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Abstract —Brain-machine interfaces (BMIs) based on motor 

imagery (MI) for controlling lower-limb exoskeletons during the 

gait have been gaining importance in the rehabilitation field. 

However, these MI-BMI are not as precise as they should. The 

detection of error related potentials (ErrP) as a self-tune 

parameter to prevent wrong commands could be an interesting 

approach to improve their performance. For this reason, in this 

investigation ErrP elicited by the movement of a lower-limb 

exoskeleton against subject’s will is analyzed in the time, 

frequency and time-frequency domain and compared with the 

cases where the exoskeleton is correctly commanded by motor 

imagery (MI). The results of the ErrP study indicate that there 

is statistical significative evidence of a difference between the 

signals in the erroneous events and the success events. Thus, 

ErrP could be used to increase the accuracy of BMIs which 

commands exoskeletons. 

 
Clinical Relevance— This investigation has the purpose of 

improving brain-machine interfaces (BMIs) based on motor 

imagery (MI) by means of the detection of error potentials. This 

could promote the adoption of robotic exoskeletons commanded 

by BMIs in rehabilitation therapies. 

I. INTRODUCTION 

Brain-Machine Interfaces (BMIs) involve the utilization of 
signals generated by the brain to control an external device, 
such as an exoskeleton [1][2]. The use of BMIs and 
exoskeletons in the rehabilitation of patients with motor 
injuries is a promising technology as it allows the patient to 
take control of their rehabilitation, providing a more effective 
and efficient recovery process [3][4]. A BMI based on Motor 
Imagery (MI) paradigm with an exoskeleton is one of the most 
common choices for the rehabilitation of motor abilities in 
patients, because of the realism and implication of the subjects 
in the task. However, the robustness of this type of BMI is not 
as high as it should be for a correct performance, particularly 
in the rehabilitation of lower limbs [5][6]. One of the main 
reasons is the fact that legs are represented in the internal 
region of the brain between both hemispheres. Hence, the 
signals of the gait imagination are weaker and more difficult 
to detect.  

Over the past years, some investigations have combined 
the motor imagery commands with error related potentials 
(ErrP) with the intention of solving this problem and 
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improving the MI-BMI performance. These error potentials 
are generated as a response when the subject detects that the 
device is not working as it was expected. For instance, an ErrP 
would be elicited when the patient tries starting the gait by MI, 
but the exoskeleton remains standing as the BMI is not 
detecting the MI. In this case, if the ErrP is detected, the 
incorrect command decoded by the BMI, i.e., the relax state, 
would be self-tuned, generating the right command for starting 
the gait. Accordingly, the BMI performance would be 
enhanced [7].  

The ErrP has been studied in the literature throughout the 
years by many researchers. It has been proved that these 
potentials are stable in time and amplitude [8][9][10]. 
However, the subjects could get used to the error situation if it 
is repeated many times in a short period of time, complicating 
its detection [10][11]. It has been found that there are 
differences between the ErrP in monitoring and control tasks, 
which leaded [9] to brand the interaction ErrP for control BMI. 
The interaction ErrP is characterized, in an approximate 
window of 450ms after the feedback, by four peaks: a small 
positive peak (P1) followed by a pronounced negative peak 
(N1), then the potential increments into a large positive peak 
(P2) and the potential decrements again to generate the final 
negative peak (N2). Many investigations have found the ErrP 
produced by an error in decoding MI commands 
[7][9][11][12][13]. In addition, [12] indicates that the MI time 
or Inter-Stimulus Interval has influence in the appearance of 
the ErrP. The research shows that the higher the time of 
imagining is, the better ErrP is detected, but it takes more time 
to show after the feedback. Furthermore, the ErrP shape and 
detection precision may vary depending on the type of 
feedback the subject receives. [14] exposes that the 
combination of visual and tactile feedback has higher precision 
than visual feedback by itself, and also confirms that ErrP 
takes longer to appear after the feedback. [13] compares visual 
feedback with proprioceptive feedback provided by the 
movement of an exoskeleton, finding out there are no traces of 
the ErrP for the proprioceptive feedback.  

In the present work, the ErrP elicited by the proprioceptive 
feedback of an exoskeleton using a MI-BMI to start the gait 
task is analyzed. The EEG and exoskeleton data generated 
following the experimental protocol in [5] is used to compare 
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the following events: TP events when the exoskeleton moves 
due to the subject’s intention to start walking, and FP events 
when the exoskeleton moves against subject’s will.  

 

II. MATERIAL AND METHODS 

A. Equipment 

EEG signals were recorded using the Starstim R32 device 
(Neuroelectrics, Spain) at a sampling rate of 500 Hz. The cap 
is composed of 32 non-invasive wet electrodes. 27 channels 
following the 10-10 distribution of the international system 
were used to register the EEG signals: F3, FZ, FC1, FCZ, C1, 
CZ, CP1, CPZ, FC5, FC3, C5, C3, CP5, CP3, P3, PZ, F4, FC2, 
FC4, FC6, C2, C4, CP2, CP4, C6, CP6, P4. The reference and 
ground electrodes are located on the right ear lobe. 

Subjects’ movements are supported by H3 exoskeleton 
(Technaid, Madrid, Spain), whose control commands are 
received through Bluetooth. The subjects also use crutches to 
maintain the stability during the gait. 

B. Experimental protocol 

The original protocol that was used to collect the data 
consisted in a MI-BMI that controlled the start and stop of a 
lower-limb exoskeleton [5]. During the trials, different tasks 
were performed by the subject, who received the order by 
voice message. Each session was divided into two: a training 
stage and a test stage. The training stage was an open-loop 
control where the subject executed three different mental tasks 
within the same trial: relax, motor imagery of the gait and a 
regressive mathematical subtraction with three digits numbers. 
Each subject performed 23 trials during this stage for training 
the MI classifier. During the test stage, the exoskeleton was in 
a closed-loop control. The subject began relaxed and then, 
he/she performed a motor imagery of the gait with the purpose 
of activating the exoskeleton to start walking and keep it on till 
a new relax phase for stopping was required. Each subject 
performed 10 trials in the closed-loop stage.  

 

In this study, only the test trials in closed loop are 
considered for the ErrP analysis. In the study, two types of 
events that happened within the trials are analyzed (Figure 1):  
The error events, that occur when the subject activates wrongly 
the exoskeleton during the initial relax time (false positives FP 
during the first relax), and the success events, when the subject 

activates the exoskeleton for the first time within the motor 
imagery window (first true positives TP). Each subject 
performed 5 sessions of the experiment with 10 trials in each 
session. Notice that not all the trials gave the same information 
about the studied events, as it depends on the actual FPs and 
TPs detected, obtaining a different number of class events per 
trial. 

C. EEG Signal Processing 

The data acquired during the sessions were first 
preprocessed in order to find the event windows and 
conditions for studying the ErrP. 

Firstly, the EEG signals in the 27 channels were filtered by 
a state variable band-pass filter between 1 and 7 Hz. The main 
intention of extracting these frequency bands was filtering the 
bands where the signals of error events are highly 
discriminable from correct events signals, as it is described in 
[15]. Then, a Laplacian spatial filter was applied to improve 
the spatial information. 

Afterwards, the sample where the exoskeleton activates is 
used to define the analysis window. An activation point within 
the relax window is labeled as error event (FP) and withing the 
motor imagery window as success event (TP). Therefore, trials 
are cropped in epochs of 0.5 seconds before the event and 1.5 
seconds after the event. As a result of splitting all the trials in 
event periods, the dataset is divided in 80 FP and 112 TP. The 
imbalance of the dataset is a consequence of not all the trials 
containing both events. 

D. ErrP Analysis 

The processed EEG signals are analyzed in the time 
domain, frequency domain and time-frequency domain at 
electrode FCz, which is the nearest electrode to ACC (anterior 
cingulate cortex) where the ErrP is generated [16]. The aim is 
finding differences and similarities between FP and TP events.  

In the time domain analysis, amplitude differences 
between FP and TP events are examined. FCz data are 
averaged for all subjects and for each subject separately. 
Looking at each subject's ErrP separately is interesting because 
the global average ErrP signal can be completely altered by 
just a single trial with higher amplitude peaks than the rest. In 
the frequency domain analysis, the FFT Power Spectrum is 
obtained as the average of squared absolute values of the FFT 
output. Finally, in the time-frequency analysis, the frequency 
power distribution is estimated again, but now in each interval 
of time and frequency by using the Wavelet transform (Morlet 
wavelet as mother). For the representation, scalp topographic 
maps are computed for the time samples where signal in 
electrode FCz presents the ErrP main peaks (N1, P1, N2, P2) 
to visualize the signal distribution in the different electrodes 
and brain regions.  

Additionally, a statistical rank-sum Wilcoxon test with a 
confidence of 5% is performed to compare the global average 
signal in FP with the one in TP events. Moreover, the statistic 
test is carried out comparing the FP and TP signals of each 
subject and, also comparing the ErrP signals of between 
subjects. Thus, it is possible to explore variances in the ErrP 
signals of the participants. 

 

Figure 1. The two events that are analyzed in the study are shown. In FP 
Events (up), exoskeleton wrongly activates within relax window. In TP 
Events (down), exoskeleton activates successfully for the first time 
within motor imagery window by means of a subject imagined command.  
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E. Subjects 

Five subjects participated in the study with ages between 
24 and 27 years old (25.6±1.5). None of the subjects reported 
any diseases and was not under medical treatment. All the 
subjects gave a written informed consent to participate 
according to Helsinki declaration. The study was approved by 
the Responsible Research Office of Miguel Hernández 
University of Elche (Spain) (DIS.JAP.03.18). 

 

III. RESULTS 

Figure 2 summarizes the results of the ErrP analysis in the 
time, frequency, and time-frequency domain. Figure 2.A 
exposes the global average ErrP signal of all subjects for FP 
(red) and TP (green) classes. FP class average presents a 
prominent negative peak (N1) at 240ms after the exoskeleton 
starts, followed by a positive peak (P1) at 370ms, another 
negative peak (N2) at 630ms followed by another positive 
peak (P2) at 720ms. This error signal seems quite different 
from the success signal, which stays constant after the 
feedback. The statistical test of Wilcoxon confirms that there 
is evidence of a significant difference between the ErrP in FP 
and TP classes with a confidence of p < 5%. Moreover, the 
difference between the classes is more obvious in the scalp 
topographical maps (Figure 2.C). In these graphics, FP class 
presents negative (N1) and positive (P1) potentials in the 
frontocentral regions after the feedback, while the TP class 
remains stable until N2, where both classes look quite similar 
with a potential decreasing in the central area. In the last peak 

(P2) both classes are completely different again, while FP class 
has a potential increase in the ACC region, TP class presents a 
diminution of the potential at this location. 

Parallelly, the comparative between the ErrP of each 
subject (Figure 2.B) indicates that subjects S1 and S5 are 
similar in shape and, they are the main contributors to N1 in 
the global average ErrP signal. Whereas the ErrP of subject S2 
presents a similar shape with the previous subjects, but with a 
certain delay. However, subjects S3 and S4 ErrP differs not 
only in time, but also in the shape with the rest. The ErrP of 
these two participants is the cause of the second negative 
deflection N2 at 630ms after the exoskeleton movement in the 
average signal of Figure 2.A. The statistical test between 
subjects indicates that subjects S1, S2 and S5 are statistically 
equal, but there is also evidence that they are significantly 
different from subjects S3 and S4 with a confidence of p < 5%. 
Furthermore, another statistical test confirmed that subjects S3 
and S4 are not statistically different.  

Conversely, in the frequency and time-frequency analysis 
(Figure 2.D) the dissimilarity between FP and TP classes is not 
as clear as it is in the time domain. The power distribution is 
concentrated in the first second right after the beginning of the 
gait throughout the frequency axis. However, the power is 
more pronounced at 500-600ms between 3-5 Hz for FP class. 
Another difference found is the fact that the higher power 
spectrum values (orange and red) are wider for FP class, due 
to the time differences between both classes. Precisely, TP 
class values increase around 400ms after the feedback, instead 
of earlier in time like FP class does around 200ms. 

 

 

Figure 2. Compares signals of electrode FCz in FP and TP events. A is a comparative between the global average signal of electrode FCz in FP and 
TP events in time domain. B shows the signals average of each subject of electrode FCz in FP (top) and TP (down) events. C is the topographical 
representation of the electrodes for FP and TP events at the peak points in the ErrP signal. D represents frequency power distribution in time-
frequency domain for FP (left) and TP (right) events.  
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IV. DISCUSSION 

In the present research, the appearance of ErrP during the 
performance of a MI-BMI to control the gait with an 
exoskeleton is studied. Particularly, the ErrP should only 
emerge in those cases the exoskeleton moves when it should 
remain static. The peculiarity of this investigation is the fact 
that the subjects are on their feet and moving during the trials, 
whereas in general this potential has been detected during relax 
tasks in the literature [7][8][9][10][11][12][14]. This scenario 
supposes a relevant challenge because of the number of mixed 
potentials at the time. For this reason, the EEG signals are 
filtered in low frequencies (delta and theta bands) [15], instead 
of including alfa and beta bands, with the aim of avoiding as 
movement noise as it is possible and being able to differentiate 
TP and FP classes more clearly. Another characteristic of this 
research is the proprioceptive feedback carried out by the 
exoskeleton moving the legs that is used to generate the ErrP. 
There is only one similar case in the literature using an upper-
limb exoskeleton to elicit ErrP and it did not find any evidence 
of the presence of the desired potential [13]. Nevertheless, the 
present study has shown the presence of it. 

A significative difference between FP and TP classes have 
been evidenced statistically. However, these dissimilarities are 
more perceptible on the time domain rather than the frequency 
domain. In the time domain, the shape of the ErrP is composed 
of a pronounced negative peak (N1) at 240ms after the 
feedback, followed by a small positive peak (P1) at 370ms, 
another negative peak (N2) at 630ms once again followed by 
a small positive peak (P2) at 720ms. This global average signal 
looks like the grand average ErrP generated because of visuo-
tactile feedback that was reported in [14]. Nevertheless, this 
signal has similarity in time, but not in shape at all, with the 
interaction ErrP already described in [9], probably because of 
the lag in the ErrP occurrence between subjects. Subjects S1 
and S5 ErrP is shown around 200ms after the feedback, while 
subjects S2, S3 and S4 ErrP signals take more time to show. 
Statistical tests have demonstrated that subjects S1, S2 and S5 
ErrPs are similar between them and different of subjects S3 
and S4 ErrP. The ErrP of these two subjects is also similar to 
them. To sum up, although the significative difference 
between FP and TP classes is such a promising result, the 
number of samples analyzed is not large enough for 
generalization due to the variance of ErrP across the subjects. 

Future research will study the use of the ErrP to design a 
self-tuned BMI to correct the apparition of FPs, avoiding the 
generation of wrong commands. This would mean that the 
ErrP would not be generated by the feedback of the 
exoskeleton movement but with a warning, as the exoskeleton 
activation has to be prevented by the system. 
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