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Preface 

The present book includes extended and revised versions of a set of selected papers 
from the 20th International Conference on Informatics in Control, Automation and 
Robotics (ICINCO 2023), held in Rome, Italy, from 13 to 15 November 2023. 

The purpose of ICINCO is to bring together researchers, engineers and prac-
titioners interested in the application of informatics to Control, Automation and 
Robotics. Four tracks covered Intelligent Control Systems, Optimization, Robotics, 
Automation, Signal Processing, Sensors, Systems Modelling and Control, and Indus-
trial Informatics. Informatics applications are pervasive in many areas of Control, 
Automation and Robotics; this conference intends to emphasize this connection. 

ICINCO 2023 received 180 paper submissions from 47 countries, of which 10% 
were included in this book. 

The papers were selected by the event chairs and their selection was based on a 
number of criteria that included the classifications and comments provided by the 
program committee members, the session chairs’ assessment and also the program 
chairs’ global view of all papers included in the technical program. The authors of 
selected papers were then invited to submit revised and extended versions of their 
papers having at least 30% innovative material. 

This collection of papers provides valuable insights into the latest breakthroughs 
in Informatics applied to Control, Automation and Robotics. The papers address a 
wide range of trends and challenges, showcasing advancements in areas like: System 
Modelling and Optimization, Robot Path Planning and Motion Control, Control 
Systems, Navigation and sensing, Autonomous Agents, and Engineering Applica-
tions to Autonomous Ground and Underwater Vehicles, Process Control, Resource 
Allocation, and others. 

We would like to thank all the authors for their contributions and also the reviewers 
who have helped ensuring the quality of this publication. 

Milan, Italy 
Eindhoven, The Netherlands 
Dearborn, USA 
November 2023 

Giuseppina Gini 
Henk Nijmeijer 
Dimitar Filev
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Sparse Convolutional 3D Neural 
Networks for the Assessment of 
Environment Traversability 

Antonio Santo , Arturo Gil , David Valiente , Álvaro Martínez , 
and Enrique Heredia 

Abstract Ensuring accurate assessment of the surrounding environment is crucial 
for the efficient operation of autonomous mobile robots, especially when faced with 
the complexities of unfamiliar and natural terrain that lacks a predefined structure. In 
this context, traversability assessment is presented as a fundamental component of 
the autonomous navigation. This research introduces a systematic methodology that 
employs a LiDAR sensor to capture detailed 3D point clouds, thus facilitating the 
analysis of traversability regions on both conventional roads and natural scenarios. 
The proposed approach integrates a well-structured sparse encoder-decoder config-
uration with rotation invariant features. This configuration is meticulously designed 
to replicate the input data by associating the acquired traversability features to each 
individual point in the 3D point cloud. Experimental results confirm the robustness 
and effectiveness of our method, especially in outdoor environments. Notably, our 
approach outperforms existing methodologies, making a significant contribution to 
the ongoing progress in the field of autonomous robotic navigation. 

Keywords Autonomous mobile robots · Artificial intelligence · Neural networks 
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1 Introduction 

The answer to the question “Where should I walk?”, as stated in [ 36], implicitly 
includes a global understanding of the robot’s environment. This concept, which is 
considered a natural ability for humans, should be extended to autonomous mobile 
robots. The application of this innate understanding will greatly enhance the capabil-
ities of autonomous mobile robots and enable them to operate successfully in a wide 
range of applications, such as exploration of unfamiliar environments, autonomous 
driving, and search and rescue missions. 

While traversability estimation has been recognised as a crucial capability for 
mobile robots, their historical focus has been simply on the task of obstacle avoidance. 
In this context, the robot’s primary goal is to avoid any physical contact with its 
environment and to navigate exclusively in open spaces, taking measurements from 
proximity sensors. This emphasis on traversability estimation made it a sine qua non 
of a successful path planner. 

To date, path planning algorithms have been classified according to two main prin-
ciples: (a) the definition and representation of spatial information; (b) the delimitation 
of traversable regions on the map. Regarding the former, various spatial represen-
tations have emerged, such as 2D occupancy maps [ 20], elevation maps (DEMs) 
[ 18] and voxel-based 3D occupancy maps [ 11, 13, 21]. In these representations, the 
determination of whether a particular space is free or occupied is made by a prob-
abilistic value, which affords the efficient navigation of these spaces by a robotic 
entity, taking into account the inherent physical parameters of the robotic system. 

Nevertheless, the classical approaches mentioned earlier exhibit limited robust-
ness when applied across diverse environmental contexts [ 39], since the definition of 
self-driving relies on the specific properties of each environment. In structured envi-
ronments, the geometries constituting traversable spaces are typically characterized 
by homogeneity and uniformity. In contrast, in natural environments, this concept 
becomes inherently more tricky due to the absence of human supervision. 

The combination of various factors, along with the advancement of sensors in 
terms of cost, resolution, and weight, is leading to reconsideration of how we assess 
traversability. With the rise of supervised learning in recent years, there’s a growing 
shift towards applying this new approach to estimate traversability. Specifically, using 
neural networks alongside LiDAR sensors has gained popularity because LiDAR is 
not affected by different lighting conditions, unlike others optical sensors such as 
cameras. 

This paper introduces a novel contribution to traversability estimation in complex 
terrains through the application of deep learning techniques, specifically segmenta-
tion methods of scenes described by 3D point clouds. The subsequent sections are 
structured as follows: Section 2 provides a brief overview of significant approaches 
in the realm of Deep Learning for traversability estimation. Moving forward, Sect. 3 
elaborates on the fundamental concepts that form the basis of our proposed method, 
providing a detailed explanation. The paper then proceeds, in Sect. 4, to present a
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various experimental results covering different types of environments used during the 
training process. Finally, in Sect. 5, the main conclusions drawn from this innovative 
approach are summarized. 

2 Related Work 

By its own fuzzy definition, the estimation of traversability has been approached from 
different perspectives over the years; from the study of road characteristics [ 29], to 
the philosophical and psychological study of what it means to be able to traverse a 
space [ 30]. However, the most common context in which this concept has a strong 
influence is autonomous driving. 

In this context, research on traversability estimation methods involves both algo-
rithms commonly employed in the conventional machine learning (ML) domain and 
more current procedures such as neural networks. 

In conventional ML, algorithms typically operate on alternative data represen-
tations, emphasizing features identified as discriminative for the specific problem. 
Thus, [ 2] employ stereo image pairs as input data to perform a traversability study 
in challenging environments by extracting geometric and appearance-based features 
and then classifying them using an SVM algorithm defined in [ 32], concluding that 
features including normal vectors are the most suitable for the task. In [16] the authors 
propose the distinction of three classes, soil, vegetation or object, by means of the 
extraction of discriminant features based on points and their neighborhoods, since 
the information provided by an isolated point is not sufficiently reliable to draw 
conclusions. The proposal incorporates an adaptive neighborhood radius to address 
the inherent challenge of point density loss relative to the distance from the sensor, 
a common property of LiDAR sensors. This adaptive approach ensures that high 
resolutions are maintained at shorter distances, while simultaneously mitigating the 
impact of noisy features at longer distances. Furthering this same concept of pre-
venting the effect of data sparsity, in [ 28], given a sampled 3D point cloud, authors 
represent the environment as a 2.5D elevation map and employ Bayesian Generalized 
Kernel Inference defined by [ 33] to obtain a dense elevation map and subsequently 
perform the classification of the terrain into traversable and non-traversable. In [ 19], 
the authors introduced the Random Forest classifier optimized by a genetic algorithm 
for the classification of ground types. This approach succeeds in establishing a set of 
optimal initial parameters by applying the methodology used in genetic algorithms, 
thus solving the traditional problem of Random Forest classifiers. 

In recent years, driven by recent technological advances that facilitate their train-
ing and deployment in real-world applications, deep learning techniques appear as a 
possible candidate to solve this task. The study of three-dimensional spaces, defined 
by unstructured data such as LiDAR point clouds or images, which often involve 
nonlinear relationships between variables, is processed by this type of algorithms. 
Neural networks intrinsically outperform conventional methods in modeling these 
nonlinear associations and in their ability to learn complex patterns [ 9, 17].
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In particular, LiDAR sensors, which output the spatial coordinates of a set of 
3D points representing the first reflection produced by objects illuminated with a 
collimated laser beam, have promoted the development of efficient approaches for 
handling three-dimensional data. In [ 34], for example, point clouds undergo trans-
formation into multichannel images that capture the depth, height, and reflectivity 
of each point. These images are then processed through dense convolutional layers 
to discern traversable areas. Another strategy, as proposed [ 24], involves spherical 
projections of point clouds, followed by the application of 2D convolutional layers 
for semantic segmentation. 

In contrast, in [ 35] is introduced a different solution employing octal trees, or 
octrees, to reduce the complexity of the space described by point clouds. This method 
restricts dense convolution operations to occupied octrees, speeding up computa-
tional demands. In [ 6] is extended this concept by computing space traversability 
using a convolution operation generalization to n-dimensions and incorporating a 
sparse encoder-decoder setup [ 4]. 

In addition, methods have emerged that combine information from various sen-
sors. In [ 31] authors take a sequence of RGB images and depth images to predict a 
local traversability map. The depth information is fed directly into the latent space of 
the neural network after processing the image sequence and fused with the descriptors 
in subsequent convolutional blocks, creating a map. 

Some other methods have also been developed that combine LiDAR information 
with image data. The authors of [ 10] propose a road detection method by merging 
color information from a camera with range information obtained via LiDAR. This 
involves projecting point clouds onto corresponding images, which then feed into a 
2D convolutional neural network. In [ 5], authors fuse features extracted from both 
data types using different neural network architectures. In [ 3] is suggested a pro-
gressive adaptation of LiDAR representation to enhance compatibility with visual 
information from cameras. This transformation involves converting the point cloud 
into an alternative representation, emphasizing the distinguishability of roads. So 
far, all the aforementioned works that fused data from different sensors evaluate 
traversability in the two-dimensional domain. However, works such as [ 22], relies 
on 2D convolutional networks to predict the labels in the image, but carry out the 
reconversion to the point cloud, performing the relevant reprojection of these labels 
inferred in the image. 

3 Proposed Approach 

3.1 Sparse Convolution 

Sparse convolution, a fundamental technique in deep learning, has emerged as a 
valuable approach to optimize computational efficiency in the analysis of sparse 
data, particularly frequent in three-dimensional environments such as LiDAR point 
clouds. Unlike traditional dense convolution operations, which consider each input
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pixel, sparse convolution strategically exploits the sparsity inherent in the data. This 
is achieved by employing sparse filters or processing only non-zero input values, 
which substantially reduces the computational burden. By focusing only on relevant 
features, sparse convolution improves the scalability and efficiency of convolutional 
neural networks (CNNs) in scenarios where computational resources are a critical 
consideration. 

This is especially advantageous in applications such as robotics or autonomous 
systems, where the input data often contains sparse spatial information. The increased 
efficiency of sparse convolution not only speeds up model training and inference, but 
also makes it suitable for resource-constrained environments, a compelling advance 
in the field of deep learning methodologies tailored to sparse data representations. 

In this way, the application of such a discrete operation on any point cloud, . B, 
must be defined in the following way: 

– Coordinates Tensor. This is a data element consisting of the coordinates of 
the points that belong to any point cloud .B = {( pi , f i , li ), i = 1, . . . , N }.  This  
expression incorporates an integer part function for space discretization. The points 
are modified according to a scaling factor , . v, that determines the level of space 
discretization. Furthermore, it also incorporates the position of the point clouds 
within the batch, . bi , in order to know what point corresponds to which cloud. As 
a result, the tensor .TC is formally defined as: 

.TC =
⎡
⎢⎣
b1 p̄1
...

...

bN p̄M

⎤
⎥⎦ (1) 

. with p̄ j = f loor( pi ) = f loor
( xi
v
,
yi
v
,
zi
v

)

Consequently, . m points from the point cloud could be discretized within the same 
voxel . p̄ j . Taking them into account as a single point with a different features 
vectors associated. In order to resolve the different features within the same voxel, 
the expression of the following equation was formulated .TF. 

– Feature Tensor. .TF stores and averages the features . f i corresponding to the . m
points that occupy the same space, i.e., belong to the same voxel denoted as . p̄ j . 
This process involves applying the scale factor . v and the integer part function. 

.TF =
⎡
⎢⎣

f̄1
...

f̄M

⎤
⎥⎦ (2) 

. where f̄ j = 1

m

m∑
i=1

f i

∀ f i ∈ p̄ j
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This kind of pre-processing implies the elimination of spaces where there is no spatial 
information, i.e. there are no points detected by the LiDAR. The input data is carried 
out using the Minkowski Engine library [ 4]. 1

3.2 Problem Statement 

The task is to evaluate traversability, treating it as solving a semantic segmentation 
puzzle. A point cloud .B is consisting of points defined by Cartesian coordinates, 
. pi = (xi , yi , zi ), feature vectors,.. f i ∈ R

din , and each point has a traversability label, 
. li, indicating whether it is traversable (. 1) or non-traversable (. 0). The problem is 
developed as a semantic segmentation task, where the objective is to employ a deep 
learning model denoted by the mapping function .. f : R3+din → [0, 1], considering 
both spatial coordinates and associated features, to infer the probability of traversabil-
ity of each point. Through training on a labeled dataset .{( pi , f i ), li }, the model is 
responsible for capturing very precise patterns in the point cloud data, allowing it to 
accurately predict the traversability status of each point. 

3.3 Sparse 3D Neural Networks 

The methodology for estimating traversability presented in this paper is based on a 
neural network with an encoder-decoder architecture, whose implementation fuses a 
sparse version of the Resnet20 [ 12] neural network and the U-net architecture [ 26]. 
As a result, the network can be split into three different parts: 

– Encoder. The encoder component in our neural network is designed to extract 
high-level features and representations from the input data, orchestrating a com-
pression of information into a multidimensional feature space. Structured with 
multiple convolutional layers and pooling operations, this approach gradually 
decreases the spatial dimensions while enriching the receptive field. Each convolu-
tional layer serves as a discerning observer, capturing diverse levels of abstraction 
within the input. The downsampling process, facilitated by pooling operations, 
extends the network’s contextual reach, fostering a heightened understanding of 
complex patterns. In this work, the input data used as feature vector is defined as: 
. f i = (nz, Z) where .nz is the Z coordinate of the normal unit vector .N i and the 
normalized coordinate.Z ∈ [0, 1]. This feature vector includes a natural invariance 
to rotation to the point cloud along the vertical axis. 

– Decoder. It is a fundamental component of the neural network, plays a key role 
in the reconstruction process. Its main task is to translate the abstract feature 
representations obtained from the encoder into a detailed and meaningful output.

1 https://github.com/NVIDIA/MinkowskiEngine. 

https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
https://github.com/NVIDIA/MinkowskiEngine
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It is composed of upsampling layers that restore spatial dimensions, convolutional 
layers that refine and combine features, and an output layer modified according 
to the task. In essence, the decoder is the final step of the neural network and 
transforms the encoded features into a tangible, task-specific output. 

– Residual Block. As the name suggests, these are convolutional layers that attempt 
to learn the residual between the input data and its output, understanding the 
residual as the error or difference between the output and the input. It has been 
observed that it is easier to learn the residual than just the input. As an added 
benefit, the network can now learn the identity function simply by setting the 
residual to zero. 

The flow of the point cloud through the neural network shown in Fig. 1 is depicted in 
a top-down manner on the left-hand side of the image. The point cloud is processed 
by convolutional layers followed by residual blocks as shown in Fig. 2. Once the 
encoder finishes, the scheme corresponding to the right part of the image continues 
in an ascending way, performing the transposed convolutions to recover the initial 
dimensionality of the starting data and the layers and residual blocks that try to 
refine the features. In addition, the famous skip connections which are made within 
the residual block, are extrapolated along the architecture to recover fine details and 
improve the accuracy of the reconstruction. 

Fig. 1 Encoder-decoder configuration employed, MinkUnet [ 4, 27]
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Fig. 2 Residual 
convolutional block from 
ResNet 

4 Experimental Results 

All the experiments of this method have been tested on an Intel Core™ i9-10900X, 
20. × 3.70GHz, 128GB RAM platform with NVIDIA RTX 3090 with 24GB VRAM 
graphic card. The neural network model is implemented using the Minkowski 
Engine [ 4], Pytorch and it can be easily integrated into ROS NOETIC. To eval-
uate the performance of the proposed approach, the following datasets have been 
employed. 

1. SemanticKITTI [ 1]: This dataset is based on the KITTI Vision Benchmark [ 8], 
integrating odometry positions and point clouds from various routes through the 
city of Karlsruhe, Germany, captured by the Velodyne HDL-64E sensor model. 
It presents a diverse set of scenarios, comprising 22 urban sequences navigating 
through highly structured environments. These scenarios feature dynamic ele-
ments such as moving vehicles and pedestrians, as well as natural elements such 
as grassy areas, parks and trees. Ten of the 22 sequences are labeled for each 
point, addressing semantic segmentation challenges within the dataset. 

2. Rellis-3D [ 14]: It is a multimodal dataset collected in an off-road environment 
containing annotations for 13,556 LiDAR scans and 6,235 images. The data was 
collected on the Rellis Campus of Texas A&M University and presents challenges 
to existing algorithms related to class imbalance and environmental topography. 
Experimental results indicate that RELLIS-3D poses challenges to algorithms 
specifically designed for semantic segmentation in urban environments. 

3. SemanticUSL [ 15]: It is a dataset for domain adaptation for LiDAR point cloud 
semantic segmentation. It contains 1200 point clouds labeled under the same 
format as the SemanticKITTI including road scenes, pedestrian streets and natural 
environments.
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Table 1 Databases class mapping 

Original class Binary label Label 

Void/Outlier Eliminated N/A 

Asphalt Traversable 1 

Barrier Non-traversable 0 

Building Non-traversable 0 

Bush Non-traversable 0 

Concrete Traversable 1 

Dirt Traversable 1 

Fence Non-traversable 0 

Grass Traversable 1 

Log Non-traversable 0 

Mud Traversable 1 

Parking Non-traversable 0 

Person Non-traversable 0 

Pole Non-traversable 0 

Puddle Traversable 1 

Road Non-traversable 0 

Rubble Non-traversable 0 

Sidewalk Traversable 1 

Sky Eliminated N/A 

Traffic Sign Non-traversable 0 

Tree Non-traversable 0 

Vehicles Non-traversable 0 

Water Traversable 1 

Other Object Non-traversable 0 

All of the above databases contain approximately 24 different labels to which a point 
can belong. These labels are shown in Table 1, with their corresponding conversion, 
which has been established to be correct under human supervision for the particular 
traversability problem. Thus, Figures 3, 4, 5 show how the original databases are 
modified. 

4.1 Implementation Details 

The training of the model has been improved from the previous version presented 
in [ 27]. The differences in optimization strategies, shown in Table 2, contribute to 
distinct training behaviors and outcomes between the two setups. In the following 
sections, the results of both configurations will be compared.
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Fig. 3 Point cloud from 
SemanticKITTI [ 27] 

Fig. 4 Point cloud from 
Rellis-3D [ 27] 

Fig. 5 Point cloud from 
Semantic-USL [ 27]
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Table 2 Training parameters 

Parameters Basic configuration Refined 

Framework Minkowski engine Minkowski engine 

Optimizer SGD AdamW 

Scheduler None Cosine 

Learning rate 1e-2 1e-2 

Weight decay None 5e-2 

Batch size 5 8 

Criteria BCELoss BCELoss 

Epochs 14 9 

Rellis-3D Sequence 1, 2, 3 Sequence 1, 2, 3 

Sem. KITTI Sequence  0,  1, 2, 3 Sequence  0,  1  , 2, 3

On the other hand, the training stage of the aforementioned datasets has been 
carried out with the aim of achieving a multimodal model that performs well in 
all types of environments without making distinctions between urban and natural 
environments. Therefore, a balanced number of training examples has been pro-
vided to include, equally, both environments and balanced classes. The use of the 
SemanticUSL database is limited exclusively to testing processes to demonstrate the 
generalization capability of the network in environments never seen during training. 

4.2 Distance Effect 

It can be observed when analysing the interaction of the LiDAR planes with the 
surrounding environment that the distance, . d, between consecutive LiDAR planes 
and the ground plane is dependent on the angle formed by the intersection of the two 
mentioned planes, . α, and the height, . h, at which the LiDAR is placed. Thus, at very 
far distances, the different laser planes are far apart. This effect is easy to appreciate 
in Fig. 6. 

Consequently, the representation of some regions of the robot’s environment is 
highly uncertain, since as mentioned above the very sparse nature of LiDAR technol-
ogy results in a very low density over long distances. Therefore, as a solution, it was 
proposed to consider only the points that are within a radius of 45 meters from the 
sensor and, all the evaluations have been performed under this condition. Figures 7 
and 8 are in line with the idea described above, and show how metrics such as accu-
racy and recall of a model trained with raw point clouds do not contribute anything 
once the distance exceeds 45/50 m, and the metric becomes noisy and inaccurate.
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Fig. 6 LiDAR planes interactions with the ground plane 

Fig. 7 Precision metric in relation to distance 

Fig. 8 Recall metric in relation to distance
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4.3 Quantitative Evaluation 

In regard to the performance of a classification model, the following figures rep-
resent the precision and recall curves obtained with the test set data. Specifically, 
Figures 9 and 11 present the results in urban and structured environments for the 
SemanticKITTI and USL datasets. In both figures, the precision-recall curve is very 
close to the maximum (upper right corner). Working levels are achieved at which it 
does not seem necessary to select a lower recall level to increase precision. Hence, 
it can be assumed that the trained models consistently learn the traversable and non-
traversable zones, achieving accuracy and recall values exceeding 95% for specific 
operating points. Furthermore, it is proved that how highly structured spaces with a 
uniform point distribution, as we might have deduced, do not have much relevance 
for the discretisation of the space (size of voxel, . v, or scale parameter). 

On the other hand, Fig. 10 presents the results when the method is applied to 
an unstructured environment. In this context, the results are not as satisfactory. We 
can see that there are significant differences in performance between the different 
levels of discretisation, although the explanation for this does not seem to go beyond 
randomness and the distribution of the points. We can conclude that in this type of 
environment it is more complex to infer what can be traversed with certainty. 

In terms of numerical metrics, Table 3 shows in detail the performance metrics 
obtained as a function of the scaling factor mentioned above. The result are obtained 
from the model presented in Fig. 1, with different training processes. One of them 
corresponds to the method presented in [ 27] and the left part of the table is about the 
refined training described in Sect. 4.1. It can be seen how fine-tuned training improves 
the results in most cases where a small space discretisation is applied, although the 
metrics are quite similar. 

Fig. 9 Precision-recall 
curve on the SemanticKITTI 
dataset
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In addition, a comparison with methods used in the field of semantic segmentation 
is presented in Table 4. The comparison has been done by evaluating these methods 
on SemanticKitti labelled data sequences. 

To conclude the experiments, a study of the descriptors extracted by the network 
has been carried out in relation to the rotation of the input data in the Euler yaw, . ψ, 
angle. Figure 12a, b indicate the changes in terms of precision and recall metrics when 
rotating a point cloud from 0 to 360 degrees. An ideal graph should show a completely 
horizontal line. However, due to the discrete nature of space during rotation, the 
results show slight, albeit minimal, variations. The metrics can be considered to be 
largely invariant to rotation. 

Fig. 10 Precision-recall 
curve on the Rellis-3D 
dataset 

Fig. 11 Precision-recall curve on the USLSemantic dataset
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Table 3 Results obtained in inference 

Basic Fine-tuned 

Dataset Voxel F1 Acc MIOU F1 Acc MIOU 

Rellis-3D 0.1 0.72 0.83 0.57 0.74 0.82 0.60 

Kitti 0.97 0.97 0.95 0.96 0.96 0.93 

USL 0.93 0.93 0.87 0.92 0.94 0.85 

Rellis-3D 0.2 0.79 0.85 0.66 0.79 0.86 0.66 
Kitti 0.97 0.97 0.94 0.97 0.98 0.95 
USL 0.93 0.93 0.87 0.94 0.95 0.90 

Rellis-3D 0.35 0.79 0.86 0.66 0.75 0.84 0.60 

Kitti 0.97 0.97 0.94 0.96 0,97 0.93 

USL 0.95 0.95 0.91 0.94 0.94 0.88 

Fig. 12 Rotation invariant results 

Table 4 Results of different approaches on SemanticKITTI sequences 0–10. With [1]: [ 25], [2]: 
[ 37], [3]: [ 38], [4]: [ 23], [5]: [ 7] 

Method Accuracy F1 mIoU 

.[1] 93.4 93.0 87.4 

.[2] 90.1 89.4 81.4 

.[3] 92.3 91.9 85.5 

.[4] 90.0 93.0 87.4 

.[5] 89.2 91.4 84.9 

Previous work 96.6 95.9 92.3 

Ours 96.8 96.1 92.7 
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4.4 Qualitative Evaluation 

In Fig. 13, the outcomes are visually depicted, presenting the components of the 
confusion matrix in distinct colors: true positives (green), true negatives (purple), 
false positives (red), and false negatives (orange). Figure 13a, c, e showcase accu-
rately labeled point clouds from different evaluated datasets. In contrast, Fig. 13b, 
d, f illustrate the neural network inferences, highlighting errors in orange and red, 
and successful predictions in green and purple, following the previously described 
color scheme. False positives often manifest in highly unstructured regions, while 
false negatives tend to appear near edges between adjacent geometries. 

It is crucial to emphasize that false positives, where the network misclassifies 
non-traversable areas as traversable, pose significant risks in robotic navigation tasks. 
Additionally, the method’s rotation invariance is evident in Fig. 14, displaying neural 
network inferences for the same point cloud rotated at 45 and 90 degrees in Fig. 14b 
and c, respectively. 

5 Conclusion 

In this paper have been presented a novel approach for traversability estimation 
in point clouds using a sparse neural network with an encoder-decoder configu-
ration. The main aspects of the paper include the analysis of the impact of voxel 
size, the study of rotation invariance within the same environment and the presen-
tation of results highlighting the strengths and limitations of the method in var-
ious environmental scenarios. The results obtained with the presented approach 
demonstrate an outstanding performance in the assessment of the traversability in 
semi-structured environments (SemanticKITTI, SemanticUSL). Nevertheless, the 
outcomes achieved in highly unstructured scenarios demonstrated lower results. 

The extension of the presented approach may benefit for the inclusion of visual 
information in combination with LiDAR data in order to improve the robustness 
and consistency, overall in unstructured environments. It is intended to evaluate the 
performance of the neural network on a variety of robots equipped with various 
sensors. Furthermore, the future challenge of addressing spatial traversability under 
a continuous paradigm, where evaluations go beyond binary results and take into 
account the physical attributes of the robot interacting with the terrain, is identified. In 
all, the paper lays the foundation for a promising approach to traversability estimation 
in point clouds and provides a clear roadmap for future improvements and extensions. 

Acknowledgements This work has been funded by the ValgrAI Foundation, Valencian Graduate 
School and Research Network of Artificial Intelligence through a predoctoral grant. 
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(a) SemanticKITTI inference. 

(b) Comparison of inference and ground truth cloud. 

(c) Rellis-3D inference. 

(d) Comparison of inference and ground truth cloud. 

(e)  Comparison of inference and ground truth cloud. 

(f) USL inference. 

Fig. 13 Visual representation of the inference results of the network. Green: true positives (TP). 
Purple: true negatives (TN). Red: false positives (FP). Orange: false negatives (FN) 
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(a) Original point cloud. (b) Point cloud rotated 45 degrees. 

(c) Point cloud rotated 90 degrees. 

Fig. 14 Inference invariant to rotation 
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