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Tuesday, October 14, 2025 - Mardi le 14 octobre 2025 Room / Salle

12:00 - 18:45 Registration - Inscription Welcome Desk Urban Space

13:00 - 15:00 Workshop 1 - New frontiers in neuromorphic photonics 309AB

15:00 - 15:30 Coffee Break - Pause-café Urban Space

15:30 - 18:30 Workshop 2 - Photonic control of antennas 309AB
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10:30 - 12:15 We1 - Photonic microwave processing, sensing, and 
measurements 1 309AB
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converters and Tutorial 309AB

15:15 - 16:45 Coffee Break and We3 - Poster Session 1 Urban Space
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13:30 - 15:00 Th2 - Integrated microwave photonics 309AB

15:15 - 16:45 Coffee Break and Th3 - Poster Session 2 Urban Space

16:45 - 18:15 Th4 - Radio over Fiber (RoF) for B5G/6G mobile data and 
terrestrial communication systems 309AB
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Friday, October 17, 2025 - Vendredi le 17 octobre 2025 Room / Salle

08:00 - 16:30 Registration - Inscription Welcome Desk Urban Space

08:30 - 10:00 Plenary Session 3 and Invited 309AB

10:00 - 10:30 Coffee Break - Pause-café Urban Space

10:30 - 12:15 Fr1 - High-performance microwave photonic signal 
sources 2 309AB

12:15 - 13:30 Lunch (included) - Repas du midi (inclus) Urban Space

13:30 - 15:00 Fr2 - Photonic microwave processing, sensing, and 
measurements 2 309AB

15:00 - 15:30 Coffee Break - Pause-café Urban Space

15:30 - 16:15 Fr3 - Postdeadline Session and Wrap-Up 309AB
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Abstract— The use of photonic architectures to build neural 
networks is a fast-growing field, both because these systems offer 
huge computing potential, and because the power consumption of 
photonic systems is much lower than that of their electronic 
equivalents. In this context, we have developed a simple 
architecture based on a simple heterodyne interferometer, 
enabling vector multiplication. This architecture enables us to 
process images in the time domain, and perform image 
classification tasks. More importantly, the building block we 
propose can be generalized to multi-heterodyne architectures, 
enabling ultra-high rate matrix computation for neural network 
layers, and accelerators for convolutional neural networks. 

Keywords—perceptron, neural network, heterodyne detection, 
analog computing, matrix calculation   

I. INTRODUCTION  
Artificial neural networks are at the heart of artificial 

intelligence systems. They have enabled a spectacular revival of 
analog computing, enabling classification, recognition, and 
prediction tasks. Paradoxically, these architectures are 
commonly implemented in digital electronics, which raises 
important concerns about power consumption and ultimate 
performance. On the contrary, photonic systems can process 
radio or microwave signals in an analog manner, with 
remarkable energy efficiency and very large bandwidth. In this 
context, it is obvious that optics is capable of providing effective 
hardware solutions for artificial intelligence, and indeed a large 
number of neuromorphic photonic systems have been presented 
over the past ten years [1].  

The basic building block of these architectures is the 
perceptron, or artificial neuron, whose function is to combine a 
number of inputs, weight them by coefficients, and produce an 
output via an (generally non-linear) activation function (Fig. 1, 
top). Training the perceptron consists of determining the weight 
coefficients according to the intended objective. In the case of 
image classification, the system is trained on a large database 
(images), so that it can then classify any unknown image. In 
most of analog implementations of the perceptron, the training 
stage is implemented offline, and the perceptron simply 
calculates the product of the input data with the weighting 
coefficients. Several photonic implementations of perceptrons 
have been reported so far, including space-optics based 
approaches [2-4]. 

 
Fig. 1. Top: generic perceptron architecture. The input data (xi) is multiplied 
with the synaptic weights (wi) optimized off-line for the specific application. 
The neuron computes the weighted sum (i xiwi). An activation function 
generates the output (y) of the perceptron. Bottom: samples of the 0-9 digit 
classes and of the binary classes pneumonia / normal used in the image 
classification experiments. 

Here, we propose a new and simple implementation of a 
photonic perceptron operating in the time domain and dedicated 
to image classification. Two proof-of-concept implementations 
are presented, oriented to digit classification and pneumonia 
detection in gray-scale images (Fig. 1, bottom). Our architecture 
is based on heterodyne detection and standard microwave 
photonics concepts, and as such offers multiple prospects for 
future neuromorphic photonic processing, including the 
processing of complex data, potential for parallelization, and the 
reach of ultra-high computation speeds based in on-chip 
architectures. 

II. ARCHITECTURE 
The architecures essentially consists in a simple heterodyne 

fiber interferometer. A CW laser (1550 nm) is split in two arms. 
Electro-optic amplitude modulators (i.e. Mach-Zehnder 
interferometers biaised at null) are inserted in the two arms, 
while an optical frequency shifter is inserted in one of them (Fig. 
2, top).  Both arms are recombined of a balanced photodetector 
(1.6 GHz bandwidth). The resulting signal is then sampled and 
processed digitally. Both the input matrix data and the synaptic 
weights are serialized in the time domain, and applied to the 



modulators by means of an arbitrary waveform synthesizer. The 
samping rate of the input waveforms is 125 MSa/s for the 
MNIST dataset and 100 MSa/s for the PneumoniaMNIST 
dataset. These rates are chosen to match the bandwidth 
limitations of the AWG and to ensure synchronization with the 
acquisition system. In particular, the digitizer sampling rates 
(0.2 - 0.25 GSa/s) are selected as integer multiples of the 
waveform sampling rates to guarantee alignment across the 
traces. The frequency shifter is driven at 𝑓𝑠 = 80 MHz.  

 
Fig. 2. Top: sketch of the photonic perceptron. A CW laser is split in two. Each 
arm contains an amplitude modulator (MZM1 and MZM2). The first arm also 
incorportes a frequency shifter (AOFS). Both arms are recombined of a 
balanced photodiode (BPD). The detection signal is digitized (ADC) and 
processed numerically (DSP). Bottom: examples of the (bipolar) weight vector 
𝑤(𝑡) and the (unipolar) input data 𝑥(𝑡) serialized in time. 

The weight functions used to encode the synaptic 
connections are obtained by training simple perceptrons in 
software. The original image data are first serialized into one-
dimensional input vectors. Both weight and image data are 
predeced by an overhead of reference symbols, as explained 
below. Each perceptron is trained using the appropriate 
activation function based on the task. For digit classification (i.e. 
identification of the digit ‘6’ among digits ‘0’ through ‘9’, using 
the MNIST dataset [5]), a linear activation function is used to 
train the system. The training is performed on the full training 
subset, with each 28×28 pixel image flattened into a 784-
element input vector. The model is then evaluated on 1,000 
images from the MNIST test set. These same images are used in 
the photonic experimental setup, enabling direct comparison 
between computational and physical implementations of the 
classification procedure. For pneumonia detection, the 
PneumoniaMNIST dataset is used, consisting of 64×64 
grayscale medical images [6]. A sigmoid activation function is 
employed for perceptron training. A subset of 460 test images is 
selected and evaluated in both the software and photonic 
domains using the same procedure. In both experiments, 
confusion matrices are computed to evaluate classification 
performance and to quantify the agreement between digital 
simulations and experimental photonic outputs. 

III. SIGNAL PROCESSING AND IMAGE CLASSIFICATION  
According to Fig. 2, the output of the BPD is: 

𝐼𝐵𝑃𝐷(𝑡) = 𝐼0 cos(2𝜋𝑓𝑠𝑡 + 𝜑) ∑ 𝑠𝑘(𝑡 − 𝑘𝑇)
+∞

𝑘=−∞

 (1) 

with 𝐼0 the optical input power, 𝑓𝑠 the frequency shift, and 𝜑 =
𝜔0𝜏𝑖𝑛𝑡𝑒𝑟𝑓 + 𝜃 − 𝜋/2 the phase shift, where 𝜔0  is the optical 
carrier frequency, 𝜏𝑖𝑛𝑡𝑒𝑟𝑓  the interferometer’s time imbalance, 
and 𝜃  the RF phase of the tone driving the AOFS. In this 
expression, the RF tone at 𝑓𝑠 modulates a stream of symbols sk 
of duration 𝑇 signaled with square (NRZ) pulses. This stream is 
organized in groups of M symbols 𝑠𝑘 representing the product 
of image data 𝑥𝑘 and weights 𝑤𝑘, 𝑠𝑘 = 𝑥𝑘 × 𝑤𝑘. In the MZMs, 
the images are preceded by an overhead of nine reference 
images of the form [0, 0, 0, +1, 0, +1, 0, 0, 0], each of length M, 
and nine reference groups of weights [0, 0, 0, +1, 0, −1, 0, 0, 0], 
also of length M each. These reference data are used for 
calibration and synchronization. The phase shift 𝜑 , though 
unknown, can be assumed constant along the symbol stream, as 
it varies slowly with respect to its total duration. 

 
Fig. 3. Processing steps. (a) BPD signal. (b) Digital I/Q demodulation. (c) 
Accumulation and sampling at the I/Q channels. Inset: zoom of the accumulated 
and sampled output. The time scale is coincident with the main plot. (d) 
Complex I/Q plane of the accumulated and sampled output. The external points 
correspond to the +1 and −1 images. The inset shows the rotation corresponding 
to phase correction.  

The detection consists of the steps showed in Fig. 3 for a 
MNIST trace, where M = 784 and the symbol duration is T = 8 
ns, for a total duration of MT = 6.272 µs. In a first stage we 
perform digital I/Q demodulation of the BPD signal with respect 
to the carrier frequency 𝑓𝑠. An example of a digitized BPD signal 
is shown in Fig. 3(a), where we observe the overhead data, 
followed by the first nine image  weight products. As the 
weights can be negative, the product symbols sk can be also 
negative, so that we need to recover the phase of the 
demodulated signal. The in-phase I(t) and quadrature Q(t) 
components of the BPD signal are: 

𝐼𝐵𝑃𝐷(𝑡) = 𝐼0 cos(2𝜋𝑓𝑠𝑡) 𝐼(𝑡) − 𝐼0 sin(2𝜋𝑓𝑠𝑡) 𝑄(𝑡) (2) 

from which one can construct a complex signal 

𝑅(𝑡) = 𝐼(𝑡) + 𝑗𝑄(𝑡) = 𝑒𝑗𝜑 ∑ 𝑠𝑘(𝑡 − 𝑘𝑇)
+∞

𝑘=−∞

 (3) 

Overhead 
symbols 



The in-phase and quadrature components are shown in Fig. 3(b), 
where we can notice the π phase change between the two 
reference products followed by the demodulated data.  

The final step is the detection of the scalar product of the 
weights and image, performing an accumulation process with a 
moving average over 𝑀 consecutive symbols and then sampling 
the output at intervals separated by 𝑀𝑇.  The output of this 
moving average filter and the sampled trace is shown in Fig. 3 
(c). Here, the reference overheads, appearing as triangular 
signals, are used to synchronize the moving average with the 
sampling. The I/Q components of the sampled moving average 
provide a complex signal of the form 𝑒𝑗𝜑 ∑ 𝑠𝑘

𝑀−1
𝑘=0 , from which 

the phase shift can be corrected, as shown in Fig. 3(d), and the 
actual value of the sought-for sum ∑ 𝑠𝑘

𝑀−1
𝑘=0  be extracted. 

 
Fig. 4. Classification for the differencts databases used to validate the 
perfomance of the optical perceptron. (a) uses the MNIST database and is used 
to detect the the digit ‘6’ among digits 0 through 9. (b) uses the 
PneumoniaMNIST database, where the objective is to detect the pneumonia in 
differents grayscale medical images. 

 With the phase shift corrected, we can perform detection on 
the real axis with positive and negative values. As in the 
computer perceptron, we define a threshold at which the test 
signals are correctly detected. This decision is made by 
evaluating the ROC curves and selecting a point that gives us a 
high true positive rate and a low false positive rate. This value is 
selected by maximizing the difference between the true positive 
and false positive rates at different thresholds. This process is 
performed on the computer and optical perceptrons using the 
same test data. The classification results for the different optical 
perceptron datasets are displayed in Fig. 4. Although the data 
consist of a cloud of points, the definition of a threshold enables 
the data to be separated into the two binary outputs of a 
perceptron. The figure also illustrates the various detection 
possibilities and the associated false positive and false negative 
error rates. 

 Table 1 shows the comparison between the performance of 
the optical and computer perceptrons for the different databases. 
In each of the database, the results are obtained from the same 
data for the optical and computer perceptron. Notice that the 
optical perceptron has a slight impact on accuracy compared to 
the computational perceptron; this difference is less than 2% for 
both databases. We also demonstrate that using a large, complex 
database does not affect the system's performance. 

Table.1 Comparison of the classification results obtained by the computer, and 
by the photonic-assisted perceptron (TP: true positive, FP: false positive, FN: 
false negative, and TN: true negative).  

IV. CONCLUSION AND DISCUSSION 
We have demonstrated a new photonic implementation of a 

perceptron. Our approach is based on a simple heterodyne 
interferometer setup. We have demonstrated a classification 
efficiency comparable to that of a computer-based perceptron. 
Our architecture offers a number of advantages. First of all, it 
can be easily implemented with integrated optics. Second, its 
intrinsic coherence opens up the prospect of new functionalities, 
such as the processing of complex data sets [7], the development 
of classification techniques in the complex plane, rather than just 
along the real axis, and the use of coherent I/Q detection instead 
of the digital processing used so far. Additionally, the proposed 
approach can be easily generalized to a multi-heterodyne 
architecture, for example using a frequency-shifting loop. This 
architecture, which has already proved its potential for analog 
computation in the real-time, enables multiplexing in the 
frequency domain [8]. The use of these architectures could 
provide gains of several orders of magnitude in terms of 
computing speed, compared with the single perceptron 
presented here, while leading to efficient implementation of 
photonic accelerators for convolutional neural networks [9-11]. 
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