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Preface

The present book includes extended and revised versions of a set of selected papers
from the 20th International Conference on Informatics in Control, Automation and
Robotics (ICINCO 2023), held in Rome, Italy, from 13 to 15 November 2023.

The purpose of ICINCO is to bring together researchers, engineers and prac-
titioners interested in the application of informatics to Control, Automation and
Robotics. Four tracks covered Intelligent Control Systems, Optimization, Robotics,
Automation, Signal Processing, Sensors, Systems Modelling and Control, and Indus-
trial Informatics. Informatics applications are pervasive in many areas of Control,
Automation and Robotics; this conference intends to emphasize this connection.

ICINCO 2023 received 180 paper submissions from 47 countries, of which 10%
were included in this book.

The papers were selected by the event chairs and their selection was based on a
number of criteria that included the classifications and comments provided by the
program committee members, the session chairs’ assessment and also the program
chairs’ global view of all papers included in the technical program. The authors of
selected papers were then invited to submit revised and extended versions of their
papers having at least 30% innovative material.

This collection of papers provides valuable insights into the latest breakthroughs
in Informatics applied to Control, Automation and Robotics. The papers address a
wide range of trends and challenges, showcasing advancements in areas like: System
Modelling and Optimization, Robot Path Planning and Motion Control, Control
Systems, Navigation and sensing, Autonomous Agents, and Engineering Applica-
tions to Autonomous Ground and Underwater Vehicles, Process Control, Resource
Allocation, and others.

We would like to thank all the authors for their contributions and also the reviewers
who have helped ensuring the quality of this publication.

Milan, Italy Giuseppina Gini
Eindhoven, The Netherlands Henk Nijmeijer
Dearborn, USA Dimitar Filev

November 2023
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Sparse Convolutional 3D Neural )
Networks for the Assessment of e
Environment Traversability

Antonio Santo®, Arturo Gil®, David Valiente®, Alvaro Martinez®,
and Enrique Heredia

Abstract Ensuring accurate assessment of the surrounding environment is crucial
for the efficient operation of autonomous mobile robots, especially when faced with
the complexities of unfamiliar and natural terrain that lacks a predefined structure. In
this context, traversability assessment is presented as a fundamental component of
the autonomous navigation. This research introduces a systematic methodology that
employs a LiDAR sensor to capture detailed 3D point clouds, thus facilitating the
analysis of traversability regions on both conventional roads and natural scenarios.
The proposed approach integrates a well-structured sparse encoder-decoder config-
uration with rotation invariant features. This configuration is meticulously designed
to replicate the input data by associating the acquired traversability features to each
individual point in the 3D point cloud. Experimental results confirm the robustness
and effectiveness of our method, especially in outdoor environments. Notably, our
approach outperforms existing methodologies, making a significant contribution to
the ongoing progress in the field of autonomous robotic navigation.

Keywords Autonomous mobile robots * Artificial intelligence + Neural networks
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1 Introduction

The answer to the question “Where should I walk?”, as stated in [36], implicitly
includes a global understanding of the robot’s environment. This concept, which is
considered a natural ability for humans, should be extended to autonomous mobile
robots. The application of this innate understanding will greatly enhance the capabil-
ities of autonomous mobile robots and enable them to operate successfully in a wide
range of applications, such as exploration of unfamiliar environments, autonomous
driving, and search and rescue missions.

While traversability estimation has been recognised as a crucial capability for
mobile robots, their historical focus has been simply on the task of obstacle avoidance.
In this context, the robot’s primary goal is to avoid any physical contact with its
environment and to navigate exclusively in open spaces, taking measurements from
proximity sensors. This emphasis on traversability estimation made it a sine qua non
of a successful path planner.

To date, path planning algorithms have been classified according to two main prin-
ciples: (a) the definition and representation of spatial information; (b) the delimitation
of traversable regions on the map. Regarding the former, various spatial represen-
tations have emerged, such as 2D occupancy maps [20], elevation maps (DEMs)
[18] and voxel-based 3D occupancy maps [11, 13, 21]. In these representations, the
determination of whether a particular space is free or occupied is made by a prob-
abilistic value, which affords the efficient navigation of these spaces by a robotic
entity, taking into account the inherent physical parameters of the robotic system.

Nevertheless, the classical approaches mentioned earlier exhibit limited robust-
ness when applied across diverse environmental contexts [39], since the definition of
self-driving relies on the specific properties of each environment. In structured envi-
ronments, the geometries constituting traversable spaces are typically characterized
by homogeneity and uniformity. In contrast, in natural environments, this concept
becomes inherently more tricky due to the absence of human supervision.

The combination of various factors, along with the advancement of sensors in
terms of cost, resolution, and weight, is leading to reconsideration of how we assess
traversability. With the rise of supervised learning in recent years, there’s a growing
shift towards applying this new approach to estimate traversability. Specifically, using
neural networks alongside LiDAR sensors has gained popularity because LiDAR is
not affected by different lighting conditions, unlike others optical sensors such as
cameras.

This paper introduces a novel contribution to traversability estimation in complex
terrains through the application of deep learning techniques, specifically segmenta-
tion methods of scenes described by 3D point clouds. The subsequent sections are
structured as follows: Section 2 provides a brief overview of significant approaches
in the realm of Deep Learning for traversability estimation. Moving forward, Sect. 3
elaborates on the fundamental concepts that form the basis of our proposed method,
providing a detailed explanation. The paper then proceeds, in Sect.4, to present a
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various experimental results covering different types of environments used during the
training process. Finally, in Sect. 5, the main conclusions drawn from this innovative
approach are summarized.

2 Related Work

By its own fuzzy definition, the estimation of traversability has been approached from
different perspectives over the years; from the study of road characteristics [29], to
the philosophical and psychological study of what it means to be able to traverse a
space [30]. However, the most common context in which this concept has a strong
influence is autonomous driving.

In this context, research on traversability estimation methods involves both algo-
rithms commonly employed in the conventional machine learning (ML) domain and
more current procedures such as neural networks.

In conventional ML, algorithms typically operate on alternative data represen-
tations, emphasizing features identified as discriminative for the specific problem.
Thus, [2] employ stereo image pairs as input data to perform a traversability study
in challenging environments by extracting geometric and appearance-based features
and then classifying them using an SVM algorithm defined in [32], concluding that
features including normal vectors are the most suitable for the task. In [16] the authors
propose the distinction of three classes, soil, vegetation or object, by means of the
extraction of discriminant features based on points and their neighborhoods, since
the information provided by an isolated point is not sufficiently reliable to draw
conclusions. The proposal incorporates an adaptive neighborhood radius to address
the inherent challenge of point density loss relative to the distance from the sensor,
a common property of LiDAR sensors. This adaptive approach ensures that high
resolutions are maintained at shorter distances, while simultaneously mitigating the
impact of noisy features at longer distances. Furthering this same concept of pre-
venting the effect of data sparsity, in [28], given a sampled 3D point cloud, authors
represent the environment as a 2.5D elevation map and employ Bayesian Generalized
Kernel Inference defined by [33] to obtain a dense elevation map and subsequently
perform the classification of the terrain into traversable and non-traversable. In [19],
the authors introduced the Random Forest classifier optimized by a genetic algorithm
for the classification of ground types. This approach succeeds in establishing a set of
optimal initial parameters by applying the methodology used in genetic algorithms,
thus solving the traditional problem of Random Forest classifiers.

In recent years, driven by recent technological advances that facilitate their train-
ing and deployment in real-world applications, deep learning techniques appear as a
possible candidate to solve this task. The study of three-dimensional spaces, defined
by unstructured data such as LiDAR point clouds or images, which often involve
nonlinear relationships between variables, is processed by this type of algorithms.
Neural networks intrinsically outperform conventional methods in modeling these
nonlinear associations and in their ability to learn complex patterns [9, 17].
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In particular, LiDAR sensors, which output the spatial coordinates of a set of
3D points representing the first reflection produced by objects illuminated with a
collimated laser beam, have promoted the development of efficient approaches for
handling three-dimensional data. In [34], for example, point clouds undergo trans-
formation into multichannel images that capture the depth, height, and reflectivity
of each point. These images are then processed through dense convolutional layers
to discern traversable areas. Another strategy, as proposed [24], involves spherical
projections of point clouds, followed by the application of 2D convolutional layers
for semantic segmentation.

In contrast, in [35] is introduced a different solution employing octal trees, or
octrees, to reduce the complexity of the space described by point clouds. This method
restricts dense convolution operations to occupied octrees, speeding up computa-
tional demands. In [6] is extended this concept by computing space traversability
using a convolution operation generalization to n-dimensions and incorporating a
sparse encoder-decoder setup [4].

In addition, methods have emerged that combine information from various sen-
sors. In [31] authors take a sequence of RGB images and depth images to predict a
local traversability map. The depth information is fed directly into the latent space of
the neural network after processing the image sequence and fused with the descriptors
in subsequent convolutional blocks, creating a map.

Some other methods have also been developed that combine LiDAR information
with image data. The authors of [10] propose a road detection method by merging
color information from a camera with range information obtained via LiDAR. This
involves projecting point clouds onto corresponding images, which then feed into a
2D convolutional neural network. In [5], authors fuse features extracted from both
data types using different neural network architectures. In [3] is suggested a pro-
gressive adaptation of LiDAR representation to enhance compatibility with visual
information from cameras. This transformation involves converting the point cloud
into an alternative representation, emphasizing the distinguishability of roads. So
far, all the aforementioned works that fused data from different sensors evaluate
traversability in the two-dimensional domain. However, works such as [22], relies
on 2D convolutional networks to predict the labels in the image, but carry out the
reconversion to the point cloud, performing the relevant reprojection of these labels
inferred in the image.

3 Proposed Approach

3.1 Sparse Convolution

Sparse convolution, a fundamental technique in deep learning, has emerged as a
valuable approach to optimize computational efficiency in the analysis of sparse
data, particularly frequent in three-dimensional environments such as LiDAR point
clouds. Unlike traditional dense convolution operations, which consider each input
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pixel, sparse convolution strategically exploits the sparsity inherent in the data. This
is achieved by employing sparse filters or processing only non-zero input values,
which substantially reduces the computational burden. By focusing only on relevant
features, sparse convolution improves the scalability and efficiency of convolutional
neural networks (CNNs) in scenarios where computational resources are a critical
consideration.

This is especially advantageous in applications such as robotics or autonomous
systems, where the input data often contains sparse spatial information. The increased
efficiency of sparse convolution not only speeds up model training and inference, but
also makes it suitable for resource-constrained environments, a compelling advance
in the field of deep learning methodologies tailored to sparse data representations.

In this way, the application of such a discrete operation on any point cloud, B,
must be defined in the following way:

— Coordinates Tensor. This is a data element consisting of the coordinates of
the points that belong to any point cloud B = {(p;, f;, i), i =1, ..., N}. This
expression incorporates an integer part function for space discretization. The points
are modified according to a scaling factor, v, that determines the level of space
discretization. Furthermore, it also incorporates the position of the point clouds
within the batch, b;, in order to know what point corresponds to which cloud. As
a result, the tensor T¢ is formally defined as:

by p
Te=|: : )
by pu
with p; = floor(p;) = floor (ﬁ, &, ﬁ)
vov v

Consequently, m points from the point cloud could be discretized within the same
voxel p;. Taking them into account as a single point with a different features
vectors associated. In order to resolve the different features within the same voxel,
the expression of the following equation was formulated Tg.

— Feature Tensor. Ty stores and averages the features fi corresponding to the m
points that occupy the same space, i.e., belong to the same voxel denoted as p;.
This process involves applying the scale factor v and the integer part function.

/i

Tr = 2

fu
1 &
where f; = Zfi
i=I

Vfi€p;
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This kind of pre-processing implies the elimination of spaces where there is no spatial
information, i.e. there are no points detected by the LIDAR. The input data is carried
out using the Minkowski Engine library [4].!

3.2 Problem Statement

The task is to evaluate traversability, treating it as solving a semantic segmentation
puzzle. A point cloud B is consisting of points defined by Cartesian coordinates,
p; = (x;, ¥, zi), feature vectors, f; € R%  and each point has a traversability label,
l;, indicating whether it is traversable (1) or non-traversable (0). The problem is
developed as a semantic segmentation task, where the objective is to employ a deep
learning model denoted by the mapping function f : R3*% — [0, 1], considering
both spatial coordinates and associated features, to infer the probability of traversabil-
ity of each point. Through training on a labeled dataset {(p;, f,), /;}, the model is
responsible for capturing very precise patterns in the point cloud data, allowing it to
accurately predict the traversability status of each point.

3.3 Sparse 3D Neural Networks

The methodology for estimating traversability presented in this paper is based on a
neural network with an encoder-decoder architecture, whose implementation fuses a
sparse version of the Resnet20 [12] neural network and the U-net architecture [26].
As a result, the network can be split into three different parts:

— Encoder. The encoder component in our neural network is designed to extract
high-level features and representations from the input data, orchestrating a com-
pression of information into a multidimensional feature space. Structured with
multiple convolutional layers and pooling operations, this approach gradually
decreases the spatial dimensions while enriching the receptive field. Each convolu-
tional layer serves as a discerning observer, capturing diverse levels of abstraction
within the input. The downsampling process, facilitated by pooling operations,
extends the network’s contextual reach, fostering a heightened understanding of
complex patterns. In this work, the input data used as feature vector is defined as:
fi = (n;, Z) where n, is the Z coordinate of the normal unit vector N; and the
normalized coordinate Z € [0, 1]. This feature vector includes a natural invariance
to rotation to the point cloud along the vertical axis.

— Decoder. It is a fundamental component of the neural network, plays a key role
in the reconstruction process. Its main task is to translate the abstract feature
representations obtained from the encoder into a detailed and meaningful output.

! https://github.com/NVIDIA/MinkowskiEngine.
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It is composed of upsampling layers that restore spatial dimensions, convolutional
layers that refine and combine features, and an output layer modified according
to the task. In essence, the decoder is the final step of the neural network and
transforms the encoded features into a tangible, task-specific output.

— Residual Block. As the name suggests, these are convolutional layers that attempt
to learn the residual between the input data and its output, understanding the
residual as the error or difference between the output and the input. It has been
observed that it is easier to learn the residual than just the input. As an added
benefit, the network can now learn the identity function simply by setting the
residual to zero.

The flow of the point cloud through the neural network shown in Fig. 1 is depicted in
a top-down manner on the left-hand side of the image. The point cloud is processed
by convolutional layers followed by residual blocks as shown in Fig.2. Once the
encoder finishes, the scheme corresponding to the right part of the image continues
in an ascending way, performing the transposed convolutions to recover the initial
dimensionality of the starting data and the layers and residual blocks that try to
refine the features. In addition, the famous skip connections which are made within
the residual block, are extrapolated along the architecture to recover fine details and
improve the accuracy of the reconstruction.

e
|

Conv. sparse Conv. sparse Conv rasp sparse

Batch norm Batch nom

Batch nom

Relu Conv.sparse N 20
Batch norm

Fig. 1 Encoder-decoder configuration employed, MinkUnet [4, 27]
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Fig. 2 Residual x
convolutional block from
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1x1x1 Conv
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4 Experimental Results

All the experiments of this method have been tested on an Intel Core™ i9-10900X,
20 x 3.70GHz, 128GB RAM platform with NVIDIA RTX 3090 with 24GB VRAM
graphic card. The neural network model is implemented using the Minkowski
Engine [4], Pytorch and it can be easily integrated into ROS NOETIC. To eval-
uate the performance of the proposed approach, the following datasets have been
employed.

1.

SemanticKITTI [1]: This dataset is based on the KITTI Vision Benchmark [8],
integrating odometry positions and point clouds from various routes through the
city of Karlsruhe, Germany, captured by the Velodyne HDL-64E sensor model.
It presents a diverse set of scenarios, comprising 22 urban sequences navigating
through highly structured environments. These scenarios feature dynamic ele-
ments such as moving vehicles and pedestrians, as well as natural elements such
as grassy areas, parks and trees. Ten of the 22 sequences are labeled for each
point, addressing semantic segmentation challenges within the dataset.
Rellis-3D [14]: It is a multimodal dataset collected in an off-road environment
containing annotations for 13,556 LiDAR scans and 6,235 images. The data was
collected on the Rellis Campus of Texas A&M University and presents challenges
to existing algorithms related to class imbalance and environmental topography.
Experimental results indicate that RELLIS-3D poses challenges to algorithms
specifically designed for semantic segmentation in urban environments.
SemanticUSL [15]: 1t is a dataset for domain adaptation for LIDAR point cloud
semantic segmentation. It contains 1200 point clouds labeled under the same
format as the SemanticKITTI including road scenes, pedestrian streets and natural
environments.
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Original class Binary label Label
Void/Outlier Eliminated N/A
Asphalt Traversable 1
Barrier Non-traversable 0
Building Non-traversable 0
Bush Non-traversable 0
Concrete Traversable 1
Dirt Traversable 1
Fence Non-traversable 0
Grass Traversable 1
Log Non-traversable 0
Mud Traversable 1
Parking Non-traversable 0
Person Non-traversable 0
Pole Non-traversable 0
Puddle Traversable 1
Road Non-traversable 0
Rubble Non-traversable 0
Sidewalk Traversable 1
Sky Eliminated N/A
Traffic Sign Non-traversable 0
Tree Non-traversable 0
Vehicles Non-traversable 0
Water Traversable 1
Other Object Non-traversable 0

All of the above databases contain approximately 24 different labels to which a point
can belong. These labels are shown in Table 1, with their corresponding conversion,
which has been established to be correct under human supervision for the particular
traversability problem. Thus, Figures 3, 4, 5 show how the original databases are

modified.

4.1 Implementation Details

The training of the model has been improved from the previous version presented
in [27]. The differences in optimization strategies, shown in Table 2, contribute to
distinct training behaviors and outcomes between the two setups. In the following
sections, the results of both configurations will be compared.
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Fig. 3 Point cloud from
SemanticKITTI [27]

Fig. 4 Point cloud from
Rellis-3D [27]

Fig. 5 Point cloud from
Semantic-USL [27]
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Table 2 Training parameters

Parameters Basic configuration Refined
Framework Minkowski engine Minkowski engine
Optimizer SGD AdamW
Scheduler None Cosine

Learning rate le-2 le-2

Weight decay None Se-2

Batch size 5 8

Criteria BCELoss BCELoss

Epochs 14 9

Rellis-3D Sequence 1, 2, 3 Sequence 1,2, 3
Sem. KITTI Sequence 0, 1, 2, 3 Sequence 0, 1,2, 3

On the other hand, the training stage of the aforementioned datasets has been
carried out with the aim of achieving a multimodal model that performs well in
all types of environments without making distinctions between urban and natural
environments. Therefore, a balanced number of training examples has been pro-
vided to include, equally, both environments and balanced classes. The use of the
SemanticUSL database is limited exclusively to testing processes to demonstrate the
generalization capability of the network in environments never seen during training.

4.2 Distance Effect

It can be observed when analysing the interaction of the LiDAR planes with the
surrounding environment that the distance, d, between consecutive LiDAR planes
and the ground plane is dependent on the angle formed by the intersection of the two
mentioned planes, «, and the height, /, at which the LiDAR is placed. Thus, at very
far distances, the different laser planes are far apart. This effect is easy to appreciate
in Fig. 6.

Consequently, the representation of some regions of the robot’s environment is
highly uncertain, since as mentioned above the very sparse nature of LIDAR technol-
ogy results in a very low density over long distances. Therefore, as a solution, it was
proposed to consider only the points that are within a radius of 45 meters from the
sensor and, all the evaluations have been performed under this condition. Figures 7
and 8 are in line with the idea described above, and show how metrics such as accu-
racy and recall of a model trained with raw point clouds do not contribute anything
once the distance exceeds 45/50 m, and the metric becomes noisy and inaccurate.
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Fig. 6 LiDAR planes interactions with the ground plane
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4.3 Quantitative Evaluation

In regard to the performance of a classification model, the following figures rep-
resent the precision and recall curves obtained with the test set data. Specifically,
Figures 9 and 11 present the results in urban and structured environments for the
SemanticKITTI and USL datasets. In both figures, the precision-recall curve is very
close to the maximum (upper right corner). Working levels are achieved at which it
does not seem necessary to select a lower recall level to increase precision. Hence,
it can be assumed that the trained models consistently learn the traversable and non-
traversable zones, achieving accuracy and recall values exceeding 95% for specific
operating points. Furthermore, it is proved that how highly structured spaces with a
uniform point distribution, as we might have deduced, do not have much relevance
for the discretisation of the space (size of voxel, v, or scale parameter).

On the other hand, Fig. 10 presents the results when the method is applied to
an unstructured environment. In this context, the results are not as satisfactory. We
can see that there are significant differences in performance between the different
levels of discretisation, although the explanation for this does not seem to go beyond
randomness and the distribution of the points. We can conclude that in this type of
environment it is more complex to infer what can be traversed with certainty.

In terms of numerical metrics, Table 3 shows in detail the performance metrics
obtained as a function of the scaling factor mentioned above. The result are obtained
from the model presented in Fig. 1, with different training processes. One of them
corresponds to the method presented in [27] and the left part of the table is about the
refined training described in Sect. 4.1. It can be seen how fine-tuned training improves
the results in most cases where a small space discretisation is applied, although the
metrics are quite similar.

Fig. 9 Precision-recall 1.0
curve on the SemanticKITTI
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In addition, a comparison with methods used in the field of semantic segmentation
is presented in Table 4. The comparison has been done by evaluating these methods
on SemanticKitti labelled data sequences.

To conclude the experiments, a study of the descriptors extracted by the network
has been carried out in relation to the rotation of the input data in the Euler yaw, 1,
angle. Figure 12a, b indicate the changes in terms of precision and recall metrics when
rotating a point cloud from 0 to 360 degrees. An ideal graph should show a completely
horizontal line. However, due to the discrete nature of space during rotation, the
results show slight, albeit minimal, variations. The metrics can be considered to be
largely invariant to rotation.

Fig. 10 Precision-recall
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Table 3 Results obtained in inference
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Basic Fine-tuned
Dataset Voxel F1 Acc MIOU F1 Acc MIOU
Rellis-3D | 0.1 0.72 0.83 0.57 0.74 0.82 0.60
Kitti 0.97 0.97 0.95 0.96 0.96 0.93
USL 0.93 0.93 0.87 0.92 0.94 0.85
Rellis-3D | 0.2 0.79 0.85 0.66 0.79 0.86 0.66
Kitti 0.97 0.97 0.94 0.97 0.98 0.95
USL 0.93 0.93 0.87 0.94 0.95 0.90
Rellis-3D | 0.35 0.79 0.86 0.66 0.75 0.84 0.60
Kitti 0.97 0.97 0.94 0.96 0,97 0.93
USL 0.95 0.95 0.91 0.94 0.94 0.88
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(b) Recall metric in relation to rotation.

Table 4 Results of different approaches on SemanticKITTI sequences 0—10. With [1]: [25], [2]:
[371, [31: [38], [4]: [23], [5]: [7]

Method Accuracy F1 mloU
[1] 93.4 93.0 87.4
[2] 90.1 89.4 81.4
[3] 92.3 91.9 85.5
[4] 90.0 93.0 87.4
[5] 89.2 91.4 84.9
Previous work 96.6 95.9 92.3
Ours 96.8 96.1 92.7
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4.4 Qualitative Evaluation

In Fig. 13, the outcomes are visually depicted, presenting the components of the
confusion matrix in distinct colors: true positives (green), true negatives (purple),
false positives (red), and false negatives (orange). Figure 13a, ¢, e showcase accu-
rately labeled point clouds from different evaluated datasets. In contrast, Fig. 13b,
d, f illustrate the neural network inferences, highlighting errors in orange and red,
and successful predictions in green and purple, following the previously described
color scheme. False positives often manifest in highly unstructured regions, while
false negatives tend to appear near edges between adjacent geometries.

It is crucial to emphasize that false positives, where the network misclassifies
non-traversable areas as traversable, pose significant risks in robotic navigation tasks.
Additionally, the method’s rotation invariance is evident in Fig. 14, displaying neural
network inferences for the same point cloud rotated at 45 and 90 degrees in Fig. 14b
and c, respectively.

5 Conclusion

In this paper have been presented a novel approach for traversability estimation
in point clouds using a sparse neural network with an encoder-decoder configu-
ration. The main aspects of the paper include the analysis of the impact of voxel
size, the study of rotation invariance within the same environment and the presen-
tation of results highlighting the strengths and limitations of the method in var-
ious environmental scenarios. The results obtained with the presented approach
demonstrate an outstanding performance in the assessment of the traversability in
semi-structured environments (SemanticKITTI, SemanticUSL). Nevertheless, the
outcomes achieved in highly unstructured scenarios demonstrated lower results.
The extension of the presented approach may benefit for the inclusion of visual
information in combination with LiDAR data in order to improve the robustness
and consistency, overall in unstructured environments. It is intended to evaluate the
performance of the neural network on a variety of robots equipped with various
sensors. Furthermore, the future challenge of addressing spatial traversability under
a continuous paradigm, where evaluations go beyond binary results and take into
account the physical attributes of the robot interacting with the terrain, is identified. In
all, the paper lays the foundation for a promising approach to traversability estimation
in point clouds and provides a clear roadmap for future improvements and extensions.

Acknowledgements This work has been funded by the ValgrAl Foundation, Valencian Graduate
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(b) Comparison of inference and ground truth cloud.

(f) USL inference.

Fig. 13 Visual representation of the inference results of the network. Green: true positives (TP).
Purple: true negatives (TN). Red: false positives (FP). Orange: false negatives (FN)
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(c) Point cloud rotated 90 degrees.

14 Inference invariant to rotation
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