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if it is safe to load the Catalog Index. Click “Load”.  

2. A new window will appear with search options. Enter your search terms and proceed 
with your search as usual. 

 
For Acrobat 8: 

1. Open the Search window, type the words you want to find, and then click Use 
Advanced Search Options (near the bottom of the window). 

2. For Look In, choose Select Index.  
3. In the Index Selection dialog box, select an index, if the one you want to search is 

available, or click Add and then locate and select the index to be searched, and click 
Open. Repeat as needed until all the indexes you want to search are selected.  
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A MULTI-PERSPECTIVE SIMULATOR FOR VISUALIZING AND 
ANALYZING THE KINEMATICS AND SINGULARITIES OF 2UPS/U 

PARALLEL MECHANISMS 

A. Peidró, A. Belando, D. Valiente, O. Reinoso, L. Payá 
Miguel Hernández University (SPAIN) 

Abstract 
This paper presents an educational simulation tool for graphically studying the forward kinematic 
problem and singularities of 2UPS/U parallel mechanisms. The presented tool allows the user to 
analyze the solutions of the forward kinematic problem from three perspectives: 1) as a set of eight 
discrete points in the complex domain, 2) as the zeroes of an eighth-degree characteristic polynomial, 
and 3) as the intersection points between two planar curves that represent the kinematic restrictions of 
the mechanism. Through several examples, we demonstrate the didactic usefulness of analyzing from 
these multiple perspectives the solutions of the forward kinematic problem and their relationships with 
singularities. We show that this is especially useful in degenerate situations, in which some 
perspectives are not valid since they fail to properly represent all the solutions of the forward kinematic 
problem. 

Keywords: forward kinematics, parallel mechanism, simulator, singularities 

1 INTRODUCTION 
Robot manipulators are complex systems, so education in robotics requires using educational 
simulators [1] that allow the students to experiment with simulated robots and become familiar with 
some concepts before learning with real robots. This paper presents a simulation tool for analyzing the 
kinematics and singularities of parallel manipulators of type 2UPS/U. The presented simulator is part 
of the educational virtual laboratory PaRoLa (Parallel Robotics Laboratory, [2]), which is a web-based 
laboratory dedicated to the simulation of parallel robots and mechanisms. A parallel robot is a 
manipulator in which the motion of the gripper is controlled through two or more legs assembled and 
working in parallel. These robots have some advantages over the classical arm-like manipulators with 
open kinematic architecture found in industry, such as: higher stiffness, higher payload-to-weight ratio, 
and higher dynamic capabilities. However, parallel robots also have smaller ranges of operation 
(workspaces), their forward kinematic analysis is more complex, and they can reach singular 
configurations where it is not possible to completely control the motion of the gripper. 

The 2UPS/U parallel mechanism, shown in Fig. 1, has a mobile body connected to a fixed body 
through a passive Universal joint (2UPS/U) and two parallel legs with Universal-Prismatic-Spherical 
architecture (2UPS/U), where the prismatic joint is actuated, i.e., we can control lengths ݀ଵ and ݀ଶ of 
the UPS legs by means of, for example, electric linear actuators. By controlling lenghts ݀ଵ and ݀ଶ, it is 
possible to control the relative orientation between the fixed and mobile bodies. This relative 
orientation can be parameterized by angles ሺߙ, -ሻ, which are indicated in Fig. 1. This 2-degrees-ofߚ
freedom orientation mechanism has been studied by some authors [3,4]. 

In this paper, we present an educational simulator for studying the forward kinematic problem and 
singularities of this parallel mechanism. The main characteristic of the presented simulator is that it 
allows the user to study, visualize, and understand the solution of the forward kinematic problem from 
multiple complementary perspectives, which is especially useful when some of these perspectives fail 
to properly describe the solutions of this problem. 

This paper is organized as follows. Section 2 presents and reviews the forward kinematic problem and 
singularities of 2UPS/U parallel mechanisms. Section 3 describes the educational simulation tool 
developed for interactively studying these two problems. Section 4 presents some examples of use of 
the presented educational tool. Finally, section 5 summarizes the main conclusions. 

 

 

 



 
Figure 1. Schematic representation of the 2UPS/U parallel mechanism. 

2 KINEMATICS AND SINGULARITIES OF 2UPS/U MECHANISMS 
This section describes the two problems of 2UPS/U mechanisms that can be studied using the 
developed simulator: the forward kinematic problem, and the problem of singularities. 

2.1 The forward kinematic problem of 2UPS/U mechanisms 
The forward kinematic problem of this mechanism consists in determining the relative orientation 
between the fixed and mobile bodies in terms of lengths ሺ݀ଵ, ݀ଶሻ of the UPS legs. The relative 
orientation between both bodies can be parameterized by angles ሺߙ,  .ሻ, which are indicated in Fig. 1ߚ
In order to solve ሺߙ, ,ሻ in terms of ሺ݀ଵߚ ݀ଶሻ, we must first write the kinematic restrictions of this 
mechanism, which are: 

ቯݎ ቎
sinሺߙሻcos	ሺߚሻ
sinሺߙሻsin	ሺߚሻ
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െ ݀ଶଶ ൌ 0 (2)

where ݎ is the size of the mobile body, whereas ܉௜ ൌ ൣܽ௜௫, ܽ௜௬, ܽ௜௭൧
் (݅ ൌ 1,2) are the coordinates of the 

centers Ai of the universal joints of the UPS legs, in frame XYZ (which is attached to the fixed body). 
Similarly, ܊௜ ൌ ሾܾ௜௨, ܾ௜௩, ܾ௜௪ሿ் (݅ ൌ 1,2) are the coordinates of the centers Bi of the spherical joints of the 
UPS legs, with respect to frame UVW (which is attached to the mobile body).  

The forward kinematic problem consists, therefore, in solving ߙ and ߚ from Eqs. (1) and (2), for given 
known values of ሺ݀ଵ, ݀ଶሻ. This problem can be solved as follows: 

1. Eqs. (1) and (2) involve trigonometric terms in angles ߙ and ߚ. Using the tangent half-angle 
substitution (sin ݔ ൌ ሺ2 ൉ ௫ሻ/ሺ1ݐ ൅ ௫ଶሻ, cosݐ ݔ ൌ ሺ1 െ ௫ଶሻ/ሺ1ݐ ൅ ௫ݐ ௫ଶሻ, withݐ ൌ tanሺ2/ݔሻ), these two 
equations can be transformed into two quadratic equations in ݐఈ and ݐఉ. 

2. Using resultants, it is possible to eliminate ݐఉ (or ݐఈ) between these two quadratic equations, 
arriving at a single characteristic polynomial equation of degree 8 in ݐఈ (or ݐఉ, respectively): 



ఈ଼ݐ଼݇ ൅ ݇଻ݐఈ଻ ൅ ݇଺ݐఈ଺ ൅ ݇ହݐఈହ ൅ ݇ସݐఈସ ൅ ݇ଷݐఈଷ ൅ ݇ଶݐఈଶ ൅ ݇ଵݐఈ ൅ ݇଴ ൌ 0 (3)

where ௝݇ denote (lengthy) coefficients that depend on ሺ݀ଵ, ݀ଶሻ, ܉ ,ݎ௜, and ܊௜. Thus, the forward 
kinematic problem of the 2UPS/U mechanism has eight different solutions, i.e.: for a given pair 
ሺ݀ଵ, ݀ଶሻ, we will have eight different pairs ሺߙ,  ሻ that simultaneously satisfy both Eqs. (1) and (2) (eightߚ
different relative orientations between the fixed and mobile bodies). In general, some of the solutions 
will be complex numbers (i.e., non-real, with non-zero imaginary part). 

2.2 The problem of singularities in 2UPS/U parallel mechanisms 
The singularities of the 2UPS/U mechanism are the configurations at which it is not possible to 
completely control the angular velocity of the mobile body by means of the controlled lengths ሺ݀ଵ, ݀ଶሻ. 
These configurations occur when detሺ۸ሻ ൌ 0, where ۸ is the Jacobian matrix: 

۸ ൌ ൤߲݁ଵ ⁄ߙ߲ ߲݁ଵ ⁄ߚ߲
߲݁ଶ ⁄ߙ߲ ߲݁ଶ ⁄ߚ߲ ൨ (4)

and where ݁ଵ and ݁ଶ denote the left-hand sides of Eqs. (1) and (2), respectively. Equation {detሺ۸ሻ ൌ 0} 
defines the singularity locus of the mechanism, which is the geometric locus of all singular 
configurations of the 2UPS/U mechanism. This geometric locus can be represented in plane ሺ݀ଵ, ݀ଶሻ, 
which yields a set of singular curves. The representation of these singular curves in plane ሺ݀ଵ, ݀ଶሻ is 
useful for the following purposes: 

x For safely controlling the motion of the mechanism. When we control the 2UPS/U mechanism, 
actually we are controlling lengths ሺ݀ଵ, ݀ଶሻ by means of, for example, electric linear actuators. 
Controlling ሺ݀ଵ, ݀ଶሻ is equivalent to moving in plane ሺ݀ଵ, ݀ଶሻ. Therefore, it is important to know 
the shape and location of the singular curves in this plane, so that they can be avoided if we 
wish to completely control the angular velocity of the mobile body at all times. 

x For studying transitions between different solutions of the forward kinematic problem. Parallel 
mechanisms can perform transitions between different solutions of the forward kinematics, by 
encircling cusp points of the singular curves in plane ሺ݀ଵ, ݀ଶሻ [5]. 

The singular curves divide plane ሺ݀ଵ, ݀ଶሻ into different regions, such that the number of real solutions 
of the forward kinematic problem is constant over each region (but the number of real solutions 
changes between adjacent regions). 

Finally, it is important to remark that the concrete shape and location of the singular curves defined 
above depend on the geometric design parameters of the mechanism, which are ܉ ,ݎ௜, and ܊௜. When 
modifying these parameters, the singular curves transform as a consequence, which may result in 
wider (or narrower) singularity-free regions in plane ሺ݀ଵ, ݀ଶሻ, or in a higher (or smaller) presence of 
cusps in these curves, etc. This can be easily visualized and analyzed using the developed 
educational simulator, which is presented next. 

3 DEVELOPED EDUCATIONAL SIMULATOR OF 2UPS/U PARALLEL 
MECHANISMS (USER’S MANUAL) 

This section presents and describes the functionalities of the educational simulator developed for 
studying and visualizing the forward kinematic problem and the singularities of 2UPS/U parallel 
mechanisms. 

The developed simulator is available and can be downloaded from the website of PaRoLa, the 
educational virtual laboratory of parallel robots: http://arvc.umh.es/parola/2ups_u.html. After 
downloading it, the latest version of Java may be needed in order to properly run it. 

This simulator has been developed using Easy Java Simulations (EJS) [6]. EJS is an intuitive 
authoring tool for developing educational simulators in Java and Javascript programming languages. 
EJS greatly facilitates the task of programming educational graphical user interfaces, so that the 
designer of the simulator only needs to focus on the educational contents of the simulator, without 
worrying about low-level implementation details. 

The developed simulator is shown in Fig. 2. This simulator has three windows: w1, w2, and w3. Let us 
begin by analyzing window w1, which has three panels p1, p2, and p3: 



x Panel p1 represents a schematic three-dimensional view of the 2UPS/U mechanism. 
x Panel p2 represents plane ሺ݀ଵ, ݀ଶሻ, with singular curves represented in blue. This panel also 

represents a tiny magenta square, whose coordinates are the current values of ሺ݀ଵ, ݀ଶሻ. 
x Panel p3 is a control panel in which the user can use several sliders and numeric fields to 

modify ݀ଵ, ݀ଶ, or any of the geometric design parameters of the mechanism (܉ ,ݎ௜, ܊௜). When 
the user modifies any of these geometric design parameters, the singular curves of panel p2 
are deformed accordingly. 
 

 
Figure 2. Windows and panels of the developed simulator. 

 

Window w1 allows the user to simulate the forward kinematic problem. Recall from section 2.1 that the 
forward kinematic problem consists in inserting known values of ሺ݀ଵ, ݀ଶሻ and computing the resulting 
angles ሺߙ, ,ሻ. To insert or specify lengths ሺ݀ଵߚ ݀ଶሻ, the user can use the sliders and numeric fields of 
control panel p3. Alternatively, it is possible to click and drag the tiny magenta square in panel p2, 
which allows the user to simultaneously vary both ݀ଵ and ݀ଶ. When varying ሺ݀ଵ, ݀ଶሻ by any of these 
means, the simulator automatically solves the forward kinematic problem, obtanining angles ሺߙ,  ,ሻߚ
and it represents the corresponding posture of the mechanism in panel p1. Although panel p1 only 
represents one of the possible solutions of the forward kinematic problem, recall from section 2.1 that 
this problem has eight different solutions. Where are the remaining seven solutions represented? 

The forward kinematic problem of the 2UPS/U parallel mechanism has eight different solutions since 
its characteristic polynomial (3) has degree 8. In general, some of these solutions will be complex, i.e., 
 will be complex numbers with non-zero imaginary part (complex solutions are not physically ߚ and ߙ
possible, i.e., for these solutions the mechanism cannot be assembled and would remain mechanically 
“opened”). The number of complex solutions obtained after solving the forward kinematic problem will 
depend on the precise values of ሺ݀ଵ, ݀ଶሻ and (܉ ,ݎ௜, ܊௜) (for example, it is easy to see in Fig. 1 that, if 
݀ଵ and ݀ଶ are much larger than the remaining dimensions of the mechanism, then it will be impossible 
to assemble the mechanism and all eight solutions will be non-real). The eight solutions of the forward 
kinematic problem are represented in window w2 of the developed simulator, which also has three 
panels p4, p5, and p6: 



x Panel p4 represents the eight solutions for angle ߙ, in the complex plane. Each solution is 
represented in a different color: red, green, blue, cyan, magenta, yellow, black, and white. 

x Panel p5 represents the eight solutions for angle ߚ in the complex plane, following the same 
convention for colors as in panel p4. This means that, for example, red solutions in panels p4 
and p5 form a solution pair ሺߙ,  ሻ that simultaneously satisifes Eqs. (1) and (2) (and so on forߚ
the remaining colors). 

x Panel p6 is another control panel, in which the user can choose which solution (out of the 
eight solutions) should be represented in panel p1. Alternatively, the user can also select 
which solution to represent by directly clicking the desired solution in panels p4 or p5 (the 
selected solution appears enclosed by an orange square in both complex planes). Panel p6 
also allows the user to vary the representation ranges for the imaginary axes of panels p4 and 
p5. The range of representation for the real axes of these panels is always ሾെߨ,  .ሿ radiansߨ
This is because the complex solutions of ሺߙ,  ሻ always have real parts which are angles [7]ߚ
and, therefore, always wrap to interval ሾെߨ,  ߨሿ (angles differing by an integer multiple of 2ߨ
radians can be considered equivalent, for our purposes). This means that a solution leaving 
panel p4 (or p5) through its right edge (real part equal to ߨ), will reappear on its left edge (real 
part equal to െߨሻ, and vice versa. 

Note that, if the user selects a complex solution, the represented posture in panel p1 will have no 
physical meaning, since this posture is computed using only the real parts of ߙ and ߚ. 

Finally, the simulator has a third window w3, which has two panels p7 and p8. These two panels 
provide alternative perspectives of the forward kinematic problem: 

x Panel p7 represents the graph of the characteristic polynomial of the left-hand side of Eq. (3). 
In this case, the solutions of the forward kinematic problem are the zeroes of the polynomial, 
i.e., the points where this graph intersects the horizontal axis. 

x Panel p8 represents (real) plane ሺߙ, ߨሻ for െߚ ൑ ߙ ൑ ߨand െ ߨ ൑ ߚ ൑  Two curves are .ߨ
represented in this plane, which are the graphical representations of Eqs. (1) (red curve) and 
(2) (blue curve). Note that, for given geometric design parameters (܉ ,ݎ௜, ܊௜) and lengths 
ሺ݀ଵ, ݀ଶሻ, each of these two equations defines a curve in plane ሺߙ,  ሻ. According to thisߚ
representation, the real solutions of the forward kinematic problem are given by the 
intersection points of the red and blue curves of panel p8, since these intersection points 
simultaneously satisfy both Eqs. (1) and (2). 

To sum up: the developed simulator allows the user to analyze and visualize the forward kinematic 
problem from three complementary perspectives: 

x As a set of eight solutions in complex planes of variables ߙ and ߚ. 
x As the intersection between polynomial (3) and the horizontal axis. 
x As the intersection of planar curves (1) and (2) in real plane ሺߙ,  .ሻߚ

In these three cases, the solutions of the forward kinematic problem vary as the user varies ݀ଵ or ݀ଶ: 
the complex solutions of panels p4 and p5 describe trajectories along their respective complex planes, 
the characteristic polynomial (3) deforms and its zeroes vary accordingly, and the curves (1) and (2) in 
real plane ሺߙ,  .ሻ also deform, with their intersection points varying as a consequenceߚ

Note that, unlike the representations of panels p4 and p5, the representations of panels p7 and p8 
only allow the user to visualize the real solutions of the forward kinematic problem (i.e., real 
intersection points between planar curves). However, visualizing the same problem (the forward 
kinematic problem) from all these perspectives is very useful to better understand it, especially in 
singular degenerate cases in which some of these representations are not valid and miss important 
information. This will be illustrated in next section through some examples. 

 

 



4 ILLUSTRATIVE EXAMPLES OF THE USE OF THE DEVELOPED 
EDUCATIONAL SIMULATOR 

This section presents some examples that demonstrate the usefulness of the developed educational 
simulator to analyze the singularities and solutions of the forward kinematic problem of 2UPS/U 
parallel mechanisms from the different perspectives presented in section 3. 

4.1 Examples of simple, twofold, and threefold solutions 
For this example, we will use the default geometry of the simulator, which is: ݎ ൌ ଵ܉ ,0.3 ൌ ሾ0.1,0.1,0ሿ், 
ଶ܉ ൌ ሾ0.1, െ0.1,0.03ሿ், ܊ଵ ൌ ሾ0.03,0.03,0ሿ், ܊ଶ ൌ ሾ0.03, െ0.03,0ሿ். This corresponds to a fairly “regular” 
2UPS/U mechanism, as shown in panel p1 of Fig. 2. The singular curves in plane ሺ݀ଵ, ݀ଶሻ for this 
geometry are shown in panel p2 of Fig. 2. Let us analyze next the solutions of the forward kinematic 
problem for ሺ݀ଵ, ݀ଶሻ ൌ ሺ0.314,0.242ሻ, which is the position of the tiny magenta square in panel p2 of 
Fig. 2. This position is a regular configuration, at which the forward kinematic problem has eight 
different solutions, each with multiplicity 1 (i.e., eight simple solutions). This can be seen in the 
complex planes of ߙ and ߚ in panels p4 and p5 of Fig. 2: the eight complex solutions are different. As 
these panels show, in this example four solutions are real and four are complex. The four real 
solutions can also be visualized in panels p7 and p8 of Fig. 2: in panel p7, the graph of the 
characteristic polynomial (3) intersects the horizontal axis four times. Similarly, panel p8 of Fig. 2 
shows the four intersections between curves (1) and (2), with all four intersections being simple or 
secant. 

Next, let us analyze what happens when describing the diagonal red trajectory shown in panel p2 of 
Fig. 2, which begins at the magenta square with coordinates ሺ0.314,0.242ሻ, and ends at singularity 
ሺ݀ଵ, ݀ଶሻ ൎ ሺ0.284,0.198ሻ. When lengths ሺ݀ଵ, ݀ଶሻ describe this trajectory toward the singularity, the 
solutions ሺߙ,  ሻ describe the trajectories shown in Fig. 3a, in the respective complex planes. As thisߚ
figure shows, blue and cyan solutions (which are different at the beginning of the trajectory) coalesce, 
becoming a twofold solution. This is what happens when approaching singularities: at least two 
different solutions coalesce (more than two solutions coalesce when the approached singularity is 
“more special”). This twofold solution can also be visualized in the graph of the characteristic 
polynomial (3), since this case corresponds to a tangent crossing between this graph and the 
horizontal axis (Fig. 3b). Finally, this twofold solution is also visualized in the real plane ሺߙ,  ሻ, whereߚ
curves (1) and (2) become tangent (see Fig. 3c). 

 

 
Figure 3. (a) Evolution of complex solutions when approaching an ordinary singularity. (b) Double zero 

of the characteristic polynomial. (c) Tangent contact between curves defined by Eqs. (1) and (2). 

 

Finally, let us analyze the solutions of the forward kinematic problem when lengths ሺ݀ଵ, ݀ଶሻ describe 
the vertical dotted green trajectory indicated in panel p2 of Fig. 2. This trajectory begins again at 
magenta square with coordinates ሺ݀ଵ, ݀ଶሻ ൌ ሺ0.314,0.242ሻ, but it ends now at the cuspidal singularity 
with coordinates ሺ݀ଵ, ݀ଶሻ ൎ ሺ0.315911,0.287575ሻ. When the lengths ሺ݀ଵ, ݀ଶሻ describe this trajectory, we 
see in Fig. 4a that the red, black, and white solutions coalesce in both complex planes of ߙ and ߚ. This 
means that we have a threefold solution (threefold solutions occur at cusp singularities). This triple 
solution is also reflected in the graph of polynomial (3), which intersects the horizontal axis at a triple 
zero (Fig. 4b). Finally, this threefold solution can also be visualized in real plane ሺߙ,  ሻ, where curvesߚ
(1) and (2) have a higher-order contact near the origin (Fig. 4c). 

 



 
Figure 4. (a) Coalescence of three solutions when approaching a cusp in plane (d1,d2). (b) Triple zero 
of the characteristic polynomial. (c) Higher-order contact between curves defined by Eqs. (1) and (2). 

 

4.2 Example of a degenerate solution 
Consider now a 2UPS/U mechanism with the following geometry: ݎ ൌ ଵ܉ ,0.3 ൌ ሾെ0.1,0,0ሿ், ܉ଶ ൌ
ሾ0.15,0.01,0ሿ், ܊ଵ ൌ ሾെ0.03,0.03, െ0.1ሿ், ܊ଶ ൌ ሾ0.03,0.03,0ሿ். As Fig. 5a shows, this mechanism has 
universal joint A1 lying exactly on axis X (ܽଵ௬ ൌ 0), whereas universal joint A2 is almost lying on the 
same axis (ܽଶ௬ ൌ 0.01, which is small but not zero). Fig. 5b shows the singular curves of this 
mechanism in plane ሺ݀ଵ, ݀ଶሻ. As the zoomed area of this figure shows, the singular curves have two 
“diamonds”, which are closed curves having four cusps [8] (note that the singular curves of panel p2 of 
Fig. 2 also exhibit two diamonds of this type). If ܽଶ௬ is further reduced to 0.001, such that universal 
joint A2 gets even closer to axis X, these two diamonds become smaller (see Fig. 5c). In the limit, 
when A2 lies exactly on axis X (like joint A1), the two aforementioned diamonds degenerate and 
become isolated points (Fig. 5d). Isolated singularities like these have interesting effects on parallel 
mechanisms [9]. Therefore, we can use the developed simulator to study what happens near the 
isolated singularities of Fig. 5d. 

 

 
Figure 5. (a) A 2UPS/U mechanism with almost aligned fixed body. As universal joint A2 gets closer to 

axis X, the diamonds of (b) become smaller (c) and eventually degenerate into points (d). 

 

For example, following the same procedure as in previous examples, let us use the simulator to check 
how the solutions of the forward kinemaic problem evolve as lengths ሺ݀ଵ, ݀ଶሻ tend to the rightmost 
isolated singularity of Fig. 5d, whose coordinates are: ሺ݀ଵ, ݀ଶሻ ൎ ሺ0.24042,0.3245ሻ. For example, we 
can set ݀ଵ ൌ 0.24042 in the simulator and vary ݀ଶ from 0.3 to 0.3245 using the sliders. This would 
approach this isolated singularity from below, through vertical trajectory ߛ indicated in Fig. 5d. By 
doing this, the solutions evolve in the complex plane of ߚ as illustrated in Fig. 6a, in which six different 
solutions (two real and four complex – note that two pairs of complex solutions are coincident) seem to 
converge at ߚ ൌ െ2/ߨ rad. Therefore, one may think that we have a sixfold solution at the isolated 
singularity, besides two simple solutions indicated in Fig. 6a. However, checking the evolution of these 
solutions in the complex plane of ߙ reveals that these six solutions do not converge at all for the ߙ 
coordinate, which seems a strange behavior (one would expect both ߙ and ߚ coordinates of these 
solutions to coalesce simultaneously). 

 



 
Figure 6. (a) Six solutions seem to coalesce in the complex plane of ߚ when approaching the 

rightmost isolated singularity of Fig. 5d (magenta and yellow complex solutions coincide with white 
and black complex solutions, respectively, and are therefore overlapped in Fig. 6a). (b) Curves defined 
by Eqs. (1) and (2) at the beginning of the trajectory (d2 = 0.3). (c) The same curves for d2 = 0.324. (d) 

The same curves for d2 = 0.3245 (isolated singularity approached). 

 

To understand what is actually going on, it is necessary to analyze the forward kinematic problem as 
the intersection of curves (1) and (2) in real plane ሺߙ,  ሻ, in panel p8 of the simulator. Figs. 6b to 6dߚ
show the evolution of these curves as lengths ሺ݀ଵ, ݀ଶሻ approach the studied isolated singularity 
through vertical trajectory ߛ. Since this trajectory is vertical, ݀ଵ is kept constant and red curve (1), 
which only depends on ݀ଵ, does not change along the trajectory. This red curve consists of two 
intersecting portions: a horizontal segment ߚ ൌ െ2/ߨ and an (approximately) sinusoid portion. 

On the other hand, the blue curves (2), which only depend on ݀ଶ, are two loops. During the execution 
of trajectory ߛ, the red and blue curves intersect at four different points (and all four intersections are 
simple). However, as Figs. 6b-6d show, the blue curves deform and adopt a similar shape to the red 
curves as the isolated singularity is approached in plane ሺ݀ଵ, ݀ଶሻ. In the limit, when the isolated 
singularity is approached, the blue curves consist also of two intersecting portions, like the red curves: 
a horizontal segment ߚ ൌ െ2/ߨ	 and another (approximately) sinusoid portion. And this is where the 
previous apparently strange behavior of the complex solutions can be understood, as explained next. 

The sinusoid portions of the red and blue curves of Fig. 6d intersect at two points (and these 
intersections are simple). These are the simple solutions indicated in Fig. 6a. However, the horizontal 
portions of these curves are coincident, i.e., these portions have infinitely many different intersection 
points. This means that, in addition to the two mentioned simple solutions, this degenerate mechanism 
admits infinitely many solutions with ߚ ൌ െ2/ߨ, with angle ߙ being free: the mechanism can freely 
rotate about axis X, without control (visualize this in Fig. 1 for ߚ ൌ െ2/ߨ and joints A1 and A2 lying on 
axis X). This is a special self-motion singularity, in which the linear actuators are locked (lengths ݀ଵ 
and ݀ଶ are constant) but the mechanism admits finite uncontrolled motions. 

This example demonstrates the importance of analyzing the forward kinematic problem from different 
perspectives, as allowed by the developed tool. Although visualizing the solutions in the complex 
planes is useful to understand how different real and complex solutions coalesce at singularities, this 
representation is only valid when the forward kinematic problem admits a finite number of discrete 
solutions. In degenerate cases like the one studied in this subsection, it is necessary to visualize the 
forward kinematic problem from a more global perspective, such as the intersection of the planar 
curves that represent the kinematic restrictions of the mechanism. In these cases, representations of 
discrete solutions miss important information and solutions, as we have seen in Fig. 6a. 

5 CONCLUSIONS 
In this paper, we have presented an intuitive graphical and educational simulator, which allows the 
students to easily analyze the forward kinematics and singularities of 2UPS/U parallel mechanisms 
from multiple complementary perspectives. Through several examples of use of the presented tool, we 
have demonstrated the usefulness of these multiple perspectives for analyzing and understanding the 
solutions of the forward kinematic problem, as well as their relationships to singularities. The 
visualization of the forward kinematic problem as the problem of intersecting two planar curves, which 
represent the kinematic constraints of the mechanism, has proven to be especially useful and 
interesting to properly understand the solution of the forward kinematics in degenerate situations. 
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