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PROGRAM AT A GLANCE - PROGRAMME EN BREF

Tuesday, October 14, 2025 - Mardi le 14 octobre 2025 Room / Salle

12:00 - 18:45 Registration - Inscription =~ Welcome Desk Urban Space

13001500 Workshop 1 - New frontiersin neuromorphic photonics  309AB
1500-15:30 |Coffee Break - Pause-café [ UbanSpace |

Wednesday, October 15, 2025 - Mercredi le 15 octobre 2025 Room / Salle

07:00-20:00 Registration - Inscription =~ Welcome Desk Urban Space

1000-10:30 Coffee Break - Pause-café ~ UrbanSpace

1215-1330 Lunch (included) - Repas dumidi (inclus) ~ UrbanSpace -

Thursday, October 16, 2025 - Jeudi le 16 octobre 2025 Room / Salle

08:00- 18:30 Registration - Inscription ~ Welcome Desk Urban Space

10:00-10:30 Coffee Break - Pause-café ~ UrbanSpace
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Friday, October 17, 2025 - Vendredi le 17 octobre 2025 Room / Salle

08:00 - 16:30 Registration - Inscription ~ Welcome Desk Urban Space

1215-1330 Lunch (included) - Repas dumidi (inclus) ~~ Urban Space -

1500-15:30 Coffee Break - Pause-café ~ UrbanSpace
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11:30 - 11:45 AI-COMPUTING THROUGH LOW-CONSUMPTION VCSEL-BASED

ANALOG RADIO-OVER-FIBER SYSTEM

Jacopo Nanni, Department of Electrical, Electronic and Information
Engineering (DEI), University of Bologna, Italy

Jacopo Nanni, Sigi Wang, Aziz Benlarbi Delai, Giovanni Tartarini

11:45 - 12:00 DEMONSTRATION OF DUAL-PUMP DEGENERATE OPTICAL PARAMETRIC

OSCILLATION IN KERR MICRORESONATORS FOR INTEGRATED
COHERENT ISING MACHINES

Kambiz Jamshidi, TU Dresden, Germany

Menglong He, Mohd Saif Shaikh, Abdou Shetewy, Kambiz Jamshidi

12:00 - 12:15 IMAGE CLASSIFICATION WITH A SIMPLE PHOTONIC PERCEPTRON

BASED ON HETERODYNE DETECTION

Miguel Cuenca Piqueras, Engineering Research Institute I3E Univ.
Miguel Hernéndez, Spain

Miguel Cuenca Piqueras, Carlos Fernandez-Pousa,

Hugues Guillet de Chatellus

TH2 - INTEGRATED MICROWAVE PHOTONICS

Co-chairs: Xinyi Zhu

13:30 - 14:00 INTEGRATED NONLINEAR LITHIUM NIOBATE PHOTONIC CIRCUITS:

TOWARDS ULTRAFAST, LOW-POWER, AND SCALABLE LIGHT'MATTER INTERFACES
lan Christen, University of California, Berkeley, United States of America
Mengijie Yu, lan Christen

14:00 - 14:15 DEMONSTRATION OF AN INP-SOI HETEROGENEOUSLY INTEGRATED

DISTRIBUTED COHERENT RADAR SYSTEM

Luca Rinaldi, CNIT, ltaly

Valentina Gemmato, Federico Camponeschi, Filippo Scotti, Luca Rinaldi,
Muhammad Imran, Claudio Porzi, Paolo Ghelfi, Mirco Scaffardi,
Antonella Bogoni

14:15 - 14:30 A SILICON PHOTONIC CHIP FOR SIMULTANEOUS MICROWAVE AND

NEAR-INFRARED DUAL-BAND BEAMFORMING

Ruiqi Zheng, Jinan University, China (People’s Republic of)

Ruigi Zheng, Jingxu Chen, Jinkun Hu, Haikun Huang, Jiejun Zhang,
Jianping Yao

14:30 - 14:45 FINE-GRAINED DIFFRACTIVE SLAB FOR ACCURATE AND LOW-COMPLEXITY

ON-CHIP PHOTONIC CONVOLUTION
Shen Zichao, Chinese Academy of Sciences, China (People’s Republic of)
Shen Zichao, Weichao Ma, Ruixuan Wang, Wangzhe Li
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Image classification with a simple photonic
perceptron based on heterodyne detection

Miguel Cuenca Piqueras
Engineering Research Institute I3E
Univ. Miguel Hernandez
03202 Elche, Spain
miguel.cuenca02@goumh.umbh.es

Abstract— The use of photonic architectures to build neural
networks is a fast-growing field, both because these systems offer
huge computing potential, and because the power consumption of
photonic systems is much lower than that of their electronic
equivalents. In this context, we have developed a simple
architecture based on a simple heterodyne interferometer,
enabling vector multiplication. This architecture enables us to
process images in the time domain, and perform image
classification tasks. More importantly, the building block we
propose can be generalized to multi-heterodyne architectures,
enabling ultra-high rate matrix computation for neural network
layers, and accelerators for convolutional neural networks.

Keywords—perceptron, neural network, heterodyne detection,
analog computing, matrix calculation

I. INTRODUCTION

Artificial neural networks are at the heart of artificial
intelligence systems. They have enabled a spectacular revival of
analog computing, enabling classification, recognition, and
prediction tasks. Paradoxically, these architectures are
commonly implemented in digital electronics, which raises
important concerns about power consumption and ultimate
performance. On the contrary, photonic systems can process
radio or microwave signals in an analog manner, with
remarkable energy efficiency and very large bandwidth. In this
context, it is obvious that optics is capable of providing effective
hardware solutions for artificial intelligence, and indeed a large
number of neuromorphic photonic systems have been presented
over the past ten years [1].

The basic building block of these architectures is the
perceptron, or artificial neuron, whose function is to combine a
number of inputs, weight them by coefficients, and produce an
output via an (generally non-linear) activation function (Fig. 1,
top). Training the perceptron consists of determining the weight
coefficients according to the intended objective. In the case of
image classification, the system is trained on a large database
(images), so that it can then classify any unknown image. In
most of analog implementations of the perceptron, the training
stage is implemented offline, and the perceptron simply
calculates the product of the input data with the weighting
coefficients. Several photonic implementations of perceptrons
have been reported so far, including space-optics based
approaches [2-4].
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Fig. 1. Top: generic perceptron architecture. The input data (x;) is multiplied
with the synaptic weights (w;) optimized off-line for the specific application.
The neuron computes the weighted sum (X; xw;). An activation function
generates the output (y) of the perceptron. Bottom: samples of the 0-9 digit
classes and of the binary classes pneumonia / normal used in the image
classification experiments.

Here, we propose a new and simple implementation of a
photonic perceptron operating in the time domain and dedicated
to image classification. Two proof-of-concept implementations
are presented, oriented to digit classification and pneumonia
detection in gray-scale images (Fig. 1, bottom). Our architecture
is based on heterodyne detection and standard microwave
photonics concepts, and as such offers multiple prospects for
future neuromorphic photonic processing, including the
processing of complex data, potential for parallelization, and the
reach of ultra-high computation speeds based in on-chip
architectures.

II. ARCHITECTURE

The architecures essentially consists in a simple heterodyne
fiber interferometer. A CW laser (1550 nm) is split in two arms.
Electro-optic amplitude modulators (i.e. Mach-Zehnder
interferometers biaised at null) are inserted in the two arms,
while an optical frequency shifter is inserted in one of them (Fig.
2, top). Both arms are recombined of a balanced photodetector
(1.6 GHz bandwidth). The resulting signal is then sampled and
processed digitally. Both the input matrix data and the synaptic
weights are serialized in the time domain, and applied to the



modulators by means of an arbitrary waveform synthesizer. The
samping rate of the input waveforms is 125 MSa/s for the
MNIST dataset and 100 MSa/s for the PneumoniaMNIST
dataset. These rates are chosen to match the bandwidth
limitations of the AWG and to ensure synchronization with the
acquisition system. In particular, the digitizer sampling rates
(0.2 - 0.25GSa/s) are selected as integer multiples of the
waveform sampling rates to guarantee alignment across the
traces. The frequency shifter is driven at f; = 80 MHz.
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Fig. 2. Top: sketch of the photonic perceptron. A CW laser is split in two. Each
arm contains an amplitude modulator (MZM1 and MZM2). The first arm also
incorportes a frequency shifter (AOFS). Both arms are recombined of a
balanced photodiode (BPD). The detection signal is digitized (ADC) and
processed numerically (DSP). Bottom: examples of the (bipolar) weight vector
w(t) and the (unipolar) input data x(t) serialized in time.

The weight functions used to encode the synaptic
connections are obtained by training simple perceptrons in
software. The original image data are first serialized into one-
dimensional input vectors. Both weight and image data are
predeced by an overhead of reference symbols, as explained
below. Each perceptron is trained using the appropriate
activation function based on the task. For digit classification (i.e.
identification of the digit ‘6’ among digits ‘0’ through ‘9, using
the MNIST dataset [S]), a linear activation function is used to
train the system. The training is performed on the full training
subset, with each 28x28 pixel image flattened into a 784-
element input vector. The model is then evaluated on 1,000
images from the MNIST test set. These same images are used in
the photonic experimental setup, enabling direct comparison
between computational and physical implementations of the
classification procedure. For pneumonia detection, the
PneumoniaMNIST dataset is used, consisting of 64x64
grayscale medical images [6]. A sigmoid activation function is
employed for perceptron training. A subset of 460 test images is
selected and evaluated in both the software and photonic
domains using the same procedure. In both experiments,
confusion matrices are computed to evaluate classification
performance and to quantify the agreement between digital
simulations and experimental photonic outputs.

III. SIGNAL PROCESSING AND IMAGE CLASSIFICATION
According to Fig. 2, the output of the BPD is:
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with I, the optical input power, f; the frequency shift, and ¢ =
WoTinters + 0 — /2 the phase shift, where w, is the optical
carrier frequency, Tinsery the interferometer’s time imbalance,
and 6 the RF phase of the tone driving the AOFS. In this
expression, the RF tone at f; modulates a stream of symbols s
of duration T signaled with square (NRZ) pulses. This stream is
organized in groups of M symbols s, representing the product
of image data x;, and weights wy,, s, = X X wy. In the MZMs,
the images are preceded by an overhead of nine reference
images of the form [0, 0, 0, +1, 0, +1, 0, 0, 0], each of length M,
and nine reference groups of weights [0, 0, 0, +1, 0,1, 0, 0, 0],
also of length M each. These reference data are used for
calibration and synchronization. The phase shift ¢, though
unknown, can be assumed constant along the symbol stream, as
it varies slowly with respect to its total duration.
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Fig. 3. Processing steps. (a) BPD signal. (b) Digital I/Q demodulation. (c)
Accumulation and sampling at the I/Q channels. Inset: zoom of the accumulated
and sampled output. The time scale is coincident with the main plot. (d)
Complex I/Q plane of the accumulated and sampled output. The external points
correspond to the +1 and —1 images. The inset shows the rotation corresponding
to phase correction.

The detection consists of the steps showed in Fig. 3 for a
MNIST trace, where M = 784 and the symbol duration is 7= 8
ns, for a total duration of MT = 6.272 ps. In a first stage we
perform digital I/Q demodulation of the BPD signal with respect
to the carrier frequency f;. An example of a digitized BPD signal
is shown in Fig. 3(a), where we observe the overhead data,
followed by the first nine image x weight products. As the
weights can be negative, the product symbols sx can be also
negative, so that we need to recover the phase of the
demodulated signal. The in-phase I(f) and quadrature Q(?)
components of the BPD signal are:

Igpp (t) = Iy cosmft) I(t) — I sin(2rfst) Q1)  (2)
from which one can construct a complex signal
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The in-phase and quadrature components are shown in Fig. 3(b),
where we can notice the m phase change between the two
reference products followed by the demodulated data.

The final step is the detection of the scalar product of the
weights and image, performing an accumulation process with a
moving average over M consecutive symbols and then sampling
the output at intervals separated by MT. The output of this
moving average filter and the sampled trace is shown in Fig. 3
(c). Here, the reference overheads, appearing as triangular
signals, are used to synchronize the moving average with the
sampling. The I/Q components of the sampled moving average
provide a complex signal of the form e/? ¥¥-1s,, from which
the phase shift can be corrected, as shown in Fig. 3(d), and the
actual value of the sought-for sum ¥¥-1 s, be extracted.
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Fig. 4. Classification for the differencts databases used to validate the
perfomance of the optical perceptron. (a) uses the MNIST database and is used
to detect the the digit ‘6> among digits 0 through 9. (b) uses the
PneumoniaMNIST database, where the objective is to detect the pneumonia in
differents grayscale medical images.

With the phase shift corrected, we can perform detection on
the real axis with positive and negative values. As in the
computer perceptron, we define a threshold at which the test
signals are correctly detected. This decision is made by
evaluating the ROC curves and selecting a point that gives us a
high true positive rate and a low false positive rate. This value is
selected by maximizing the difference between the true positive
and false positive rates at different thresholds. This process is
performed on the computer and optical perceptrons using the
same test data. The classification results for the different optical
perceptron datasets are displayed in Fig. 4. Although the data
consist of a cloud of points, the definition of a threshold enables
the data to be separated into the two binary outputs of a
perceptron. The figure also illustrates the various detection
possibilities and the associated false positive and false negative
error rates.

Table 1 shows the comparison between the performance of
the optical and computer perceptrons for the different databases.
In each of the database, the results are obtained from the same
data for the optical and computer perceptron. Notice that the
optical perceptron has a slight impact on accuracy compared to
the computational perceptron; this difference is less than 2% for
both databases. We also demonstrate that using a large, complex
database does not affect the system's performance.

Type of Database Size of Size ™ | P | BN | ™™ Accﬁuracy
perceptron images | oftest (%)
Computer MNIST 28x28 1000 102 | 20 4 874 97,6

Photonic Pneumonia

assisted MNIST 28x28 1000 94 31 12 | 863 95,7
Computer MNIST 64x64 460 328 8 14 110 95,2

Photonic Pneumonia

assisted MNIST 64x64 460 318 6 24 112 93,5

Table.1 Comparison of the classification results obtained by the computer, and
by the photonic-assisted perceptron (TP: true positive, FP: false positive, FN:
false negative, and TN: true negative).

IV. CONCLUSION AND DISCUSSION

We have demonstrated a new photonic implementation of a
perceptron. Our approach is based on a simple heterodyne
interferometer setup. We have demonstrated a classification
efficiency comparable to that of a computer-based perceptron.
Our architecture offers a number of advantages. First of all, it
can be easily implemented with integrated optics. Second, its
intrinsic coherence opens up the prospect of new functionalities,
such as the processing of complex data sets [7], the development
of classification techniques in the complex plane, rather than just
along the real axis, and the use of coherent I/Q detection instead
of the digital processing used so far. Additionally, the proposed
approach can be easily generalized to a multi-heterodyne
architecture, for example using a frequency-shifting loop. This
architecture, which has already proved its potential for analog
computation in the real-time, enables multiplexing in the
frequency domain [8]. The use of these architectures could
provide gains of several orders of magnitude in terms of
computing speed, compared with the single perceptron
presented here, while leading to efficient implementation of
photonic accelerators for convolutional neural networks [9-11].

ACKNOWLEDGMENT

M.C.P. and C.R.F.P. acknowledge the support of the
Agencia Estatal de Investigacion (P1D2020-120404GB-100,
EQC2019-006189-P). M.C.P. also acknowledges support from
Ministerio de Universidades, Spain, Grant FPU21/05449.
H.G.C. acknowledges support from Rennes Métropole (grant
"Allocation d’Installation Scientifique" 2024). This research
was also partly funded by Région Bretagne, FEDER, and
Rennes Métropole (CPER PhotBreizh).

REFERENCES

[1] B.J. Shastri, A. N. Tait, T. Ferreira de Lima, ef al. “Photonics for artificial
intelligence and neuromorphic computing,” Nat. Photonics, vol. 15, pp.
102-114, 2021.

[2] X. Xu, M. Tan, B. Corcoran, J. Wu ef al., “Photonic perceptron based on
a Kerr microcomb for high-speed, scalable, optical neural networks,”
Laser Photonics Rev., vol. 14, no. 10, paper 2000070, 2020.

[3] T. Wang, S. Y. Ma, L. G. Wright, T. Onodera et al., “An optical neural
network using less than 1 photon per multiplication,” Nat. Commun., vol.
13, paper 123, 2022.

[4] M. Mancinelli, D. Bazzanella, P. Bettotti, et al., “A photonic complex
perceptron for ultrafast data processing,” Sci. Rep. vol. 12, paper 4216,
2022.

[5] L. Deng,“The MNIST database of handwritten digit images for machine

learning research”, IEEE Signal Process. Mag., vol. 29, no. 6 pp.141-142,
2012.



(6]

J. Yang, R. Shi, D. Wei et al. "MedMNIST v2 — A large-scale lightweight
benchmark for 2D and 3D biomedical image classification." Sci. Data, v
ol. 10, no. 1, paper 41, 2023.

Y. Xie, X. Ke, S. Hong, Y. Sun et al. “Complex-valued matrix-vector
multiplication using a scalable coherent photonic processor,” Sci. Adv.,
vol. 11, paper eads7475, 2025.

G. Bourdarot, J.-P. Berger, and H. Guillet de Chatellus, “Multi-delay

photonic correlator for wideband RF signal processing, “ Optica, vol. 9,
no. 4, pp. 325-334, 2022.

]

[10]

(1]

H. Zhou, J. Dong, J. Cheng, W. Dong et al., “Photonic matrix
multiplication lights up photonic accelerator and beyond,” Light Sci.
Appl., vol. 11, paper 30, 2022.

M. Chegini, Y. Guan, and J. Yao, "A microwave photonic processor for
convolutional neural networks with increased effective speed of
convolution," J. Lightw. Technol., in press, 2025.

S. R. Kari, N. A. Nobile, D. Pantin, V Shah, and N. Youngblood,
"Realization of an integrated coherent photonic platform for scalable
matrix operations," Optica, vol. 11, no. 4, pp. 542-551, 2024.



	Portada
	Indice paper
	Paper



