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Abstract—Singularities produce important changes in the kine-
tostatic properties of parallel robots, such as the ability to resist
external forces with zero actuation torques (or the inability
to resist them at all), or losses of control or dexterity. These
kinetostatic effects of singularities can be graphically visualized
by means of four velocity and force ellipsoids that degenerate
when the robot crosses a singularity. This paper presents an
educational simulation tool to help students to understand these
effects by means of the visualization of the aforementioned
ellipses, at the same time that the PID control of the robot is
simulated under external forces, in order to demonstrate how
singularities affect the control of the robot.

Index Terms—Education, Parallel robot, PID control, Simula-
tion, Singularity

I. INTRODUCTION

Parallel robots are composed of many open kinematic chains
connected in parallel, and they offer some advantages over tra-
ditional serial robots used in factories, such as higher stiffness,
higher force-to-weight ratio, and higher dynamic capabilities.
For this reason, parallel robots find several applications in
industry: vehicle simulators, pick-and-place tasks, packaging,
medical and rehabilitation robotics, etc. The importance of
parallel robots suggests that they should be taught in under-
graduate courses on robotics, but these courses are usually
focused only on serial robots due to time limitations.

When teaching and learning serial robotics, simulation and
modeling tools are frequently used for helping students to
understand several kinematic and dynamic concepts of these
robots. Many educational toolboxes and simulators have been
developed to study such concepts. Many of these tools are
toolboxes or packages of commercial programs such as Matlab
or Labview, which are frequently used in engineering educa-
tion: Robotics Toolbox [3], ARTE [4], Robolab [8], and others
[1], [9]. Other authors have developed standalone educational
tools that do no depend on commercial programs, for example:
RoboAnalyzer [13] or EJS+EjsRL [7].

While educational simulation tools for serial robotics are
very common, those for parallel robots or closed-chain mech-
anisms are less frequent. This is because serial robots are
relatively easy to model for general architectures, using gen-
eral formulations based on Denavit-Hartenberg parameters,
whereas parallel robots have a wider variety of architectures
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and it is usually much more difficult to develop general-
purpose tools able to simulate general-architecture parallel
robots or analyze their kinematic and dynamic problems. One
of such existing tools is GIM [12], which allows the user
to simulate the forward kinematics, and visualize the singu-
larities, workspace, and force/velocity ellipsoids of general-
architecture closed chain manipulators. Another tool is Mech-
Analyzer [6], which allows students to analyze the kinematics
and dynamics of four-bar-like mechanisms and other linkages.
General-purpose commercial tools for multi-body analysis
such as Matlab-SimMechanics or ADAMS can also be used to
model and simulate parallel robots with educational purposes
[15], but using these tools effectively usually requires a long
time while students learn how to model robots with them, a
precious time that may be used in other learning tasks [13].

Although there exist some educational tools for analyzing
some kinematic and dynamic aspects of parallel robots, none
of them is completely suitable for studying the important
kinetostatic effects of their singularities. This is because these
effects can be better understood while simulating the control of
the robots, since this is how real robots are usually governed:
one specifies the desired configuration and some controller
(e.g., a PID in the simplest case) applies the necessary control
torques to try to take the robot to the target configuration.
Through this control process, it is easier to understand the
kinetostatic effects of singularities and how they affect the
control in a real setting. Based on this, this paper presents
an educational simulation tool that allows students to analyze
these effects realistically, while simulating the PID control of
a parallel robot and visualizing four ellipses that represent the
velocity and force capabilities of the robot at all times.

This paper is organized as follows. Section II introduces
four ellipsoids that are useful for analyzing the kinetostatic
effects of different types of singularities of parallel robots.
Next, Section III presents the developed simulation tool for
studying these effects while simulating the PID control of the
robot, and Section IV illustrates the use of this tool through
some examples. Finally, Section V concludes this paper.

II. SINGULARITIES OF PARALLEL ROBOTS

A parallel robot is a manipulator whose end-effector or grip-
per is controlled through two or more serial kinematic chains
connected in parallel. Generally, the kinematic configuration
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of the robot is uniquely determined by a pair (x,q), where
x = [x1, . . . , xn]

T ∈ Rn is a vector that contains n parameters
that parameterize the position and/or orientation of the end-
effector, and q = [q1, . . . , qn]

T ∈ Rn is a vector that contains
n angular and/or linear displacements of the actuated joints of
the robot. n is the number of degrees of freedom (DOF) of
the robot. x and q are related through n scalar equations:

C(x,q) = [C1(x,q), · · · , Cn(x,q)]T = 0n×1 (1)

where Ci are constraint functions of (x,q). The forward
kinematic problem consists in solving x from (1) for given q,
whereas the inverse kinematics consists in solving q from (1)
for given x. Time-differentiating (1) yields a velocity equation:

∂C

∂x
ẋ+

∂C

∂q
q̇ = Aẋ+Bq̇ = 0n×1 (2)

where:
• A is the n× n Jacobian matrix composed of the deriva-

tives of functions Ci with respect to variables xi,
• B is the n× n Jacobian matrix composed of the deriva-

tives of functions Ci with respect to variables qi,
• ẋ and q̇ are the velocities of the end-effector and actuated

joints, respectively.
In general, both matrices A and B depend on the configuration
(x,q) of the robot. These two matrices define two types of
singularities, which have different effects on the kinetostatic
properties of parallel robots [5], as explained next.

A. Type-I Singularities

Type-I singularities are also known as serial singularities,
and these occur when detB = 0. Assuming that detA 6= 0,
we can solve ẋ from (2):

ẋ = −A−1Bq̇ = Jq̇, J := −A−1B (3)

where J is the direct Jacobian matrix of the manipulator.
Equation (3) is the solution of the “instantaneous” forward
kinematic problem, in which one solves the output velocities ẋ
in terms of the input velocities q̇. Note that, if detB = 0, then
detJ = 0. According to (3), the serial singularity condition
detJ = 0 has the following effects on the input and output
velocities of the manipulator:

• (S1): there exists a kernel ker(J) of nonzero input ve-
locities q̇ 6= 0 that map to ẋ = 0, i.e., there are some
actuator velocities that do not move the end-effector.

• (S2): the range space of J is a lower dimensional sub-
space of Rn,i.e., some output velocities ẋ are unattain-
able. Only those velocities in the range space of J will be
achievable. In this situation, it is often said that there is a
loss of dexterity or “instantaneous degrees of freedom”.

A well-known method to graphically illustrate property (S2) is
by means of a velocity ellipsoid that encodes the information
of the output velocities attainable by the manipulator in all
possible directions ( [14], p. 153). If the input velocities q̇
are varied along a unit sphere (i.e., ||q̇||2 = 1), then their
images ẋ under the linear transformation J of (3) describe an

ellipsoid Eẋ which represents the output velocities achievable
by the manipulator at the considered configuration. The lengths
of the semiaxes of this ellipsoid coincide with the singular
values of J. Roughly speaking, the orientation of this ellipsoid
and the relative length of its semiaxes reflect the ability
of the manipulator to generate output velocities in different
directions. For example: an ellipsoid where all semi-axes have
similar lengths will mean that the manipulator is able to
generate output velocities in all directions with approximately
the same ease. On the contrary, an ellipsoid with a semiaxis
much smaller than the others will mean that output velocities
in the direction of the smallest semiaxis will be difficult to
obtain (higher input velocities will be required). In the limit,
when the manipulator reaches a serial singularity, at least one
of these semiaxes will have zero length: in that case, the
ellipsoid degenerates and the robot is unable to generate output
velocities in the directions of the semiaxes with zero length.

In the static equilibrium (zero velocity and acceleration),
and neglecting gravity (e.g., if the robot moves in a horizontal
plane), the external forces/torques f applied at the end-effector
and the actuation torques/forces τ applied at the actuated joints
(which are necessary to balance f ) are related through J:

τ = −JT f (4)

The minus sign “-” in (4) is due to the fact that f is an external
force applied on the end-effector; if this sign is ommited, then
f would represent the force transmited to the end-effector by
the actuators (which should have opposite sign to the external
force, in order to balance it). If detJ = 0, similarly to what
happens for property (S1), there exists a kernel ker(JT ) of
nonzero forces f 6= 0 such that they map to τ = 0, i.e., in serial
singularities, some external forces can be resisted with zero
actuation torques. These external forces that can be resisted
with zero actuation effort are directed along the directions
of the unachievable output velocities, corresponding to the
semiaxes of Eẋ with zero length. This is reasonable: if the
end-effector cannot move in a given direction, then any force
trying to move it along that direction will be passively resisted
by kinematic constraints. Also, this can be easily checked with
the Singular Value Decomposition (SVD) of J, which yields:

J = USVT (5)

where U and V are orthogonal matrices, and S is a diagonal
matrix with the singular values of J arranged in decreasing
order along its main diagonal. In a serial singularity, the last k
singular values in S are zero (k ≥ 1), and the last k columns of
U are a basis of the subspace of unattainable output velocities.
On the other hand, the SVD of JT is:

JT = VSUT (6)

According to (6), in a serial singularity, the last k columns of
U are also a basis of ker(JT ), so these are the directions of
external forces that can be resisted with zero actuation torques.

Equation (4) can also be used to define a second ellipsoid
Eτ , by transforming a sphere of unit forces (||f ||2 = 1) under
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(4). The image of such a sphere of unit forces under JT is
another ellipsoid Eτ which represents the actuation torques
that are necessary to balance these forces. If the robot adopts
a configuration which is a serial singularity, at least one of
the semiaxes of Eτ will have zero length, which means that
external forces cannot transmit some efforts to the actuators
(in particular, they cannot transmit those efforts directed along
the semiaxes with zero length). Following a reasoning similar
to the one followed in Eqs. (5) and (6), one can check that
the semi-axes of Eτ with zero length are also the directions
of the input velocities q̇ that do not move the end-effector,
which graphically illustrates property (S1).

B. Type-II Singularities

Type-II singularities are also known as parallel singu-
larities, and they occur when detA = 0. Assuming that
detB 6= 0, we can solve q̇ from (2), obtaining:

q̇ = −B−1Aẋ = Jinv ẋ, Jinv := −B−1A (7)

where Jinv is the inverse Jacobian matrix of the manipulator.
The previous equation is the solution of the instantaneous (or
velocity-level) inverse kinematic problem, where one solves
the input velocities q̇ that are necessary to achieve a desired
output velocity ẋ. Note that detJinv = 0 if detA = 0.
According to the previous equation, if detJinv = 0, then the
velocity capabilities of the manipulator are affected as follows:

• (P1): there exists a kernel ker(Jinv ) of nonzero output
velocities ẋ 6= 0 that map to q̇ = 0. This means that,
even if we lock the actuators of the manipulator, its
end-effector can infinitesimally move in some directions
ẋ ∈ ker(Jinv ). In this situation, it is often said that
there is a loss of control, or that the manipulator “gains
instantaneous degrees of freedom”, since the end-effector
is locally movable even with all actuators locked.

• (P2) the range space of Jinv is a lower-dimensional
subspace of Rn: the input velocities q̇ cannot take any
value, only those values that belong to the image of Jinv .
Thus, the manipulator will only admit input velocities in
some directions, while other directions will be infeasible.

As with serial singularities, it is possible to intuitively illustrate
properties (P1) and (P2) by means of two ellipsoids, as
explained next. In order to visualize property (P2), we compute
the image of a sphere of unit output velocities (||ẋ||2 = 1)
under Jinv : this image will be an ellipsoid Eq̇ of input
velocities. Analogously to the ellipsoids analyzed previously,
in a parallel singularity, some semiaxes of Eq̇ will have zero
length: input velocities along these axes will be infeasible.

In the static equilibrium (and neglecting gravity), the re-
lationship between the external force f exerted at the end-
effector and the actuation torques τ that resist this force is:

f = −JTinvτ (8)

At a parallel singularity, detJinv = 0 and there exists a
kernel ker(JTinv ) of nonzero actuation torques that transmit no
force at all to the end-effector. Following similar reasonings

as before (5)-(6), it can be shown that these “unsuccessful”
torques are parallel to the semiaxes of Eq̇ with zero length.

Equation (8) can also be used to visualize the force capa-
bilities of the manipulator at each configuration, by defining
a force ellipsoid Ef which is the image of a sphere of unit
actuation torques (||τ ||2 = 1) under JTinv . This ellipsoid
reflects the output forces that the end-effector can exert to
its environment at the considered configuration, as a result
of the actuation torques. In a parallel singularity, the range
space of JTinv is a lower-dimensional subspace of Rn, such
that the manipulator is unable to generate (or resist) output
forces parallel to the semiaxes of Ef with zero length.

Finally, property (P1) can also be illustrated with ellipsoid
Ef : its semiaxes with zero length define the directions ẋ
along which the end-effector is locally movable even with all
actuators locked. This can be understood by following similar
reasonings as before (5)-(6), but also by following intuitive
reasonings: if the manipulator cannot exert forces to constrain
the motion of the end-effector along a given direction, then this
end-effector will be able to freely move along that direction,
without encountering any resistance.

C. Configuration Space and Singularity Loci

The solution set S of (1), i.e., the set of all feasible pairs
(x,q) that satisfy the kinematic constraints (1):

S := {(x,q) : C(x,q) = 0} (9)

can be defined as the configuration space of the manipulator.
As noted above, the determinants of A and B depend on the
configuration (x,q). All configurations (x,q) ∈ S that yield
detB = 0 belong to the serial singularity locus, whereas
all configurations (x,q) ∈ S satisfying detA = 0 belong
to the parallel singularity locus. The graphical representation
of these loci is very useful for planning the movements of
the robot (e.g., for defining trajectories that do not cross
singularities) or designing the manipulator (e.g., for designing
a manipulator with such dimensions that its configuration
space has large singularity-free regions). Typically, these
singularity loci are projected to the input space q or the
output space x, since the complete configuration (x,q) ∈ S
of the manipulator usually has too many coordinates to be
represented in two- or three-dimensional graphs. For example:
a manipulator with n = 2 degrees of freedom would have four
configuration coordinates (x1, x2, q1, q2) which would require
a four-dimensional space to be represented, whereas the input
(q1, q2) and output (x1, x2) coordinates can be projected and
represented in 2D plots. This is the representation used in the
simulation tool described later in Section III.

Finally, although the analysis presented so far accounts for
most of the singularities of parallel robots, and in practice it
usually suffices to safely operate them, it is well known that
there may occur other types of singularities that the input-
output formulation followed in this paper misses to detect. This
is because the analysis used here, based on the formulation
by Gosselin and Angeles [5], only considers the input(q)-
output(x) kinematic relationships, omitting other variables
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neither classified as inputs nor outputs. One type of such
missed singularities are the Redundant Passive Motion (RPM)
Singularities, which occur when some part of the robot can
locally or globally move even after locking all inputs and
outputs [16]. An RPM singularity clearly occurs in the five-
bar manipulator of Fig. 1 in the following situation: if joint
B1 becomes actuated and A1 passive, and if l1 = l2, then
placing the end-effector P at A1 will enable the free rotation
of bars l1 and l2 (which will remain overlapped) about A1,
without varying the inputs or outputs of the manipulator. RPM
singularities will not be considered in this paper, but the
interested reader is referred to [2] for more details on these and
other singularities, and numerical methods to compute them.

III. DEVELOPED SIMULATION TOOL

This section describes a simulation tool developed for facil-
itating the study of the kinetostatic effects of singularities in
parallel robots, which were explained in the previous section.
The developed tool is a new module of the virtual laboratory
PaRoLa (Parallel Robotics Laboratory), which allows the user
to study several kinematic and dynamic aspects of parallel
mechanisms. Some of the analyses allowed by PaRoLa are:
analysis of the different solutions of the forward and inverse
kinematic problems, visualization of the serial and parallel
singularity loci, and simulation of the control of the robot in
order to study singularity crossings between different solutions
of the forward kinematics [10], [11]. This tool can be accessed
through http://arvc.umh.es/parola, which links to a webpage
where the user can select the robot to simulate. Currently, the
kinetostatic analysis of singularities presented in this paper is
available for the five-bar manipulator depicted in Fig. 1.

Fig. 1. Five-bar parallel manipulator.

The five-bar mechanism is an n = 2 DOF parallel ma-
nipulator composed of two RRR serial kinematic chains (“R”
denotes “revolute joint”) A1B1P and A2B2P, whose endpoints
are joined at P by means of another R-joint. This manipulator
has four articulated mobile bars with lengths {l1, l2, l3, l4},
and a fixed bar with length l5, connected to the first joint
of both chains. The kinematic inputs of this robot are the
angles q = [q1, q2]

T = [θ1, θ2]
T between bars {l1, l4} and the

X axis, respectively. Its outputs are the position coordinates
x = [x1, x2]

T = [x, y]T of P with respect to frame OXY
(point P is regarded as the end-effector of this manipulator).
Angles θ1 and θ2 are controlled by means of two actuators
connected to joints A1 and A2, which exert torques τ1 and

τ2 on bars l1 and l4, respectively (τ1 and τ2 are the dynamic
inputs). Finally, an external force f = [fx, fy]

T is exerted on
P. Gravity is neglected, i.e., it is assumed that the robot moves
in a horizontal plane. All these input and ouput variables are
illustrated in Fig. 1, which also indicates the input and output
velocities, as well as the positive sign of all these variables.
For this robot, the constraint functions Ci of (1) are:[

C1

C2

]
=

[
(x− l1cθ1)2 + (y − l1sθ1)2 − l22

(x− l5 − l4cθ2)2 + (y − l4sθ2)2 − l23

]
(10)

where sψ = sin(ψ) and cψ = cos(ψ).
The tool for simulating this robot can be downloaded from

http://arvc.umh.es/parola/5R.html. This tool is programmed in
Java, which will have to be installed and updated in the
computer in order to run it. When downloading the .jar
simulator and running it, a window like Fig. 2a will pop-up.

This main window has three panels: left panel, central
panel, and right panel. The left panel represents the five-
bar mechanism, which can be moved by dragging its end-
effector P in order to modify its (x, y) output coordinates
(this is possible while simulating the inverse kinematics) or
by rotating its links l1 and l4 in order to modify its input
angles θ1 and θ2 (this is possible while simulating the forward
kinematics). The central panel shows the input space of the
manipulator, i.e., a space whose axes represent the input angles
θ1 and θ2. In this central panel, the current input angles of
the robot are represented as a circle labeled “ROBOT”, which
can be dragged while simulating the forward kinematics, in
order to simultaneously vary both input coordinates. Both left
and central panels also show some red and blue curves which
represent the serial and parallel singularity loci, respectively.

Finally, the right panel is a control panel where the user can
select which kind of analysis should be performed: forward
or inverse kinematic analysis, design analysis of the robot
(i.e., varying the dimensions of the robot in order to study
how the singularity loci deform as a consequence), or parallel
singularity crossing. Some of these functionalities were pre-
sented in previous works [10], [11], while the present paper
contributes a new functionality which allows the user to study
the kinetostatic effects of singularities by means of the four
ellipses defined in the previous section. It should be noted that
previous tools, such as GIM [12], allow the user to visualize
the output velocity (Eẋ) and force (Ef ) ellipsoids, while the
tool presented in this paper also represents ellipsoids Eq̇ and
Eτ , providing a complete portrait of the input-ouput velocity
and force capabilities of the manipulator at all times.

As next sections will explain, the tool allows for the analysis
of kinetostatic effects of singularities from two points of view:
from a purely kinematic simulation, or a more realistic control
perspective that considers the dynamics of the manipulator.

A. Visualizing the Ellipses While Simulating the Kinematics

The first option to study the kinetostatic effects of singu-
larities using the proposed tool is by simulating the forward
or inverse kinematics. To that end, the user must select
either the forward or inverse kinematic simulation mode under
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Fig. 2. Simulator for studying the kinetostatic effects of singularities in five-bar parallel manipulators.

the “Kinematics” tab of the control panel. When simulating
the forward kinematics, the user can drag the point labeled
“ROBOT” in the central panel, modifying in this way the input
angles θ1 and θ2. When selecting the inverse kinematics, the
user can drag the end-effector P, in order to modify the output
variables x and y. In both cases, both left and central panels
represent the four ellipsoids defined in Section II. In a robot
with n = 2 DOF like this, these ellipsoids actually are ellipses.

Ellipses Eẋ and Ef are represented in the left panel, and
they are centered at point P. Similarly, ellipses Eq̇ and Eτ

are represented in the central panel, and they are centered at
the point “ROBOT”, which represents the current values of
the input angles, as explained earlier. The velocity ellipses Eẋ

and Eq̇ are plotted in purple, whereas the force/torque ellipses
Ef and Eτ are plotted in green. Fig. 2a shows an example of
non-singular configuration, at which all semiaxes of all four
ellipses have nonzero length. Thus, at this configuration, the
robot admits input and ouput velocities in all directions, and it
can resist any force with finite and nonzero actuation torques.

By moving the robot under the inverse or forward kinematic
modes, as explained above, it is possible to study how these
four ellipses transform as the configuration of the robot
changes. In particular, it is possible to study how these ellipses
degenerate into “segments” when approaching the singularity
loci, since some semiaxes have zero length. Note that some
configurations may result in the robot apparently “breaking”:
this is because some configurations are unreachable.

If the end-effector is placed on a parallel singularity while
simulating the inverse kinematics, ellipses Eτ and Eẋ will
become infinitely large since Jinv becomes singular, whereas
ellipses Ef and Eq̇ degenerate into segments since one of their
semiaxes has zero length (see Fig. 3). Ef degenerates into a
segment parallel to bars l2 and l3 (which remain aligned for
parallel singularities), whereas Eq̇ degenerates into a segment
which is tangent to the parallel singularity locus in the (θ1,
θ2) plane (central panel). At this configuration:

• (P1v) The end-effector admits velocities perpendicular to
segment Ef even if we immobilize bars l1 and l4.

• (P1f) The robot cannot resist external forces perpendicu-
lar to segment Ef with finite actuation torques (but forces

parallel to it can be resisted).
• (P2v) The robot can only perform input movements

that are tangent to the parallel singularity locus in the
input plane (input velocities in directions perpendicular
to segment Eq̇ are not admitted).

• (P2f) Actuation torques perpendicular to Eq̇ do not
transmit forces to the end-effector.

Fig. 3. A parallel singularity.

Similarly, when simulating the forward kinematics, one can
place the robot on a serial singularity, observing how ellipses
Eq̇ and Ef become infinitely large, whereas ellipses Eτ and
Eẋ degenerate into segments since one of their semiaxes has
zero length (see Fig. 4). In a serial singularity, one of the
two RRR serial kinematic chains is completely extended: in
that case, segment Eẋ becomes perpendicular to the extended
chain, as shown in Fig. 4. In a configuration like this:

• (S1v) Applying input velocities perpendicular to Eτ does
not move the end-effector (in this example: these “unsuc-
cessful” input velocities have the form q̇ = [θ̇1, 0]

T ).
• (S1f) No external force f can transmit to the actuators

efforts that are perpendicular to Eτ . In this example, since
Eτ is a vertical segment, this means that no external force
can transmit horizontal efforts to the actuators, i.e., all
external forces will be compensated by actuation torques
that satisfy τ = [τ1, τ2]

T = [0, τ2]
T .
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• (S2v) The end-effector cannot be moved along the direc-
tion perpendicular to segment Eẋ.

• (S2f) The robot can resist external forces perpendicular
to Eẋ with zero actuation torques.

Fig. 4. A serial singularity.

B. Visualizing the Ellipses While Simulating the Control

Although the kinematic simulation presented in the previous
subsection allows the user to observe how the four ellipses de-
form when modifying the configuration of the robot (with the
ellipses degenerating into segments at singularities), actually
this simulation is not completely realistic since, in reality, one
cannot directly modify at will the inputs q = [q1, q2]

T or the
outputs x = [x, y]T , as it is done while simulating the forward
or inverse kinematics in the previous subsection, respectively.
In real robots, the true inputs by which we can govern the
movements of the robot are the actuation torques τ (or some
control voltage, if we also consider the dynamics of the DC
motors that drive the actuated joints). Through these torques,
we can try to move the robot to the desired configurations,
using some control system (e.g., a PID controller). Thus,
instead of directly introducing the kinematic inputs or outputs
of the robot, as done in Section III-A, we will obtain a more
realistic behavior by simulating its control as shown in Fig. 5.

In the control scheme of Fig. 5, we consider an independent
PID controller for each actuated joint of the robot. Note
that real robots can be controlled more accurately with more
sophisticated control techniques, such as Computed Torque
Control, but simple decoupled PID controllers will be suffi-
cient for the purposes of the present paper.

The control scheme shown in Fig. 5 is a better approxima-
tion of how real robots are governed. Instead of moving the
robot by directly introducing its kinematic inputs or outputs
(as done in §III-A), we now specify the desired values for the
inputs (θd1 and θd2) as the setpoints for the controllers. These
are compared to the actual inputs of the robot, which can be
measured e.g. with encoders. The errors resulting from these
comparisons are introduced to PID controllers, which generate
actuation torques τ1 and τ2 that are applied to the manipulator
in order to try to move it to the desired configuration. This
setting will offer more realistic simulations that will allow the
user to better observe the kinetostatic effects of singularities.

Fig. 5. Decoupled PI-D control scheme.

As for the dynamics of the robot, the simulator considers
that all bars are segments with uniform mass density, and it is
assumed that joints {B1, B2, P} have viscous friction propor-
tional to the relative angular velocity between the connecting
bars. These friction coefficients, as well as the mass of each
bar, can be modified in the “Dynamics” tab of the simulator.

In order to simulate the control, the user accesses the “Con-
trol” tab, where the control simulation starts when pressing
the button “Start control simulation”. When doing so, the
control system will try to drive the inputs of the robot (θ1
and θ2) toward their desired setpoints (θd1 and θd2), which can
be specified using numeric boxes or by clicking directly at
the desired values in the central panel of the simulator, which
represents plane (θ1, θ2). In the control panel, the user can also
modify the Proportional, Integral and Derivative gains for each
PID controller of Fig. 5. For each PID, the control law is:

τi = Pi(θ
d
i − θi) + Ii

∫
(θdi − θi)dt+Di(−θ̇i) (11)

According to (11), the control law actually is a “PI-D”, where
the derivative acts only on the controlled variable, omitting the
setpoint. In this way, smoother control responses are obtained,
since the controller avoids computing the derivative of the
setpoints θdi , which are introduced by the user as step changes
(which would generate impulses when time-differentiated).
The integral term is necessary for eliminating steady-state
errors when exerting external forces on the end-effector P.

In the “Control” tab of the control panel, the user can also
introduce the external force f = [fx, fy]

T exerted on the end-
effector. Finally, in addition to the main window shown in
Fig. 2a, there is another window that shows graphs with the
time evolution of θdi (green), θi (red), and τi (green), for i =
1, 2 (see Fig. 2b). In these graphs, the quality of the control
can be visually assessed (steady-state error, overshoot, etc.).

IV. EXAMPLES

This section demonstrates the usefulness of the proposed
simulation tool to analyze some of the kinetostatic effects of
singularities introduced in the previous sections, from a control
perspective. The values specified next are used for all examples
illustrated in this section (these are the default values used
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in the simulator). For the geometric design of the robot, the
following values are used: l1 = l2 = l3 = l4 = 0.2 m, l5 =
0.48 m. For the dynamic parameters, the used values are: all
moving bars have a mass of 0.5 kg, and all passive joints have
a viscous friction coefficient of 0.0005 N·m·s/rad. For the PI-D
controllers, the gains are: Pi = 10, Ii = 1, Di = 2.

A. Illustrating Property (S2f)

For this example, no external force is applied on the end-
effector at the beginnig of the simulation. First, one must select
a serial singularity as the setpoint, by clicking on any point
of the serial singularity locus in plane (θ1, θ2), in the central
panel of the simulator. In the concrete example shown here,
the chosen point has the following coordinates: θ1 = 0.4 rad,
and θ2 ≈ 3.2636 rad. This serial singularity is represented in
Fig. 4b, whereas the corresponding configuration of the robot
is shown in Fig. 4a. In this serial singularity, the A1B1P chain
of the robot is completely extended.

After waiting some time to allow the PI-D controllers to
stabilize the robot at the desired singular configuration, an
external force f of 10 N is applied on the end-effector, directed
along the semiaxis with zero length of ellipse Eẋ, which has
degenerated into a segment, as shown in Fig. 4a. As discussed
in the previous sections, this force should be resisted with
zero actuation torques. The force will be introduced so that
it tries to move the end-effector towards the interior of the
workspace, which is the lens-shaped region enclosed by red
serial singularities in Fig. 4a. Thus, the components of the
external force to be introduced in the “Control” tab of the
simulator are: fx = −10 cos(0.4) N and fy = −10 sin(0.4) N.

When introducing this force to the simulator, the configu-
ration of the robot may be slightly perturbed initially, but the
PI-D controllers will reject this perturbation after some time,
stabilizing again the robot at the desired singular configuration
while resisting the external force. In steady-state after restoring
the desired singular configuration of Fig. 4a, it can be checked
in the time plots of the simulator that the actuation torques
tend to zero (see Fig. 6), i.e., the external force perpendicular
to segment Eẋ is resisted with zero actuation torques, which
illustrates property (S2f) discussed in previous sections.

Fig. 6. Perturbation of serial singularity by external force orthogonal to Eẋ.

B. Illustrating Property (P1f)

For this example, again no external force is applied on
the end-effector at the beginning. A parallel singularity is
introduced as the setpoint, by clicking on any point of the

parallel singularity locus in plane (θ1, θ2), in the central panel
of the simulator. For the concrete example shown in this
subsection, the chosen parallel singularity is: θ1 ≈ 1.3508
rad and θ2 ≈ 3.6883 rad, shown in Fig. 3b.

After introducing this setpoint and allowing the PI-D con-
trollers to stabilize the robot at this configuration (Fig. 3a), we
can try to apply different external forces to the end-effector,
which will perturb the configuration of the robot and will
move it away from the desired parallel singularity. The PI-D
controllers will try to reject these perturbations and restore
the desired singular configuration, while compensating the
external forces. However, as discussed in previous sections,
the controllers will not be able to compensate any external
force: only those parallel to segment Ef shown in Fig. 3a.

For example: starting with the robot stabilized at the parallel
singularity of Fig. 3a, an external force of 10N parallel to
segment Ef can be applied. In this case, the external force
must have an angle φ with the X axis, where φ is the angle
between bars l2-l3 and the X axis (see Fig. 3a), which can be
easily obtained from θ1 and θ2 as follows:

φ = atan2 (l1sθ1 − l4sθ2 , l1cθ1 − l5 − l4cθ2) ≈ 2.2967 rad
(12)

Therefore, the external force to be applied to the end-effector
will be: fx = 10 cos(φ) ≈ −6.6381 N and fy = 10 sin(φ) ≈
7.4790 N. When applying this force to the robot, starting
from the stabilized parallel singularity of Fig. 3a, the robot
will be perturbed from this configuration. However, after some
transient, the PI-D controllers will be able to reject this pertur-
bation and will restore the configuration of Fig. 3a, reaching
again the steady state. By analyzing the graphs of the actuation
torques τ1 and τ2 in the new steady state after rejecting the
previous perturbation, we will obtain a graph similar to Fig. 7,
which illustrates the actuation torques necessary for resisting
the external force at the desired singular configuration.

Fig. 7. Perturbation of parallel singularity by force parallel to Ef .

According to Fig. 7, in steady state the external force par-
allel to bars l2-l3 can be resisted with torques τ1 ≈ −0.4735
N·m and τ2 ≈ 1.3967 N·m. It is possible to validate this
control-based simulation using (8). According to (7), Jinv

is defined as Jinv = −B−1A, where matrices A and B
can be read from the “Jacobian” tab of the simulator for the
current configuration of the robot at all times. For the singular
configuration of Fig. 3a, the simulator gives the next matrices:

A =

[
0.265 −0.299
−0.265 0.299

]
, B =

[
0.0649 0

0 0.0787

]
(13)
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which yield:

Jinv = −B−1A =

[
−4.0832 4.6071
3.3672 −3.7992

]
(14)

In order to validate the actuation torques reported in Fig. 7,
which resist the external force at the desired singular config-
uration, we can solve (8) for this configuration:[

−6.6381
7.4790

]
=

[
4.0832 −3.3672
−4.6071 3.7992

] [
τ1
τ2

]
(15)

Since this is a parallel singularity, det(Jinv ) = 0 and the pre-
vious system has only one independent equation (the second
row is about -1.1267 times the first row). By solving τ2 from
any of the two rows of the previous equation, we obtain:

τ2 = 1.2126 · τ1 + 1.97 (16)

Thus, any actuation torque τ = [τ1, τ2]
T satisfying the previ-

ous equation resists the external force. The steady-state torques
reported in Fig. 7 satisfy (16), neglecting small roundoff errors.

Next, let us check what happens with the control simulation
if the external force is modified, so that it is no longer perfectly
parallel to segment Ef of Fig. 3a, but has some component
orthogonal to it. For example, if the previous value of fx =
−6.6381 N increases to e.g. fx = −3.6381 N, then the robot
will be perturbed from the singular configuration of Fig. 3a and
the PI-D controllers will try to compensate this force to slowly
restore the previous desired configuration. However, in this
case, the controllers will be unable to reject this perturbation in
finite time: although they try to slowly move the robot toward
the singular configuration (while opposing the new external
force), the simulator shows that this desired configuration is
not completely restored in finite time, and the graphs of the
actuation torques show that these torques grow larger as the
robot approaches the desired singularity, never stabilizing at
constant values (Fig. 8). In this case, the robot gets closer and
closer to the singularity but never reaches it, and the actuation
torques necessary to continue “pushing” the robot toward the
singularity grow continuously, becoming infinite in the limit.

Fig. 8. Perturbation of parallel singularity by force non-parallel to Ef .

This example can also be analyzed with (8), as it was
done in (15). However, while (15) was an underdetermined
consistent linear system with an infinitude of solutions sat-
isfying (16), this new example yields an inconsistent system
since rank(−JTinv ) = 1 6= 2 = rank([−JTinv |f ]). Thus, static
equilibrium is not possible at the desired parallel singularity,
for a force f = [−3.6381, 7.4790]T that is not perfectly
parallel to the nonzero semiaxis of ellipse Ef . In the control

simulation presented, this is reflected by the fact that the
control torques τ1 and τ2 grow continuously when trying to
approach the desired singular configuration while opposing f .

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an educational simulation
tool for studying the kinetostatic effects of singularities in
parallel robots. To that end, the developed tool represents four
ellipses that encode the velocity and force capabilities of the
robot, both in the input and output spaces. At a singular con-
figuration, some semiaxes of these ellipses have zero length,
which denotes the loss of the ability to generate velocities
or forces in some directions. These ellipses are combined
with the simulation of the PID control of the robot, which
allows students to graphically and intuitively analyze these
kinetostatic effects, understanding how singularities would
affect the control of a real robot. In the future, we plan to
extend this simulation to robots with more degrees of freedom,
and whose end-effector can both translate and rotate, which
poses the problem of mixing translational and angular units.
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