. Mech. Des. 137(12), 122302–122310 (2015)
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