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Abstract: We report on the description of the optical fields generated by acousto-optic Frequency-
Shifting Loops (FSL) in the temporal Fraunhofer domain when the loop is operated in the vicinity
of integer or fractional Talbot conditions. Using self-heterodyne detection, we experimentally
demonstrate the equivalence of the Talbot phases generated at fractional conditions with the
Gauss perfect phase sequences, and identify deviations from the standard frequency-to-time
mapping description of the far field. In particular, we show the existence of ripples in the pulse
intensity, of unavoidable pulse-to-pulse interference in the pulse train, of small oscillations, of the
order of hundreds of MHz, in the expected linear pulse chirp, and the capture of the phase at the
pulse’s trailing edge by the adjacent pulse. Using asymptotic analysis, we construct a field model
that accounts for these features, which are due to corrections to the frequency-to-time mapped
field created by the sharp spectral edge of the FSL spectrum, in analogy to diffraction. Practical
design consequences for signal generation and processing systems based on FSL are discussed.

© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

There exists a continuous demand of multipurpose optical sources amenable to integration in a
diversity of photonic systems. Among them, cw injection-seeded frequency shifted lasers and
loops have recently emerged as compact and versatile subsystems providing technical alternatives
in a variety of application fields. Essentially, they consist of an amplified loop cavity, fed by
a coherent carrier, where a frequency shifting element is inserted so that the injected wave is
repeatedly frequency shifted at each pass through the loop. They can be operated either below or
at the laser threshold in loop or laser conditions, respectively, generating optical frequency combs
(OFC) with a spectral separation determined by the shifting element. Extensively studied in free
space configurations (see [1,2] and references therein), this concept has also been explored in
fiber loops and lasers incorporating both electro-optic [3–7] and acousto-optic [8–18] shifting
devices compatible with standard C-band telecom technology.
Fiber-based frequency shifting loops (FSL) using acousto-optic frequency shifters (AOFS)

typically provide OFC with spectral separations in the range of several tens of MHz, a figure that
can be decreased to the kHz range by inserting two AOFS with frequency shifts of opposite signs.
Their spectral widths can reach tens of GHz, resulting in combs comprising up to about one
thousand lines with demonstrated use in high resolution spectroscopy [8–10]. In the temporal
domain, an ample field of applications is enabled by the loops’ ability to generate pulse trains
with widths in the ns range and with tunable lowest-order dispersion at different seed wavelengths.
This fact has permitted the implementation, over the same basic platform, of photonic signal
processors based on optical real-time Fourier [11] and fractional Fourier [12] transformations,
the electrical generation of chirped [13] and arbitrary [14] waveforms, Doppler velocimeters
[15], laser range finders [16] and spectral shapers [17]. On the other hand, frequency-shifted
laser’s main application has been the implementation of fractional temporal Talbot effect for the
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generation of high repetition rate pulse trains [18]. A brief account of these developments has
recently been published [19], and general references of the theory of Talbot effect are [20–23].
In the case of loops, the induced dispersion permits the generation of highly dispersed pulse

trains lying in the temporal far field of Fraunhofer region, which may also show the increase of
repetition rate characteristic of fractional Talbot effect. It is precisely in this context, the analysis
of these optical waveforms, where the present investigation is inscribed. In particular, two aspects
of these waves have been targeted. On the one hand, pulse trains obtained by stretching fractional
Talbot fields inherit its main properties and, in particular, their relative phases. As is well-known
[23], pulses in a fractionally-imagined Talbot pulse train show different phases arranged cyclically
within the train, with a periodicity equal to the factor describing the increase in the repetition
rate of the intensity. In FSL, dispersion allows for the stretching of these pulses, thus enabling
the direct measurement of the Talbot phases using self-heterodyne detection, a measurement
that has only been carried out in the angular implementation of the Talbot effect [24]. On the
other hand, the OFC generated by FSL presents, by construction, a spectral edge, i.e., a step-like
discontinuity in its spectrum. This particularity is specific of these optical generators and is
not shown, for instance, by mode-locked lasers, where the gain profile is usually quadratic and
thus results in pulses with smooth, gaussian-like spectra. Neither can this edge be implemented
by an optical filter, since it would violate causality, nor through single-sideband electro-optic
modulation [25], as the induced spectral edges always show residual sidebands. The analysis of
the field with an exact spectral edge seems not to have been previously addressed in the literature,
and will be object of particular attention here.

The relevance of the two targeted features encompasses both theoretical and practical aspects of
acousto-optic FSL. The phases arising in Talbot effect are known to be arranged in the so-called
perfect Gauss sequences [26], their cyclic correlation properties being responsible for instance,
of the increase in pulse repetition rate [23], the coherent sum of waves enabling spatial [27]
and temporal [28] Talbot array illuminators, the reversible transformation of coherent spectra
leading to cloaking systems [29], or a variety of photonic signal processing techniques [30]. The
existence of a spectral edge, in turn, allows for the recovery of the complete, complex optical
electrical field with self-heterodyne detection, thus avoiding the use of I/Q receivers [16], and
the analysis of the optical phase in the far field provides performance parameters and design
rules in the generation of broadband chirped waveforms [13]. This second aspect deserves
a specific theoretical analysis since, although the theory of Talbot effect is well understood
[20–23,26,31–33] the FSL temporal waveforms in the temporal Fraunhofer region present peculiar
features analogous to the one-dimensional diffraction of straight edges which have not been
analyzed before.

The objective of this paper in thus twofold. On the one hand, to present a direct measurement
of the phases generated by Talbot effect in the temporal domain and, on the other, to provide a
both theoretical and experimental analysis of the chirped fields generated by FSL in the temporal
far field, highlighting the temporal effects that arise from the propagation of waves with spectral
edges in analogy with one-dimensional diffraction, and which are here described for the first time
to the best of our knowledge.

This paper is organized as follows. In Section 2 we describe the basic layout of an acousto-optic
FSL and the fields generated at and out of integer or fractional temporal Talbot conditions.
Section 3 is devoted to the analysis of the temporal Fraunhofer field of waves with a spectral
edge by means of the asymptotic expansion of the field in inverse powers of the spectral Fresnel
number. Similar expansions have been derived in the analysis of a variety of radiation problems
[34], and are extended here to the description of the frequency chirp. The detailed computations
are presented separately in the Appendix. Section 4 describes the experimental results and the
comparison of the theoretical far field model with the experimental data. Finally, our conclusions
are presented in Section 5.
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2. Optical fields generated by FSL

An unidirectional cw injection-seeded acousto-optic FSL, schematically shown in Fig. 1(a),
consists of a cw laser that feeds a fiber loop, composed of an optical isolator that forces
unidirectional propagation, an EDFA as a gain medium, an optical tunable bandpass filter (TBPF),
and an acousto-optic frequency shifter (AOFS). The role of the AOFS is to shift the frequency
of the incoming light by a fixed amount fs so that the loop generates a number of recirculating
frequencies in the form of an optical frequency comb with spectral separation fs. A large number
of comb lines, hundreds or even more than one thousand of frequencies, can be sustained thanks
to the presence of the EDFA. The TBPF defines the total bandwidth of the optical comb that may
reach several tens of GHz, and rejects part of the amplified spontaneous emission (ASE) from
the EDFA which would otherwise be reinjected in the amplifier.

Fig. 1. (b) Scheme of a FSL: CW, continuous-wave laser; EDFA, erbium-doped fiber
amplifier; TBPF, tunable bandpass filter; PD, high-bandwidth photodiode. The direct
path from CW to PD is used for the heterodyne field measurements. (b) Scheme of the
single-sided optical frequency comb of the FSL: ν, optical frequency; ν0, seed frequency; fs,
shifting frequency; gn, spectral amplitudes in logarithmic scale. (c) Scheme of the spectrum
of the transform-limited pulse g(f ) = g(ν − ν0).

Let us denote by E(t) = Ein exp(j2πν0t) the electric field describing the cw injection, with ν0
the seed frequency and Ein the injected amplitude. Assuming that the frequency shift fs imparted
by the AOFS is positive, the output field is a one-sided comb of optical harmonics at frequencies
νn = ν0 + nfs, with n = 0, 1, . . . [1,2], as is schematically represented in Fig. 1(b). Let us denote
by τc the loop’s round trip time and by gn the spectral amplitude at νn. Then, a FSL frequency
comb composed of, say, N frequencies can be assumed coherent provided that the coherence time
of the cw injection laser exceeds Nτc. The wave’s spectral width is thus ∆ν = (N − 1)fs ' Nfs,
and the output envelope is a coherent sum of optical harmonics n = 0, . . . ,N − 1 each with a
phase factor resulting from the accumulated propagation delay associated to the multiple pass
through the loop at increasing shifted frequencies. The resulting envelope can be written as [1,2]:

EFSL(t) =
N−1∑
n=0

gne−jπfsτcn(n+1)−j2πnν0τcej2πnfst (1)

Note that in this derivation it is implicitly assumed the absence of dispersive effects in the
propagation through the loop, and so the spectral phases are proportional to the constant, and
thus wavelength-independent, round-trip time τc. The accumulated spectral phase of the n-th
harmonic is, however, quadratic in the mode index n, and therefore the combination of frequency
shifting and recirculation induces lowest-order dispersion in the periodic output field. The
spectral amplitudes in Eq. (1) are given by gn = Ein(ηa)n, with η the single-pass round-trip
transmission coefficient and a the amplitude gain imparted by the EDFA. This approximation,
which assumes loss and gain independent of wavelength, results in an overall exponentially
decreasing spectral amplitude. The actual magnitudes of gn depend on the relative values of this
exponential decay and the bandwidth imposed by the TBPF: with ηa . 1 the exponential spectral
decay is slow, and the actual spectral width is determined by the TBPF rejection band. As the
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value of ηa is decreased, the decay becomes purely exponential and the TBPF role is to solely
reject ASE. Examples of these two regimes can be observed, for instance, in [16]. In either case,
we can assume that the spectral decay of the amplitudes gn is smooth, so that the number N of
spectral lines in Eq. (1) is to be interpreted as the number of significant observable lines in a
given experimental situation.

2.1. Fields at Talbot conditions

We begin our analysis of Eq. (1) with its second term in the spectral phase factor, exp(−j2πnν0τc),
which describes a global delay τd = ν0τc/fs linear in the seed optical frequency ν0. This delay
induces a wavelength-to-time mapping that is exploited in signal processors and generators when
the FSL is fed with different wavelengths [11]. In our case, the FSL is fed by a single seed
wavelength, so we neglect this global delay in what follows. The FSL pulse trains are thus
controlled by the product fsτc in the first term of the spectral phase factor, and can be described
using the theory of temporal Talbot effect [23]. When the product fsτc equals an integer number
p, requirement that is referred to as the integer temporal Talbot condition, the spectral lines in Eq.
(1) are in phase and the FSL envelope is a periodic train of transform-limited pulses with period
T = 1/fs, which can be presented as:

EFSL(t) =
+∞∑

m=−∞
E0(t − mT) (2)

Note that the product n(n + 1) is always even and therefore there is no half-period shift for odd
values of p as in the standard description of the effect [23].

To describe the individual pulses E0(t), we denote by g(ν − ν0) the comb’s spectral amplitude
measured from the seed frequency ν0, as shown in Fig. 1(c). This spectral amplitude consists
of a spectral edge, g(ν − ν0) = 0 for ν<ν0, followed by a smooth decay interpolating the
spectral harmonics, g(nfs) = gn. The existence of this smooth decay is justified by the relatively
low bandwidth of the spectral comb and the broadband character of the the optical elements
comprising the loop. Alternatively, and using f = ν − ν0, spectrum g(f ) can be defined through
the Fourier transform of the transform-limited basic pulse in Eq. (2),

E0(t) =
∫ ∞

0
df g(f )ej2πft (3)

The validity of this description deserves some comments. The introduction of function g(f )
through Eq. (3) depends on the decomposition of the pulse train presented in Eq. (2) in individual
and temporally separated pulses E0(t). This implicit assumption is not very stringent in the case,
for instance, of mode-locked lasers, where the typical gaussian-like decay of their pulses justifies
the standard hypotheses of negligible pulse-to-pulse interference or high extinction ratio. In the
case of the transform-limited pulses generated by FSL, the presence of a spectral edge induces a
slower asymptotic pulse decay of the form ∼ g(0)/(2πjt), which can be inferred from Eq. (3) by
integration by parts [35]. This fact may invalidate the description of the pulse train EFSL(t) in
terms of isolated entities if this slow decay leads to severe pulse-to-pulse interference. Function
g(f ) in Eq. (3) is thus only intended to be sensitive for the most favourable situation, the integer
Talbot condition described above, where pulses are separated by a period of typically ∼10 ns. To
provide a practical estimate of this approximation, the typical FWHM pulse width of a 20-GHz
OFC is about 50 ps, which seems sufficient to be confident with Eqs. (2) and (3). In either case,
we stress that the pulse train is experimentally built up and mathematically described by the
discrete set of spectral amplitudes gn in Eq. (1), and so any other single-pulse spectral amplitude,
say g̃(f ), such that g̃(nfs) = gn for n ≥ 0 and zero for n<0 could have been used to describe the
train. The choice in Eq. (3) is the simplest compatible with the experimental evidences, namely
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the expected smooth character of g(f ) and the absence of optical frequencies below the seed
frequency, and permits a direct asymptotic analysis as will be shown below.

Fractional Talbot effect [23], in turn, corresponds to fractional values of the above mentioned
product, fsτc = p/q, with p and q coprime integers. In this case, the linear term in n in the first
phase term in Eq. (1) represents again a global delay τc/2 = pT/(2q). The FSL envelope is
[26,33]:

EFSL(t) =
ejξ0
√q

+∞∑
m=−∞

ejπ s
q m2

E0(t − mT/q − εpqT/2) (4)

where εpq denotes the parity of the product pq, i.e. εpq = 1 for pq odd and zero for pq even,
and where we have omitted the τc/2 delay. Hence, the train consists of a series of transform-
limited pulses mutually separated by a fraction T/q of the original period. Each of these
pulses is multiplied by a quadratic phase factor which depends on an integer s whose actual
value is a function of both p and q. Integer s has the opposite parity to that of q, so that
exp(jπ s

q n2) = exp(jπ s
q (n+ q)2) and therefore the period in Eq. (4) is T = 1/fs, as it is determined

by the shifting frequency. Factor exp(jξ0) is a constant phase that only depends on integers p and
q, and which will therefore be omitted in the rest of our analysis.
When the temporal width of the transform-limited basic pulse E0(t) is lower than T/q, the

intensity of the field described by Eq. (4) is composed of q equalized transform-limited pulses
per period, thus showing a q-fold increase in the pulse repetition rate with respect to the field at
integer Talbot conditions in Eq. (2). However, loops allow for the generation of a wider class of
optical waveforms out of these Talbot conditions, as is analyzed in the following subsection.

2.2. Fields out of Talbot conditions

To analyze this situation we write, near an arbitrary fractional Talbot condition,

fsτc =
p
q
+ δfsτc (5)

for a certain frequency mismatch δfs. According to Eq. (1), this mismatch induces an additional
quadratic phase factor to each of the frequencies in the comb. As a consequence, the train of
integer or fractional Talbot transform-limited pulses undergoes an additional group velocity
dispersion (GVD) φ = τcδfs/(2πf 2s ) that originates trains of chirped pulses [13]. This induced
GVD attains large values even for small frequency mismatches: for typical values fs = 100 MHz,
τc = 10 ns, and δfs = 50 kHz, we get φ ∼ 104 ps2/rad, corresponding to the dispersion of ∼500
km of standard single-mode fiber in the C band. The resulting pulse train has the same form as in
Eq. (2) or Eq. (4), but now the envelope of its basic pulse is given by:

E(t) =
∫ ∞

0
df g(f )e−j2π2φf 2ej2πft =

e−jsign(φ)π/4√
2π |φ|

∫ ∞

−∞

dt′ E0(t′)ej(t−t′)2/2φ (6)

In the second part of the equation we have used the temporal Fresnel propagator to express the
dispersed envelope as a convolution integral. Note that E(t,−φ) = E∗(−t, φ), and so we will
restrict our analysis to positive GVD, φ>0 or δfs>0, without loss of generality.
Let us denote by ∆ν the spectral width of g(f ). Then, the temporal extent of the transform-

limited pulse E0(t) can be estimated as ∆t0 = 1/∆ν. Using these scales, we define the temporal
and spectral Fresnel numbers as αt = ∆t20/(2πφ) and αν = 2πφ∆ν2, respectively. These Fresnel
numbers are inverse to each other, a fact that simply reflects the duality between the temporal and
spectral representations of the field in Eq. (6).

To justify these definitions, recall that the (diffractive) Fresnel number is given byNF = a2/(λ0z),
with a the aperture’s dimension, λ0 the wavelength, and z the propagation distance. From the
last part of Eq. (6), the temporal width ∆t0 is equivalent to the aperture a, whereas ratio 1/(λ0z)
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coincides with the phase prefactor in the Fresnel diffraction integral divided by π, as in our
definition of αt. Because of the same type of identifications, the spectral Fresnel number follows
after completing the phase in the first part of Eq. (6) to a perfect square, thus producing again a
Fresnel propagator, and then noticing that ∆ν plays here the role of a spectral aperture.
The temporal Fresnel number near an integer or fractional Talbot condition can attain very

small values: using the previously mentioned figures and a typical spectral width ∆ν = 20 GHz
we obtain αt ∼ 1/200. The FSL train is thus composed of individually dispersed fields lying, in
general, in the temporal far field of E0(t). If we increase the mismatch δfs further, the dispersed
pulse width exceeds the train’s period, and temporal Talbot effect is built again upon multiple
pulse-to-pulse interference. These two regimes are illustrated in the simulation of Fig. 2.

Fig. 2. Simulated intensity of an integer Talbot FSL field, Eq. (1), with an exponential
spectrum, gn = exp(−κn) with κ = 0.01, for different values of δfsτc. At low values of the
mismatch, δfsτc = 0.0025, the train comprises a series of dispersed pulses in the far field, but
pulse-to-pulse interference is not yet noticeable. After this point, the intensity progressively
reflects multiple pulse-to-pulse interference, leading to the δfsτc = 1/q = 1/50 fractional
Talbot condition where the 50-fold increase in repetition rate is already perceptible.

3. FSL fields in the temporal Fraunhofer region

The objective of this section is to compute and analyze a uniform asymptotic expansion of the
field in Eq. (6) in inverse powers of αν , and thus valid for all values of t. To ease the notation, the
spectral Fresnel number will be denoted simply by α. We also introduce dimensionless variables
as follows. The temporal extent of E(t) in Eq. (6) can be estimated as ∆t = 2πφ∆ν, as this quantity
describes the difference in group delay between the most distant spectral components. We thus
define the dimensionless frequency, u = ν/∆ν, time, τ = t/∆t, spectrum, G(u) = ∆ν g(u∆ν), and
envelope, U(τ) = E(τ∆t). With these changes, the first expression in Eq. (6) rewrites:

U(τ) = ejπατ2
∫ ∞

0
du G(u)e−jπα(u−τ)2 (7)

This formula is the starting point of our analysis. Since for typical values α ≡ αν = 1/αt ∼ 200,
it represents the temporal far field of the transform-limited pulse as the product of a chirp factor
times the near field propagation of the spectrum G(u). The asymptotic expansion of Eq. (7)
provides a field description at large but finite values of α, and permits the interpretation of the
fields as the combination of the standard Fraunhofer limit plus diffractive-like, higher-order
effects associated to the near field propagation of the spectrum in the presence of a spectral edge.
The leading order of the expansion describes the field in the spectral near field limit α→∞

in Eq. (7), equivalent to the temporal far field or Fraunhofer limit, and defines the so-called
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frequency-to-time mapping where the wave’s spectrum is mapped to the pulse’s temporal
envelope. This limit can be computed by recalling that the temporal Fresnel number satisfies
the condition αt � 1, hence reducing the computation of the last part of Eq. (6) to a Fourier
transform. Alternatively, it can be computed by use of the stationary phase approximation in Eq.
(7) or in the first representation in Eq. (6). In either case, one gets an envelope composed of a
linear chirp factor and a real amplitude given by the spectrum:

Ugo(τ) =
e−jπ/4
√
α

ejπατ2G(τ) (8)

Using the terminology of diffractive optics, this approximation will be referred to as the
geometrical optics (go) limit of the diffraction integral [34]. Notice that Ugo(τ) is discontinuous at
τ = 0 due to the existence of a spectral edge and, in fact, it vanishes for τ<0 because in this range
the stationary phase point is outside the integration interval of Eq. (7). The frequency-to-time
transformation is implicit in our dimensionless notation, since the field, in standard variables, is
proportional to the time-mapped spectrum, G(τ) = ∆ν g(t/2πφ). Note also that, although α is
large, the phase prefactor in Eq. (7) describing the linear chirp decreases with dispersion, as the
translation to dimensional variables reads exp(jπατ2) = exp(jt2/2φ).
As shown in the Appendix, the asymptotic expansion of Eq. (7) to second order is given by:

U(τ) = Ugo(τ) + Uedge(τ) + Uslope(τ) + O(α
−3/2)

= Ugo(τ) +
j

2πα
F(2ατ2)

τ
G(0) +

j
2πα

[
F(2ατ2) − 1

]
G′(0) + O(α−3/2)

(9)

where functionF(x), defined for x ≥ 0, is themodified Fresnel integral introduced byKouyoumjian
and Pathak in their uniform theory of diffraction [36]:

F(x) = jπ
√

xejπx/2
∫ ∞

√
x

dw e−jπw2/2 (10)

In this definition, the square roots are taken with positive sign, so that
√

y2 = |y|. The solution
described by Eq. (9) depends on spectrum G(u) through Ugo(τ) and on two additional parameters,
the spectrum amplitude and right slope at the edge, G(0) and G′(0) = dG/du|u=0+, respectively.
When G′(0) = 0, the solution in Eq. (9) coincides, except for the global multiplicative chirp
factor, with the near field originated by the diffraction of a straight edge [37]. These corrections
to the geometrical optics field are originated locally, as they only depend on the existence and
the slope of a spectral edge and not on the field’s spectral width ∆ν. Borrowing again the
nomenclature from diffraction theory, we will refer to the two additional terms in Eq. (9) as edge
and slope diffraction terms [34], respectively, as introduced in the first part of the equation. The
contributions to Eq. (9) are exemplified in Fig. 3.
The presence of F(2ατ2) in Eq. (9) leads to the identification of two temporal regimes in

the solution. As explained in the Appendix, F(x) ∼ 1 only for x<1. Therefore, in the region
2ατ2<1 or, in dimensional variables, in the temporal region t2<πφ = τcδfs/(2f 2s ) describing the
pulse onset, both edge and slope diffraction are significant, as shown in Fig. 3. In this region,
function F(2ατ2) is linear in |τ | and of order

√
α. Near the pulse onset, and in contrast to the

slope diffraction field, the edge diffraction field represents a correction of the same order as the
geometrical optics field, and discontinuous at τ = 0:

Uedge(τ) =
jG(0)
2πα

F(2ατ2)
τ

∼ −
e−jπ/4

2
√
α

G(0) sign(τ) for τ → 0 (11)

As shown in Fig. 3, this discontinuity compensates for that in Ugo(0) and results in a continuous
total field. In the opposite regime t2>πφ, away from the pulse onset, F(2ατ2) ∼ 1 + j/(2πατ2),
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Fig. 3. Simulation of the contributions in Eq. (9) to the in-phase component Re E(t)
of the example field with exponential spectrum g(f ) = exp(−f /∆ν). The parameters are
fs = 80.050 MHz, ∆ν = 8 GHz, and τc = 50 ns, so that δfsτc = 0.0025, φ = 62170 ps2/rad,
√
πφ =0.44 ns, and α = 25. The slope diffraction field has been magnified by a factor of 100.

and so the slope diffraction term becomes subleading and the edge diffraction tends to a
slowly-decaying quadrature field, Uedge(τ) ∼ jG(0)/(2πατ). The total field is:

U(τ>1/
√
2α) ∼ Ugo(τ) + j

G(0)
2πατ

U(τ< − 1/
√
2α) ∼ j

G(0)
2πατ

(12)

For typical values of the FSL field period, ∼10 ns, this second region is reached after a fraction
of ns around τ = 0, see Fig. 3.
The intensity of the total field is also plotted in Fig. 4(a), where the ripples are due to the

interference between the go and the asymptotic edge field in the first formula of Eq. (12). In the
absence of slope diffraction, the value of the relative intensity at τ = 0 between the total field and
its geometrical optics approximation is |U(0+)|2/|Ugo(0+)|2 = 1/4, as in the diffractive optics
solution of the straight edge [37]. Note also that this weak, slowly-decaying edge field always
originates a certain level of pulse-to-pulse interference when the pulse is inside a pulse train,
even if the overall dispersed pulse width does not exceed the train’s period.
In Figs. 4(b)–4(c) we also plot the instantaneous frequency of this example field, whose

different regimes can be explained as follows. Referring to Eqs. (8) and (12), if the FSL spectrum
G(τ) is bandlimited or its time-mapped spectral decay rate is faster than that of the edge field,
the total field for τ>1/

√
2α becomes eventually dominated by the slowly decaying edge field,

distorting the otherwise perfect linear chirp of the go term. The resulting phase patterns of the
total field U(τ) are schematically described in Fig. 5. For small values of τ, the magnitude of
Ugo(τ) is greater than that of the edge field, which only induces a small shift of the center of
Ugo(τ), as shown in Fig. 5(a) with an orange point. Phasor U(τ) thus evolves following the blue
circle, which represents the chirped phase of Ugo(τ). The small component of the edge field
induces a progressive oscillation in the chirped phase due to the pass of U(τ) near zero. In
Fig. 5(b) the magnitude of the edge field is still lower than Ugo(τ), but this last one has decreased
to a comparable level. The previous phase oscillations transform into positive sharp jumps of
variation π radians, but the phase still grows at every cycle of the geometrical optics phase. In
Fig. 5(c), the π/2 phase of the edge field becomes dominant, and the phase evolves in the same
cycle now with negative π phase jumps. Finally, when the magnitude of the geometrical optics
field is much smaller than that of the edge field, we recover a series of oscillations over the π/2
phase. We refer to this effect as the capture of the geometrical optics phase by the phase in
quadrature of the edge field, due to the close analogy with the capture effect in the demodulation
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Fig. 4. Simulation of the (a) intensity and (b), (c) envelope’s instantaneous frequency of
the field with exponential spectrum. In (a): blue, intensity of the geometrical optics field
Igo(t) = |Ego(t)|2 and orange, intensity of the total field I(t) = |E(t)|2. These intensities are
normalized to the peak value of Igo(t). In (b), the dashed black curves are the envelopes of
the correction term to the chirp in Eq. (13).

of two interfering frequency-modulated radio stations of different power levels [38]. The capture
point is defined by the transition between (b) and (c), where the phasors’ magnitudes are similar.

Fig. 5. Schematics of the temporal dependence of the phase when a phasor quadratic in time
is superimposed to a constant phasor with different relative magnitudes. See the explanation
in the text.

The capture effect also manifests itself in four different regimes of the instantaneous frequency.
In the first regime of Fig. 5(a), the derivative of the phase is no longer linear, but shows progressive
oscillations. As is shown in the Appendix, the instantaneous frequency in this regime is given by:

ωi(t) '
t
φ
−

1√
2πφ

g(0)
g(t/2πφ)

sin
(

t2

2φ
−
π

4

)
(13)

Therefore, the instantaneous frequency presents a chirped frequency modulation whose amplitude
is governed by the inverse of the time-mapped spectrum, g(t/2πφ), which is a decreasing function
of time. As a consequence, the chirp does not evolve linearly, but in a series of progressive
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oscillations whose amplitude increases along the pulse. The second regime of Fig. 5(b) results in
the transformation of these oscillations in positive bumps, but the overall linear growth of the
instantaneous frequency persists. These bumps arise from the π phase jumps which become
progressively sharper, and so the values of the instantaneous frequency become larger. After the
capture point, in Fig. 5(c), the bumps become negative and ωi(t) drops progressively to zero. In
the final regime of Fig. 5(d), the instantaneous frequency shows small oscillations near zero.
These regimes are illustrated in Figs. 4(b)–4(c) using our example field. In (b) we show the

instantaneous frequency at the pulse’s leading edge where the oscillations of the linear chirp are
apparent. Superimposed are the envelopes of the second term in Eq. (13) which account for most
of the effect, as expected. At a magnified scale, Fig. 4(c) shows the frequency at the far trailing
edge, where the change of the bumps’ sign is separated by the capture point at 15.8 ns.

The existence of this additional chirped frequency modulation with increasing amplitude and
the subsequent capture of the phase by the edge field points to an intrinsic problem of the linear
chirp generated by pulse dispersion in the far field when the source spectrum presents an edge.
According to Eq. (13), the chirp linearity can be improved by equalizing the pulse spectrum
so that, ideally, g(f ) ≈ g(0). Even in this case, however, residual oscillations of amplitude
∆ωi = 1/

√
2πφ remain. With respect to the capture effect, one can reduce the large bumps

around the capture point by spectral filtering, so that g(f ) decreases sharply at f ' ∆ν and thus
reduces the capture region. Alternatively, one can reduce the diffractive contributions to the field,
and therefore mitigate these effects, by use of an optical filter that smooths the spectral edge, at
the expense, of course, of output optical power.

Finally, we provide the asymptotic expansion of the total FSL train, UFSL(τ) =
∑

m U(τ−mτ0),
with τ0 = T/∆t the dimensionless period. We first divide the edge field in its asymptotic limit of
Eq. (12) plus a contribution localized at the pulse onset 2ατ2<1. Note that both are singular at
τ = 0, but the divergences cancel each other:

Uedge(τ) = U(asymp)
edge (τ) + U(local)

edge (τ) =
j

2πα
G(0)
τ
+

j
2πα

G(0)
τ

[
F(2ατ2) − 1

]
(14)

Defining Ulocal(τ) = U(local)
edge (τ) + Uslope(τ), which describes the local contributions at the pulse

onset, the FSL train can be written as:

UFSL(τ) =

∞∑
m=−∞

[
Ugo(τ − mτ0) + Ulocal(τ − mτ0)

]
+

jG(0)
2ατ0

cot
(
π
τ

τ0

)
+ O(α−3/2) (15)

where we have used the Mittag-Leffler expansion π cot(πz) =
∑∞

k=−∞(z + k)−1 [39] to sum the
infinite series of asymptotic edge fields.

4. Experimental results and model fitting

We performed specific measurement to provide experimental confirmation of the theory described
by Eqs. (4), (9) and (15). The experimental setup is similar to that of [16], which was based on a
cw seed laser at 1550 nm and an AOFS operating at ∼80 MHz. The loop’s round-trip time was
τc = 73.202 ns, inferred from a fit of the acousto-optic shifting frequencies fs0 leading to different
fractional Talbot conditions. The TBPF bandwidth (Exfo, XTM-50) was ∆ν ' 20 GHz, and the
resulting power decay was 0.026 dB/line in the band dc-16 GHz. As is schematically shown in
Fig. 1, single-detector, self-heterodyne measurements were carried out by mixing the FSL output
with a portion of the seed laser, followed by wideband (40 GHz) detection and recorded by a 20
GHz DSO (sampling rate 40 GS/s, depth of 8 bits). The heterodyne signal is given by

v(t) = E2
LO + 2ELORe

[
e−jϕEFSL(t)

]
+ |EFSL(t)|2 (16)

with ELO the local oscillator’s (LO) amplitude and ϕ the LO phase. By maximizing ELO, the
self-heterodyne trace provides a measurement of the field at the LO angle, Re[e−jϕEFSL(t)]. The
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relative value of the amplitude ratio ELO/(max |EFSL |) is ∼10, inferred from our first experimental
result shown in Fig. 6 described below. The traces were recorded in a time interval of 20 ms
using the entire DSO’s memory, for a total of ∼1600 periods of the optical train.

Fig. 6. Blue: raw heterodyne signal of the chirped FSL field obtained by detuning the
shifting frequency of the p = 6 integer Talbot condition. Orange: chirped train after
denoising, shifted −50 mV to ease the comparison. Yellow: unwrapped phase of a single
period in the denoised train.

4.1. Chirped integer Talbot field

In a first experiment, we set the FSL at a shifting frequency fs = 82.018 MHz, above the shifting
frequency fs0 = 81.975MHz of the integer Talbot condition with fsτc = 6, so that δfsτc = 0.003.
A portion of the raw trace is shown in blue in Fig. 6, where the dispersion-induced chirp is
apparent. We first computed the discrete Fourier transform of this raw signal, obtaining the FFT
spectrum shown in Fig. 7(a) with a blue trace. This trace represents the optical spectrum g2n of
the comb lines above the injection-seed wavelength, except for the line at dc, which is larger
due to the constant term in Eq. (16), and also near dc, due to the |EFSL(t)|2 term. The spectral
lines are clearly resolvable as a result of the large number of recorded periods. The spectrum is,
however, aliased at 20 GHz due to the DSO bandwidth, which roughly coincides with the TBPF
spectral width. At this point, we optimized the nominal value of fs to the Hz level by maximizing
the total power contained in the harmonics using spline interpolation of the FFT trace. This was
necessary in order to provide an exact time reference along the whole pulse train.

The spectral lines can be isolated in the aliased spectrum using the fact that they are multiple
of the shifting frequency fs, as shown in the zoom view near the Nyquist frequency of Fig. 7(b).
This way, the effective detection bandwidth was extended up to 25 GHz resulting in a total of
304 lines. Afterwards, noise was removed by a 4-MHz bandpass filter around each spectral line
implemented with a Kaiser-Bessel window with β = 6, also shown in Fig. 7(b). This denoising
step, equivalent to a running temporal average over ∼40 FSL periods, reduces not only the
wideband detection noise but also the quantization noise originally present in the DSO trace.
After inverse Fourier transform, a portion of the denoised time-domain waveform is shown in
Fig. 6 with an orange trace, shifted −50 mV to ease the comparison. In these traces the sampling
rate was extended to 80 GS/s. Then, the complex field was retrieved using the same procedure as
in [16], first subtracting the dc value and then performing the Hilbert transform by removing
the negative frequencies in the FFT spectrum. This allowed the numerical determination of the
phase, shown in units of cycles with yellow trace for the sample pulse of Fig. 6, and also of
the instantaneous frequency, for which the maximum detectable frequency is 40 GHz after the
bandwidth extension procedure described above.



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 12988

Fig. 7. (a) FFT spectrum of the raw heterodyne signal (blue trace), and smoothed spectrum
used in the simulations (orange trace). (b) Zoom of the FFT spectrum around the Nyquist
frequency (blue trace), and filtered spectral lines (in orange).

The experimental instantaneous frequency is presented in Fig. 8 with blue traces. In Fig. 8(a)
it is observable a linear chirp rate of 2.2 GHz/ns associated to a dispersion φ = 73082 ps2/rad,
which deviates 1.8% from the value φ = τcδfs/(2πf 2s ) = 74424 ps2/rad estimated using the
cavity’s round-trip time τc. The predicted progressive oscillations are clearly observable in the
zoom view of the leading edge of Fig. 8(b). The amplitudes of these initial oscillations around
the linear tendency are ±220MHz, in good agreement with our estimate ∆ωi/(2π) = 235MHz.
In Fig. 8(a), these oscillations become positive and negative bumps with large amplitudes due to
the change in slope of the time-mapped spectrum after 18.4 GHz (see Fig. 7(a)), reaching the
capture point at 9.8 ns. After this point, the instantaneous frequency suddenly drops.

Fig. 8. (a) Instantaneous frequency of the chirped pulse after denoising (blue trace) and
of the reconstructed field (orange trace, shifted +60 GHz). (b) Zoom of the instantaneous
frequency in the leading edge. The reconstructed instantaneous frequency is shifted +5 GHz.
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The capture effect can also be observed in the heterodyne signal of Fig. 9, zoomed from Fig. 6.
In terms of the phase, the capture point is determined by the instant when the phase ceases to
grow quadratically, and is associated with a decrease in the high-frequency oscillations of the
heterodyne signal, as is apparent in both the raw and denoised traces of that figure.

Fig. 9. Zoom of Fig. 6 near the capture point: raw heterodyne signal of the chirped FSL
field (blue trace) and denoised signal (orange, shifted −10 mV). In yellow, phase of the
denoised chirped FSL field.

4.2. Model fitting

The chirped Talbot field was then globally compared with the models described in Eqs. (9) and
(15) using a reconstructed optical spectrum and the fit of the defining parameters. As for the
spectrum, we estimated the spectral function g(f ) from the comb amplitudes gn in Fig. 7, first
smoothing these samples by a low-pass filter and then forcing the edge at zero frequency by
extrapolating the values of gn from n = 4 to n = 7 towards n = 0. This was necessary since the
heterodyne signal, Eq. (16), contains the FSL intensity, |EFSL(t)|2, which makes its contribution
to the FFT spectrum near dc. The smoothed spectrum is shown in Fig. 7(a) in orange trace. This
spectrum thus defines the function g(f ) and so the coefficients G(0) and G′(0) in Eqs. (9) and
(15) up to a constant, referred to as the FSL amplitude in what follows.

The complex form of the denoised field was then fitted to the model of Eq. (15) by optimizing
in independent steps the values of global dispersion φ, FSL amplitude, LO phase ϕ, and the initial
pulse time for a sample period of the experimental FSL train. Dispersion was first determined by
fitting the experimental phase, shown with yellow trace in Fig. 6, to a quadratic function in the
central part of the pulse, where the influence of edge fields arising from the same pulse or its
neighbour pulse can be neglected.
Subsequently, we carried out an estimation of the initial time by minimizing the difference

between the experimental and the theoretical instantaneous frequency extracted from Eq. (15),
since it does not depend neither on the FSL amplitude nor on the LO phase. Finally, FSL
amplitude and LO phase were fitted to a period of the full theoretical FSL train, Eq. (15), from
the reconstructed optical spectrum and the previous estimates of initial time and dispersion,
searching for the minimum rms error between experimental and theoretical heterodyne signals.
This search was restricted to the leading edge of the waveform, between −2 ns and 1 ns, since the
depth of the field’s first valley and the height of its first hill are particularly sensitive to these
parameters.

The reconstructed optical waveform is shown in Fig. 10(a) with an orange trace, superimposed
to the denoised and dc-free experimental signal in blue. Here we have taken into account the
pulse-to-pulse interference with the following pulse, as is reflected in the decreasing trailing
edge after 12 ns. Despite the approximations involved and the complexity of the waveform, the
global agreement is remarkable. As shown in Fig. 10(b), the peak-to-peak difference between
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experimental and reconstructed phases is less than half a cycle for a total of 103 oscillations of
the waveform’s phase in one period.

Fig. 10. (a) Heterodyne signal after denoising (blue trace) and reconstructed field (orange
trace). (b) Phase difference between the heterodyne and the reconstructed signals.

Also illustrative is the reconstruction of the instantaneous frequency, shown in Fig. 8 with
orange traces, where the predicted overall slope, the initial chirp oscillations, magnified in
Fig. 8(b), and the capture point at 9.8 ns are well described by the theory. In contrast to the
example field of Fig. 4, however, the capture is not realized by the edge field originated at t = 0,
but by the closer edge field of the following chirped pulse whose onset is at T = 1/fs = 12.2 ns.
This observation is analyzed with more detail in the Appendix.

The summation in Eq. (15) of pulse-to-pulse interference terms also implies that the quadrature
field responsible for the capture effect vanishes somewhere around the center of the pulse’s period
since the edge fields of neighbour pulses have opposite sign at both sides of their respective edges,
see Fig. 3. This is the reason why, in the simulations in Fig. 8, the amplitude of the oscillations
progressively decreases, reaches a minimum at ∼7 ns, and subsequently grows towards the capture
point. This behaviour, however, is not reflected in the experimental trace, where the instantaneous
frequency shows oscillations and bumps with a continuously increasing amplitude. We have not
a definite explanation of this discrepancy, which can be due to the acquisition procedure, based
on the single-detector heterodyne signal which only represents an approximation to the in-phase
field, or to the analysis method that includes a spectral filtering equivalent to a time average. In
any case, the presented model correctly predicts the main properties observed in the field phase,
namely, the oscillations and bumps of the linear chirp and the existence of capture effect in the
pulse’s trailing edge.

4.3. Phases of the chirped fractional Talbot field

In a second experiment, we targeted the determination of the Talbot phases at fractional Talbot
conditions using chirped pulses. We introduced a small mismatch in the acousto-optics shifting
frequency corresponding to fractional Talbot indices of the form (q − 1)/q with q = 3, 6 and 12
over the p = 5 integer Talbot condition, so that the heterodyne signals were composed of a series
of q chirped pulses per period. In Fig. 11 we present, as an example, the raw heterodyne trace of
a chirped 2/3 Talbot field, distributed in three pulses of duration T/3 in a period of T = 12.9



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 12991

ns. The phase terms associated to these Talbot 2/3 conditions are, respectively, 1, exp(j2π/3),
and exp(j2π/3) and therefore the train is arranged in a pattern composed of two equal pulses
followed by a different pulse, easily distinguishable in the figure by their leading edges. The
use of chirped pulses instead of the transform-limited pulses of the perfectly matched fractional
Talbot condition not only facilitates this visual identification of the pattern, but also helps its
correlation detection, as explained below.

Fig. 11. Raw heterodyne signal of the chirped Talbot 2/3 field (fs = 77.435 MHz).

The Talbot phase terms Φn = exp(jπsn2/q) (n = 0, . . . q − 1) carried by the n-th pulse within
the basic period, at or near the (q − 1)/q fractional Talbot condition are given by [26,33]:

Φn = exp[jπ(q − 1)n2/q] = (−1)n exp(−jπn2/q) (17)

The experimental determination of these phases proceeds as follows. Once generated and recorded,
the traces were denoised, dc filtered, Hilbert transformed, and finally Fourier transformed back to
the time domain in the form of denoised complex envelopes. A digital correlator was used to
compare each of the q pulses in a period with the n = 0 reference pulse, Eref (t), according to:

C(u) =
∫ T/q

0
dt E∗ref (t)EFSL(t + u) (18)

This way, the complex cross-correlation C(u) shows a series of peaks at intervals T/q whose
complex values include a phase term with the sought-for difference between the pulse and
reference phase terms, C(u = nT/q) ∼ exp

(
jπsn2/q

)
with n = 0, 1, . . . , q− 1 mod q. In practice,

and since these chirped pulses always show a certain level of pulse-to-pulse interference, the
reference pulse Eref (t) was chosen as the central part of the n = 0 chirped pulse in the pulse train,
with a width of T/(3q) for each of the quoted values of q.

The experimental results are shown in the constellations of Fig. 12, together with the theoretical
Gauss phases, Eq. (17). Each constellation includes ten different samples per phase level
randomly picked among the 1600 periods of the recorded pulse train. Since these complex
samples are normalized to unit amplitude, Talbot conditions with higher q index, which distribute
the same optical power in pulses of duration T/q, show a lower signal-to-noise ratio and therefore
a higher spread in the constellation. The agreement of the experimental and theoretical values
is, however, excellent. The rms Error Vector Magnitudes of the constellations, computed for a
total of 1000 samples per phase level, are EVMrms = 3.4%, 5.5%, and 9.1% for Talbot 2/3, 5/6,
and 11/12, respectively. This result confirms the passive generation of pulse trains following the
Gauss sequences by temporal Talbot effect.
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Fig. 12. Experimental (q − 1)/q Talbot phases (left plot) and corresponding Gauss phases
Φn = exp[jπ(q − 1)n2/q] with n = 0, . . . , q − 1 (right legend). From top to bottom, Talbot
2/3 (fs = 77.435 MHz), Talbot 5/6 (fs = 79.706 MHz), and Talbot 11/12 (fs = 80.841
MHz).

5. Conclusions

We have presented a theoretical and experimental investigation of the chirped optical fields
generated in acousto-optic FSL by a detuning of the AOFS frequency from the integer and
fractional Talbot conditions. Our results demonstrate the equivalence of the Talbot phases
generated at fractional conditions with the Gauss sequences, and identify novel properties of the
generated chirps. An asymptotic model of the field in the temporal Fraunhofer domain has been
constructed, which describes several deviations from the standard frequency-to-time mapping
description of the far field. The model accounts for the existence of ripples in the pulse intensity,
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unavoidable pulse-to-pulse interference in the pulse train, small oscillations in the expected linear
pulse chirp, and the capture of the phase at its trailing edge by the adjacent pulse. These features
are due to the existence of corrections to the geometrical optics field originated by the FSL’s
spectral edge, in analogy to the diffraction of a straight edge. The experimental results have been
enabled by a proper processing of the heterodyne signal, which includes denoising, bandwidth
extension, and Hilbert transform.

From the practical point of view, these outcomes identify general properties of acousto-optic
FSL or lasers. First, the existence of a spectral edge leads to pulses with a slow decay ∼1/t, either
transform-limited or chirped, and therefore to a certain level of pulse-to-pulse interference. This
interference may affect both the amplitude and the phase of the individual pulses in the train and,
in particular, may originate large pulse-to-pulse amplitude fluctuations at or near fractional Talbot
conditions with high q factors of increase in repetition rate, where pulse overlap is expected to be
larger. The same observation applies to systems at integer Talbot conditions fed by different seed
wavelengths for its use as signal processors or signal generators [11]. Here, what is exploited
is the loop’s ability to provide a wavelength-to-time mapping from the input wavelengths to
the delays where the corresponding Talbot pulses are outputted. The temporal profile of these
transform-limited pulses represents the system’s impulse response and, therefore, their slow
asymptotic decay, although does not affect the resolution, may originate crosstalk or averaging
effects in the output. In either case, these effects can be mitigated or even totally suppressed by a
proper optical filter that smooths the spectral edge, thus avoiding the edge fields responsible of
the slow pulse asymptotic decay at the expense of resolution and output power.

Second, our results also point out a generic limitation of the linear chirps generated by FSL in
the Fraunhofer region, as they show oscillations and phase capture due to the interference of the
geometrical optics and edge fields. As discussed in Section 3, these effects can be mitigated by
using equalized FSL spectra, as in [13], and again can be totally avoided by optical filtering the
spectral edge. Finally, we point out that the FSL systems based on the spectrum of the frequency
comb are not affected by these shortcomings, since in these cases the spectral phase, responsible
of the temporal form of the output pulses, is either calibrated, as in high-resolution spectroscopy
systems [8,10], or simply plays no role, as in pulse-compression laser range finders based on
digital correlation techniques [16].

6. Appendix. Asymptotic expansions

The computation of Eq. (9) relies on standard results of uniform asymptotic theory [40,41], but
expressed in a form, using the modified Fresnel integral F(x), Eq. (10) [36], that simplifies the
description of the different temporal scales involved in the problem. The expansion in Eq. (9)
can be derived directly, for instance, from the specialization of the results in [34]. Instead, we
present here a compact derivation allowed by the simplicity of the quadratic phase in the integral
of Eq. (7). We begin with a description of the relationship between the Fresnel integral and F(x).
The Fresnel integral used here is the complex conjugated of the standard expression [37]:

Z(v) =
∫ v

0
dw e−jπw2/2 (19)

With this definition, the locus of Z(v) in the complex plane, or Cornu spiral, evolves from
the second quadrant for v → −∞ to the fourth quadrant for v → +∞. As is well known,
Z(−v) = −Z(v), and the evolution of the Fresnel integral near the limit points of the Cornu spiral
is described by an asymptotic expansion of the form:

Z(v) = sign(v)
e−jπ/4
√
2
+

j
πv

e−jπv2/2
(
1 +

j
πv2
+ O(v−4)

)
(20)
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for v→ ±∞. In fact, all the terms in parentheses depend on variable v2. This observation justifies
the definition of the modified Fresnel integral as [36]:

Z(v) = sign(v)
e−jπ/4
√
2
+

j
πv

e−jπv2/2F(v2) (21)

from which the integral expression of Eq. (10) follows directly. This formula represents Z(v) for
positive and negative arguments, v>0 and v<0, showing that the functional form in these two
regimes only differs in the sign of the corresponding limit point. Therefore, F(v2) represents a
parametrization of the Fresnel integral such that, when v2 is large and thus F(v2) ≈ 1, the Cornu
spiral is already approaching the limit point as the 1/v asymptote. In the limit v2 → 0, function
F(v2) behaves as ∼ |v|, and represents the central region of the Cornu spiral. As is also well
known [37], the transition between these two regimes occurs at |v| ∼ 1. We recall that Eq. (11)
gives the correct value Z(0) = 0 in both limits v→ 0± of the the representation in Eq. (21), since
the discontinuity in F(v2)/v cancels that of sign(v).
In the asymptotic expansion of Eq. (7) we will make use of the following integrals:

In,ε (τ) =

∫ ∞

0
du un e−εu2 e−jπα(u2−2uτ) (22)

with n = 0, 1 and ε → 0+. In particular, I0,ε (τ) reduces to a Fresnel integral for ε = 0:

I0,0(τ) =
ejπατ2

√
2α

[
e−iπ/4
√
2
+ Z(τ

√
2α)

]
=

ejπατ2−iπ/4

2
√
α

[1 + sign(τ)] +
j

2πα
F(2ατ2)

τ
(23)

and for I1,ε (τ) we find, after integration by parts:

I1,ε (τ) =
jπα

ε + jπα
τI0,ε (τ) +

1
2(ε + jπα)

(24)

and so I1,ε→0+(τ) = τI0,0(τ) − j/(2πα). We first derive the asymptotic expansion of field, Eq.
(9). In a separate subsection we present the computation of the instantaneous frequency.

A.1. Optical field

The expansion of the integral in Eq. (7) at large α depends on its stationary phase point
u = τ for τ ≥ 0 and the endpoint u = 0, critical points that colaesce for τ → 0. A
uniform asymptotic expansion, valid for τ ≥ 0, can be derived as follows [41]. We first write
G(u) = G(τ) + [G(u) − G(τ)] and divide the integral as U(τ) = U1(τ) + U2(τ). The first field is
U1(τ) = G(τ) I0,0(τ), and

U2(τ) = ejπατ2
∫ ∞

0
du [G(u) − G(τ)] e−jπα(u−τ)2 (25)

which is expected to be of higher order in the expansion since its stationary phase approximation
vanishes. Integrating by parts, we get:

U2(τ) =
j

2πα
G(0) − G(τ)

τ
−

j
2πα

∫ ∞

0
du

d
du

(
G(u) − G(τ)

u − τ

)
e−jπα(u2−2uτ) (26)

The second term contributing to U2(τ) is of higher order in the expansion since its stationary
phase value is G′′(τ)e−jπ/4/(j2πα3/2). Neglecting this contribution and using Eq. (23) we get:

U(τ) = U1(τ) + U2(τ) ∼ Ugo(τ) +
j

2πατ

[
G(0) + G(τ)

(
F(2ατ2) − 1

)]
(27)

We now recall that F(2ατ2) − 1 is not null only in the vicinity of τ = 0, specifically for
|τ |<1/

√
2α � 1. Approximating G(τ) = G(0) + τG′(0) + · · · in Eq. (27) we recover Eq. (9)



Research Article Vol. 28, No. 9 / 27 April 2020 / Optics Express 12995

[34]. The following term in this expansion, τ2 G′′(0)/2, gives a field of order τ/α, and since it is
significant only for |τ |<1/

√
2α, represents again a subleading correction of O(α−3/2).

For τ<0, the integral in Eq. (7) does not enclose the stationary point, and therefore its value is
dominated by the behaviour of G(u) near the endpoint u = 0 where the phase oscillates at a lower
rate. To extract the asymptotic contributions of edge and slope, we decompose again U(τ) by
writing G(u) = Hε (u) + [G(u) − Hε (u)] with Hε (u) = [G(0) + uG′(0)] exp(−εu2) for u ≥ 0 and
zero otherwise, and consider the limit ε → 0+. We find U1(τ) = G(0)I0,0(τ) + G′(0)I1,ε→0+(τ)
which, using Eqs. (23) and (24), yields Eq. (9) for τ<0. After integration by parts, field U2(τ) is
shown to be O(α−3), and thus subleading, in the limit ε → 0+.

A.2. Instantaneous frequency

The instantaneous frequency of the chirped pulse train EFSL(t) or UFSL(τ) can be computed as
the imaginary part, Im(·), of its logarithmic derivative:

ωi(t) = Im
(

1
EFSL(t)

dEFSL

dt

)
=

1
∆t

Im
(

1
UFSL(τ)

dUFSL

dτ

)
(28)

The region of interest in Eq. (28) is one period of the FSL train, 0<t<T or 0<τ<τ0. UFSL(τ) is
given by Eq. (15), and for U′FSL(τ) =

∑
m U′(τ − mτ0) we have:

U′(τ) = 2πjα
∫ ∞

0
uG(u)e−jπα(u2−2uτ)du (29)

The asymptotic expansion of Eq. (29) is also given by Eq. (9) but referred to a new, edge-free,
spectrum G̃(u) = uG(u), so that G̃(0) = 0 and G̃′(0) = G(0). The contributions to U′(τ) from
the integral in Eq. (29) are thus τUgo(τ) = τG(τ)ejπατ2−jπ/4/

√
α, which gives rise to the exact

linear chirp, plus a localized field G(0)
(
F(2ατ2) − 1

)
, but not of an edge-like field. Therefore,

the numerator of Eq. (28) does not show pulse-to-pulse interference. Neglecting the local fields
in both numerator and denominator, the instantaneous frequency can be compactly written as:

ωi(t) = 2π∆ν τ Re

(
1 + j

e−jπατ2+jπ/4

2
√
ατ0

G(0)
G(τ)

cot
(
π
τ

τ0

))−1 (30)

This equation allows for the discussion of the different properties of ωi(τ) for 2ατ2>1, as
the local fields are not included. In the pulse’s leading edge (τ � τ0) we can approximate
cot(πτ/τ0) ∼ τ0/(πτ) and, after expanding the ratio in Eq. (30) to first order as (1 + x)−1 ' 1 − x,
Eq. (13) follows. Second, the capture point τ∗ is given by:

G(τ∗) =
G(0)
2
√
ατ0

���� cot
(
π
τ∗
τ0

)���� (31)

The solution is located at a point τ∗ where G(τ) is small compared to G(0), and thus in the trailing
edge of the pulse where (π/τ0) cot(πτ/τ0) ∼ 1/(τ − τ0), so that the capture is carried out by the
edge field of the following pulse. Third, if the spectrum is equalized, G(τ) ' G(0), the solution is
located at the sharp end of the pulse where the geometrical optics field vanishes. In this case,
the capture is almost instantaneous and the progressive increase of oscillation’s amplitudes in
the instantaneous frequency is not expected to be observed. Finally, the field responsible of the
capture is cot(πτ/τ0), which represents the sum of pulse-to-pulse interference terms due to edge
fields. This capture field vanishes at τ = τ0/2 or t = T/2, in the middle of the FSL period. At this
point one expects a decrease in the linear chirp oscillations as shown in our simulation of Fig. 8.
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