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Abstract

In order to be fully autonomous, a mobile robot must
possess the skill of finding its location in a particular
environment. In other words, while navigating, a mobile
robot must be capable of finding its location in a map of
the environment (i.e. its pose < x, y, 8 >), otherwise the
robot will not be able to complete its task. The problem
becomes specially challenging if the robot does not
possess any external measure of its global position.
Naively, the position/orientation of the robot can be
determined using odometry sensors or inertial systems.
However, these sensors lack of accuracy when used for
long periods of time, due to wheel slippage, drifis and
other problems. Localization techniques are used
instead, in order to find the position of the mobile agent
in the space. The great majority of localization methods
rely on finding salient characteristics sensed by the
robot and relating them with a map of the environment.
In this paper we present a localization method based on
the Monte Carlo algorithm.

1. INTRODUCTION

A mobile robot must be capable of navigating through a
given environment while it tries to accomplish a
particular task. Frequently, the space traversed by the
robot will be unstructured and with objects or people
moving around. First, to navigate through the space, the
mobile robot must plan a trajectory starting at a point 4
in space and ending at point B. To plan a path, the robot
must know the structure of the environment, that is, a
map. Second, the robot needs to follow this trajectory
(path). While the robots moves along the planned path, it
needs to know its position and orientation. Naively, the
position and orientation can be obtained using
deadreckoning, that is, using odometry sensors.
However, these sensors lack of accuracy when used for
long time periods, due to wheel slippage, drifting and
others.

Thus, the mobile robot cannot rely uniquely on its
odometry information to find its sitnation in the
environment, instead, it must use a localization
technique: It must use the information provided by its
sensors to sense the space that surrounds it and relate his
observations with a map of the environment. In a general
way, the process of estimating the pose of a mobile agent
requires the extraction of distinctive characteristics of
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the environment, usually called landmarks. Different
kind of sensors can be used for sensing the space
surrounding the robot, being SONAR, laser rangefinders
and cameras the most common. It is worth mentioning
the early work shown in [1], where SONAR data is used
to extract salient features from the environment (mainly
vertical structures, ie. corners). Vision sensors have
been used by different groups for localization tasks. For
example, in [2] Neira et al. use the information provided
by a CCD camera and a laser rangefinder and then
extract corners and walls from the space surrounding the
robot. Olson [3], proposes the use of salient points in
stereo images extracted using the Forstner interest
operator, Afterwards, the 3D position of each point is
calculated and an ego-motion measure is estimated by
matching the points accross successive images. In the
work presented in [4], SIFT features are extracted from
images from the environment, working as visual
landmarks.

A different problem arises when a map of the
environment is not available. This represents a much
harder problem: The robot must find its location and,
simultaneously, build the map. This concept is often
called Simultaneous Localization and Mapping (SLAM).
In [5], a Kalman Filter approach to the SLAM problem
is shown.

The rest of the paper is organized as follows:
Section 2 explains the use of SIFT features. Next, in
section 3 we will explain the basics of Monte Carlo
localization. Section 4 describes the experimental setup
used to test the MCL algorithm together with the use of
visual SIFT features. Finally, in section 5 we analyze the
main results that obtained and propose future work
related to our investigation.

2. SIFT FEATURES

SIFT (Scale Invariant Feature Transform) features were
developed by David Lowe for image feature generation,
and used initially in object recognition applications (see
[6] for details). Lately, SIFT features have been used in
robotic applications [4], showing its suitability for
localization and SLAM tasks. The features are invariant
to image tramslation, scaling, rotation and partially
invariant to illumination changes and affine projection.
Thus, this enables the same point in space to be viewed
from different poses of the robot, which may occur while
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the robot moves around its workspace, thus providing
information for the localization process.

SIFT features are located at maxima and minima
of a difference of Gaussian function applied in scale
space. They can be computed by building an image
pyramid with resampling between each level. SIFT
locations extracted by this procedure can be understood
as significant points in space that are highly distinctive.
The next step needed is to describe that point in space, S0
that the robot can be capable of identifying it at a later
stage, while it navigates through the environment. In this
application, we used a descriptor similar to the one
proposed in [6], based on local image gradients, which
behaves correctly in the presence of illumination and
viewpoint changes.

3. MOBILE ROBOT LOCALIZATION

In robot localization we are interested in estimating the
pose of the vehicle (typically, the state & =(x, y, §)) using
a set of measurements Zi={zx, i=1..k} from the
environment and a set of actions u, performed. This can
be stated in a probabilistic way, that is: Localization
aims at estimating a belief function p(¢) over the space
of all possible poses, conditioned on all data available
until time £, that is: p(¢& | Zk). The estimation process is
usually done in two phases, which are repeated
recursively:  Prediction phase: In this phase, a motion
model is used to calculate the probability density
function (PDF) p(¢ | Zi1), taking only motion into
account. Usually it is assumed that the current state xx is
only dependent on the previous state &-1 and a control
input wx. The motion model is specified in the form of
the conditional density: p(¢k| &1, ui-1). The prediction is
then obtained by integration:

P& Z)= Pl | &erswen) P(Eer | Zis) déi (1)
* Update phase: In the second phase, a measurement
model is used to incorporate information from the
sensors and obtain the posterior PDF p(& | Zi). The
measurement model is given in terms of a probability
p(zx | &) which provides the likelihood of the state &
supposing that a particular measurement zx was observed.
The posterior density p(& | Zk) can be calculated using
Bayes' Theorem as follows:

—1
(2| Ze—p) = REIER PCR\Ze =)
pzx| Zr - 1)

Knowledge about the initial state at time fo is
represented by p(£). In the case of global localization,
where the pose of the vehicle is totally unknown, p(&) is
represented by a constant function over the space of all
possible poses, indicating that there is no previous
knowledge about robot’s position. Note that in
expressions (1) and (2) nothing is said about the
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representation of the PDF. This fact leads to a series of
different algorithms that are based on the above
prediction-update scheme, mainly: The Kalman filter,
Markov grid-based localization and Monte Carlo
localization.

3.1 Monte Carlo localization

Monte Carlo localization can be included in a set of
algorithms called particle filters, which have had a great
development during last decade (e.g. [7]). In MonteCarlo
localization (MCL for short), the PDF p(&) is
represented by a set of M random samples

X ={&4»i=1..M} extracted from it. Each particle

can be understood as a hypothesis of the true state of the
robot (ie. its pose & =(x, y, 6¢)). The algorithm is
calculated in a prediction-update fashion, implementing
equations (1) and (2) recursively. To localize the vehicle
globally, the initial set of particles is spreaded randomly
over the entire state space.

* Prediction phase: A set of particles y; is generated
based on the set of particles ., and a control signal k.
This step uses the motion model p(&, | &.; , uq) and
applies it to every particle in set y, As a result, a new set
of particles x’; is generated.

¢ Update phase: In this second phase, we take into
account an observation zx made by the robot. For each

particle in the set, a weight ® ,'c is computed. This

weight is calculated using the observation model
o, = p(z, |€:) , resulting in the set %={§,§,W,’c)
Finally the resulting set y, is calculated by resampling
with replacement from the set X_k , where the probability

of resampling each particle is given byco,’; . Finally, the

set y, represents the distribution p(&| Zx).

4. VISUAL NAVIGATION

In this section we describe our approach to robot
localization. Mainly, it is based on the Monte Carlo
algorithm and uses SIFT features as landmarks. A B21r
robot equipped with a calibrated stereo head was used
for the experiments. The experiment can be divided in
two phases: A) Environment exploration and map
creation, and B) Localization.

4.1 Environment exploration and map creation

The purpose of this step is to create a map of the
environment. This map is constituted by the interesting
points extracted from the images taken. Each interesting
point (landmark) is characterized by a SIFT descriptor,
as stated in section 1. In this first phase, the robot was
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commanded to move along the environment, varying its
position and orientation, Simultaneously, images were
captured with both cameras and processed to extract
SIFT features. Next, features extracted in the left image
were matched with the ones found in right image. Each
time a SIFT feature is matched correctly in both images,
its position relative to the robot is calculated using stereo
vision. In addition, the position of the SIFT feature in
space is determined relative to a global frame. The
information gathered is stored in a database, which
constitutes the map.

4,2Visual localization

When the robot needs to find its pose in the
environment, it captures images with its cameras,
processes them and finds SIFT features. Next, a
matching procedure between images is taken, in order to
find the relative position of the feature. Afterwards, the
robot tries to match any feature found with its
correspondence in the database using the Euclidean
distance between SIFT descriptors.
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Fig. 1. A global localization process with the Monte
Carlo algorithm.

The relative distance from the robot to a SIFT feature in
the map permits us to select, with high probability, some
areas of the map where the robot could be, and reject
some others, That is implemented by the sensor model
P(zx| &), which is used by the MCL algorithm described
in section 3. In Fig. 1 a global localization process is
shown. First, in Fig. 1 (a) a random set of particles is
spreaded over the entire space state (we show only the
(x, y) components for clarity). In the following figures, a
series of prediction-update phases are shown. Finally, in
Fig. 1 (d) the particles gather around the last robot
position, hence localizing the robot.

5. DISCUSSION AND FUTURE WORK
This paper describes a localization method based on the

Monte Carlo algorithm in combination with visual
landmarks. In particular, SIFT features have been used
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as visual landmarks, finding them suitable for the globa:
localization problem. Our approach has beer
implemented on a mobile platform and tested in a real
environment. Good results have been achieved, proving
the effectiveness of our solution. During ow
experiments, we found that some SIFT features found in
the environment lacked of stability: They were found
from a robot's pose, but could not be detected from
elsewhere. To solve this, we plan to track features for
consecutive frames, hence ensuring that the feature
found is stable and can be detected from different
viewpoints.

ACKNOWLEDGMENTS

This research is sponsored by the spanish Ministerio de
Educacién y Ciencia (Project reference: DPI2004-
07433-C02-01. Title: HERRAMIENTAS DE
TELEOPERACION COLABORATIVA. APLICACION
AL CONTROL COOPERATIVO DE ROBOTS).

References

[1] J. J. Leonard, H. F. Durrant-Whyte, “Mobile Robot
Localization by Tracking Geometric Beacons”. IEEE
Transactions on Robotics and Automation, vol. 7 no. 3,
1991,

[2] J. Neira, J. D. Tardés, J. Horn, G. Schmidt, “Fusing
Range and Intensity Images for Mobile Robot
Localization”. IEEE Transactions on Robotics and
Automation, vol 15, no 1, pp 76-83, Febrero 1999,

[3] C. F. Olson, L. H. Matthies, M. Schoppers, M. W.
Maimone,“Rover Navigation using stereo egomotion”.
Robotics and Autonomous Systems, no. 43, pp. 215-229,
2003.

[4] S. Se, D. Lowe, J. Little, “Vision-based Mobile
Robot Localization and Mapping using Scale-Invariant
Features”, Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), pp.
2051-2058, Seul, Mayo 2001.

[5] M. W. M. Gamini Dissanayake, P. Newman, S.
Clark, H. Durrant-Whyte, M. Csorba, A solution to the
Simultaneous Localization and Map Building (SLAM)
Problem”. J[EEE Transactions on Robotics and
Automation, vol. 17, no. 3, 2001.

[6] D. G. Lowe, “Distinctive Image Features from Scale-
Invariant Keypoints”, International Journal of Computer
Vision, no. 60, vol. 2, pp. 91-110, 2004. [7] S. Thrun, D.
Fox, W. Burgard, F. Dellaert, “Robust Monte Carlo
Localization for Mobile Robots”. Artificial Intelligence,
vol 128, n° 1-2, pp 99-141, 2000.

IADAT Journal of Advanced Technology on Imaging and Graphics. Vol. 1, No. 2, December 2005, pp. 39 - 86



