
Remote Control Laboratory Via
Internet Using Matlab and
Simulink
R. PUERTO, L.M. JIMÉNEZ, O. REINOSO

Department of Industrial Systems Engineering, University Miguel Hernández, Elche, Alicante, Spain

Received 26 February 2008; accepted 21 July 2008

ABSTRACT: This article describes the general architecture and application of a remote laboratory for teaching

control theory based in Matlab/Simulink. The proposed system allows solving the time and spatial limitations of

laboratories that rely on real physical systems used in control courses. In this way, control lab assignments with

various physical processes present in the remote laboratories can be performed. Also, some examples that show

the validity and applicability of the presented architecture are introduced. �2009 Wiley Periodicals, Inc. Comput

Appl Eng Educ 18: 694�702, 2010; View this article online at wileyonlinelibrary.com; DOI 10.1002/cae.20274

Keywords: control systems; real-time; Internet remote control; Matlab/Simulink

INTRODUCTION

The work presented in this article provides a general

architecture for remote execution in real-time of physical

processes using the Matlab platform. The main motivation is, on

one hand, the lack of lab scale models or real physical systems,

and on other, the fact that students of Control Engineering

courses have to adapt to the laboratory schedules available in

their schools, which are usually too restrictive. This application

will allow the students, using the Internet, to simulate the

operation of a controller designed for a physical process and

then to test this same controller in the real physical process

available in the remote laboratory.

Distance learning through the use of remote laboratories

via Internet is a highly topical issue as a consequence of the

large potential to increase the quality in the process of teaching

and learning [1]. A distance laboratory allows users to perform

experiments from a remote location, and can be divided into

two classes: virtual labs and remote labs [2]. In the virtual labs

the students can run simulations remotely with possible

animations. Some laboratory skills, such as the statistical

analysis of data, can be learned outside the laboratory [3].

However, experimental design can only be learned from using

real equipment in real experiments, often through a certain

amount of trial and error. On the other hand, remote labs are

laboratories where students can interact with actual experiments

via the Internet. A more detailed study between remote and

virtual labs is presented in Ref. [4]. Without a doubt, the use of

real physical systems allows the students to acquire knowledge

in a more efficient way than using only simulated exercises.

Through remote laboratories, users can plan and manage

experiments, analyzing the experimental data as if they were

physically present in the laboratory at any time.

Different real experiments through remote laboratories

have been proposed in a large number of disciplines [5,6]. In

the automatic control discipline, practical experiments with

physical systems are significantly important [7�9]. Most of the

experiences presented combine different developments that

allow make real experiments on control systems through the

Internet [10,11].

One of the main features of the system proposed in this

article consists of using a set of tools extensively known by the

students of automatic control such as Matlab and Simulink

[12,13]. These tools enable educators and students to focus on

control systems design, implementation, and evaluation rather

than on time-consuming, low-level programming. In this sense,

Schmid [10] presents a virtual laboratory, which uses Matlab/

Simulink for simulations using virtual reality. Bonivento et al.

[14] proposed a remote control laboratory based on Matlab/

Simulink but with a specific software application developed in

Visual Cþþ to interact with the physical models. In Ref. [15]

the authors use the Matlab Web Server tool to allow the remote

execution of Matlab from any computer having a web browser.

So, we have chosen the Matlab/Simulink platform (with

additional toolboxes) as the development tool of the application

proposed in this article for the following reasons: first of all,

Matlab, Simulink, and additional toolboxes constitute a reliable

platform widely used, with an adequate technical support and an

extensively use in control applications. Second, it is possible to

develop an application in the laboratory in a lesser time than

with other tools or platforms. Also, Matlab provides several

1Matlab and Simulink are trademarks of Mathworks Company.
Correspondence to R. Puerto (r.puerto@umh.es).

� 2009 Wiley Periodicals Inc.

694



tools for the remote execution of programs and a real-time

control toolbox to manage a physical system through a data

acquisition system. Finally, a lot of researches use this platform

as a development tool for both, simulation and real-time control

of physical systems.

The remainder of the article is organized as follows.

Second Section shows a general description of the architecture

is introduced. Third Section presents two physical systems

connected to RECOLAB with some examples of control design.

Fourth Section shows the experience of student usage. Finally

fifth Section presents the conclusions.

GENERAL DESCRIPTION OF THE SYSTEM

The main goal on developing the system was to achieve

accurate real-time executions over physical systems through

Internet, transparently connecting parameterized Simulink

schemes with user’s control design. In order to do this, it has

been necessary to integrate a specific hardware and software

architecture.

The general scheme of the application architecture is

shown in Figure 1. In this diagram, the hardware and software

elements are split into two main blocks: local area where the

user works, and remote area where the whole physical system

and control elements are located. The detailed elements of local

and remote areas are the following:

1. Local area:
* Computer with Internet connection and an HTTP 4.0

client application. The application is optimized for

Internet Explorer 6 and Firefox 1.� with a minimum

resolution of 800 � 600.

2. Remote area:
* High speed Internet connection.
* Computer server: the current implemented system

consists of a PC Pentium IV running Microsoft

Windows XP operating system.
* Data acquisition system: NI 6024E acquisition board

with analogue and digital I/O.
* Physical system to control: Two models are currently

implemented, a DC motor model 33-002 from

Feedback and a ‘‘Airflow Slider Cylinder.’’
* Images capture system and Web video server: an

Axis network camera with MPEG-4 video compres-

sion streams video and static images to the user.
* HTTP Server Apache v.2.0.54 with PHP 5.0 module.

This server allows the communication of the

computers using the http protocol.
* MATLAB R12 with SIMULINK V. 4.1: executes the

program that makes possible the real-time control of

the system and the generation of the results in a file.
* Real-time Windows Target Toolbox V.2.1: this

toolbox allows executing Simulink schemes in real-

time. For this purpose, it provides the necessary

blocks for the interaction with the data acquisition

system.
* Control System Toolbox 5.1.

Functionality of Software Application

This application has two aspects clearly differentiated:

1. Web application: this includes client-server communica-

tion using HTTP/HTML protocol, the user interface,

user’s access control, and the main Common Gateway

Interface (CGI) application. CGI is a standard for

interfacing external applications with information serv-

ers, such as HTTP or Web servers. This application is in

charge of resource access and communication between

Apache and Matlab.

2. Real-time application: this is a set of predefined Simulink

control schemes and Matlab code, based on Real-time

Windows Target toolbox, which implements the real-

time execution of Simulink schemes over a specific

physical system.

Different programming languages and development tools

has been used for each part. The non-critical task such as user

interface, security access and resource sharing, have been coded

in PHP (v.5.0) [16] running over an Apache HTTP server [17].

PHP is a popular script language that has been chosen as far as it

is an open language widely supported by most Web servers and

O.S. platforms, and with an extensive library that supports every

network protocol and data base access. PHP code runs on the

web sever so it shows a controlled environment for the

programmer and can communicate with any other process

running in the server (Matlab application in our case).

Of course, PHP as a scripting language is not suitable for

real-time applications. The hard real-time core of RECOLAB

(feedback control of physical systems) is developed in Simulink

and compiled with the Real-Time Windows Target tool [18].

Figure 2 shows the functional flow graph of main system

application. Following is a description of the main components

of the software application.

User Interface of RECOLAB. The user interface of

RECOLAB is based on standard HTML 4.0 mark-up

language. The HTML code is generated dynamically through

PHP scripts. The HTML layout is separated from the contents in

order to make of RECOLAB a flexible platform. All formatting

of data is based in CSS-styles and PHP layout predefined

functions for forms. The data content is stored in configuration

text files making quite easy and flexible to add new physical

systems, and control schemes without any modification in the

PHP code.

The user interface shown in Figure 5 is based in HTML

forms dynamically generated in PHP from the configuration

Figure 1 General architecture diagram.

REMOTE LAB USING MATLAB/SIMULINK 695



files. These pages also act as CGI using GET/POST parameters

for passing state information. Interactive actualization of forms

under user selection is done through CGI calls to the server and

not through client-side scripting. In this way security access can

be managed more effectively.

Every control Simulink scheme can be executed in

simulation or in real-time over the physical systems using an

acquisition board. The user can choose different control

strategies and regulators, and can select its parameters accord-

ing to the simulation experiments that are being carried out.

After an execution, the whole sampled or simulated

variables of the process can be downloaded. The results page

shows part of this information as a graph (the output of the

system) (see Fig. 6).

CGI Application. This application links the input data from

the user with the RT control Matlab program, synchronizes the

different modules, and records back the output data to the user.

The non-RT management tasks have been developed in PHP,

using files as basic mechanism to communicate with real-time

modules. In the next section we comment how this

communication is performed.

An additional task performed by this module is Access

Control. Most of Recolab site can be accessed from Internet

without any restriction, as far it is an open teaching tool. The

most critical point in Recolab is the real-time execution of the

Simulink schemes over physical systems. In order to have a

more efficient use of the laboratory resources, this processing

needs to be done under a validated access.

The validation system used for Recolab is integrated with

the CGI application and it is focused in access control of

application resources. The validation system is coded in PHP so

it permits to be integrated with the main application. Rendered

options by the PHP code are based on the validation done by

user. In this way there is no need to maintain different PHP code

for validated or not validated users. If an user request an option

that needs validation, the PHP code itself request for user

validation.

The validation process is based in a user name and a

password. The control access to the resources is based on a

user name and a priority level. Most of the resources in

Recolab use an access control by level.

Real-Time Control Application. This application runs the

real-time feedback control using the specified control scheme

over the physical system. This application has been developed

using the following tools: Matlab, Simulink, and Real-Time

Windows Target. This last tool allows generating the real-time

code to execute the Simulink schemes using an acquisition

board (and therefore, over the physical system, connected to it).

The fact of executing a Simulink scheme directly is an added

advantage, as far as the complexity and spent time working with

Simulink are drastically decreased, allowing an easy and fast

design, and modification of control schemes.

Real-time control using Simulink is performed through

Real-Windows Target. This toolbox generates source code that

translates feedback control of Simulink scheme. This source

code is compiled with Watcom C compiler in order to generate

the real-time execution code. Each Simulink scheme depends

on the type of regulator, control method and the physical system

to be controlled, but there are some common elements:

& A Regulator (specific in each case, P, Pi, PD, PID,

state feedback, etc.).
& Acquisition board interaction block that provides

Analog and digital input/output interface with the

physical system. In our case this hardware is a

Nation Instruments 6024E board that is managed

through an specific library block.
& Auxiliary blocks for setting an initialization of

actuators, and sensors.

Once designed and compiled the Simulink scheme, this

code can be executed from command line using set_param

Matlab instruction [18]. This is the mechanism used in

RECOLAB to connect the real-time execution with the user

interface. A Matlab code based in this instruction implements

Figure 2 Functional description of RECOLAB application.

696 PUERTO, JIMÉNEZ, AND REINOSO



the selection of control model, type of regulator and more

important, updates dynamically the parameters of regulator

without any additional recompilation, as far the structure of

regulator or control scheme does not change. For example, a

PID regulator has several adjustable parameters: gain, poles,

and zeros (vectors of rank 2). These five variables can be

accessed from command line using set_param instruction

allowing been modified in each real-time execution without

recompiling the Simulink scheme. Finally, this Matlab

instruction can be used to start and stop the real-time execution.

Table 1 shows an example of real-time execution of a

precompiled Simulink scheme.

Real-Time Task and CGI Interprocess Communication.

The interface to real-time control execution is handled by a CGI

application developed in PHP. This application starts the Matlab

real-time control task with the parameters requested from

the user and synchronizes its execution using a file-based

semaphore mechanism. The whole detailed procedure

implemented to run a Simulink simulation or a real-time

execution is as follows:

(1) The user (client) connects to the RECOLAB server and

chooses through the user interface the simulation or

real-time execution of a specified Simulink scheme. For

example, the user can select the type and the parameters

of the controller, giving the values of the coefficients of

the polynomials that conforms the numerator and

denominator of its transfer function or the state

feedback gain matrix.

(2) PHP module executes the CGI associated to the user

interface webpage, stores the user data in a file. At this

point launches the Matlab control session in back-

ground, dealing with access privileges and resource

sharing between the concurrent connections. It also

tracks for any problem in the real-time code execution.

Together with this action the specific M-file is executed

under Matlab. This script code reads the configuration

file written by the CGI and loads the adequate Simulink

file, updating its parameters (selected by the user), and

launching the real-time execution or simulation.

(3) Once finished the simulation or the real-time execution,

all the result data is stored (included the figures

with time response) and the PHP task is signaled, by

means of semaphore mechanism, showing that the

execution is ended. Main control CGI (PHP) reads the

experiment and generates the HTML page with the

graphs of the results. In this same page, the user can

download the experiment data file (Matlab .mat file

type) for later analysis in local computer.

This procedure is shown schematically in Figure 2. There

must be remarked that only one execution can be done at the

same time, as far as it must use the physical system and real-

time resources. This is why a semaphore control mechanism

based in files has been implemented. When more than a request

is accepted by the Apache Web server they are queued waiting

until previous execution ends or a timeout expires. Obviously,

only one user can execute a real-time experiment with the

servomotor at the same time.

The system permits also simple simulations of Simulink

schemes, indeed it is a recommended step before a real-time

execution. In this case, and when only simulations are

requested, they can be done concurrently.

EXPERIMENTAL SYSTEMS AND
EXAMPLES

This section describes the physical systems connected to

RECOLAB [19] and some control examples. We only describe

real-time examples (not simulation) since this is the most

interesting feature of RECOLAB. Currently, the laboratory has

two physical systems connected to RECOLAB, which allows

performing a wide-range of control experiments. These systems

are a DC motor and a sliding cylinder.

The DC motor consists of a Feedback 33-100 mechanical

unit [20]. The mechanical components of this unit are: the DC

motor itself, an analogical tachometer, an analogical potenti-

ometer with a position signal, absolute incremental digital

encoders and a magnetic brake. Figure 3 shows this system with

a camera, which allows sending the acquired images to the

video server.

The sliding cylinder consists of a tube made of

methacrylate where an object slides propelled by an air flow

obtained from a DC fan. A photoelectric sensor placed in the

top of the tube obtains the position of the object. Figure 4 shows

an image of the sliding cylinder.

When a user enters to the system, he is allowed to perform

a simulation or a real-time execution for each one of the systems

mentioned above. The different types of experiments and

control schemes applicable to each system are the following:

Table 1 Matlab Example Code for Real-time Execution of Simulink Scheme

% Matlab code for Simulink file emmotorvelpid.mdl 
open_system('emmotorvelpid'); 
set_param('emmotorvelpid','stopfcn','generares'); 
set_param('emmotorvelpid/Ref','after',instruct.Ref); 
set_param('emmotorvelpid/Kp', 'Gain', instruct.Kp); 
set_param('emmotorvelpid/PID', 'denominator', instruct.den); 
set_param('emmotorvelpid/PID', 'numerator', instruct.num); 
save_system('emmotorvelpid'); 
set_param('emmotorvelpid','simulationcommand','connect'); % Connect 
Real – Time Kernel System 
set_param('emmotorvelpid','simulationcommand','start'); 

REMOTE LAB USING MATLAB/SIMULINK 697



& DC engine
* System identification.
* PID controllers for velocity and position control.
* Algebraic controllers based on poles placement

technique.
* State feedback control with and without reference

following.
& Sliding cylinder

* PID controllers.
* Algebraic controllers based on poles placement

technique.
* Algebraic controllers based on minimum- and finite-

time.
* Minimum variance controller with and without

integral action.
* State feedback control.
* Predictive control.
* Optimal control.

As can be seen, the identification experiment is only

allowed for the DC engine, whereas this is not the case for the

sliding cylinder because of its complexity. However, this

complexity allows on the other hand performing more complex

controllers, which have no sense in the DC engine case.

Once the user has accessed to the system, a page appears in

which all needed data to perform the real-time execution are

requested. Then, the process to follow in order to specify the

type of experiment to perform is the following:

1. Select the physical system in which the experiment is

going to be performed (DC engine or sliding cylinder).

2. Select the control model to apply. Depending on the type of

the chosen physical system, these models will allow

different options. For example, for the DC engine control

we can use position and velocity feedback, state feedback,

etc.

3. Select the type of controller. For example, PID

controllers, state feedback, predictive control, etc. As

mentioned before, the types of controllers applicable in

each case will depend on the system and the chosen

control model.

4. Simultaneously to the selection of the previous options,

the page is dynamically modified to show the chosen

system (the Simulink diagram which will be executed in

real-time) as well as the parameters associated to the

chosen controller, allowing to input these parameters.

5. Once the user has introduced all data, the experiment can

be performed, and when it is finished, the output signal is

shown in the screen. Moreover, the application allows to

download a ‘‘.mat’’ file with the values of the most

significant signals (output, control action, etc.) in order to

be analyzed by the user.

To illustrate the described process, an example of velocity

DC control using a PID controller is presented next. To do this,

the system, the execution model and the controller type are

chosen. Then, the webpage shows the Simulink diagram to be

executed as well as the PID controller transfer function,

allowing the user to input data. In this case, the controller

transfer function has the following form:

RðzÞ ¼ Kpðz� aÞðz� bÞ
zðz� 1Þ

The parameters of the controller transfer function are

computed from the specifications described in the laboratory

assignments for the students, achieving these specifications

using the root locus design method. Figure 5 shows the content

of the webpage before and after the execution, in which all the

described items can be seen.

After the execution, a webpage with the graph of the

output signal is presented to the student (in this case the engine

velocity). This page is shown in Figure 6, which also shows that

Figure 3 Feedback 33�100 mechanical unit. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 4 Sliding cylinder.

698 PUERTO, JIMÉNEZ, AND REINOSO



the system allows the download of all the signals involved in the

execution in order to be analyzed by the students.

SYSTEM USAGE

RECOLAB system started being used in 2003. So far, the

response of the students has been satisfactory. First, there have

been a high number of accesses to the simulation system; and

more importantly, there have also been a high number of

accesses to the real-time control of the physical equipment.

Considering the four subjects where this physical equip-

ment was used during practice sessions from the 2003 to 2004

academic year, there were 172 students which could be potential

users of the RECOLAB system. Even though these students had

attended the practice sessions (it was compulsory, as the system

was not fully tested), 59% of them accessed and used the system

to repeat remotely some of the practice sessions they have

already attended. During the academic year 2004/2005, there

were 183 students in the four subjects where RECOLAB system

was used. In this academic year 74% of the students accessed to

the system and used it to repeat some practice sessions. During

the academic year (2005/2006) there were 195 students enrolled

in such subjects. In this case, most of the students (91%)

connected to the system. Finally, during the last academic year

(2006/2007), from a 173 students enrolled, 170 used the system

to make remote practice through Internet. Figure 7 shows the

percentage of students using this tool to practice on control

systems through Internet. As a conclusion, the students were

able to continue working after the laboratory sessions: some of

them performed additional experiments with different param-

eters or different control schemes; while others simply finished

the work they have not been able to finish in the laboratory due

to time limitations.

The average number of accesses per student was 5.3;

meaning that students preferred to split the work in different

sessions. The average connection time per session was 35 min.

This behavior is practically similar to the previous academic

years. Figure 8 shows the number of accesses per student and

the connection time per session made by the students during

2006/2007 academic year. These are other advantages of the

RECOLAB system when compared to a traditional laboratory

exercise: it is possible to choose the number and duration of the

sessions used to perform a certain experiment with the physical

system.

All these data show that the tool developed helps the

students, giving them a high degree of flexibility to perform the

practice work whenever it suits them.

The effectiveness of the tool was evaluated by the

participants. Table 2 summarizes the survey results from 694

undergraduate students at the Department of Industrial Systems

Engineering at Miguel Hernández University, Spain, during the

last years. Overall, the survey clearly revealed that the tool

received a very positive feedback. However the tool can be

Figure 5 User interface of RECOLAB. [Color figure can be viewed in the online issue, which is available

at wileyonlinelibrary.com.]

REMOTE LAB USING MATLAB/SIMULINK 699



improved in partial aspects. Students requested more physical

systems were included in the Internet laboratory so that they

could manage and prove the control systems over more physical

systems. Also, in some specific occasions some students had

connection problems as a consequence of other students were

using the remote physical system to prove the designed control

scheme and the access time was higher than it was to be

expected.

CONCLUSIONS

In this article, an architecture that allows real-time control

through the Internet has been presented. Besides, the proposed

system allows data interchange (results, data plots, video, etc.)

between the user and the remote laboratory. This architecture

based on Matlab and Simulink has been applied on a DC motor

remotely controlled. However, even though the application

example presented in the article is focused on the control of a

DC motor, the same Internet-based real-time control scheme

can be applied to many other laboratory equipments.

The main advantage of the proposed system is that it helps

the student to perform practice experiments remotely. Apart

from this teaching application, the tool developed and the ideas

presented in this article can also be used to test new control

schemes over different physical equipments. As a consequence,

and due to the excellent results achieved in the use of the remote

control laboratory, during this academic year (2006/2007)

professors and lecturers of the involved courses decided to

Figure 6 Results webpage. [Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

Figure 7 Percentage of students using RECOLAB as a no-compulsory

system to make practice in control engineering. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.

com.]

Figure 8 Number of accesses per student and connection time per

session during 2006/2007 academic year. [Color figure can be viewed in

the online issue, which is available at wileyonlinelibrary.com.]

700 PUERTO, JIMÉNEZ, AND REINOSO



make compulsory for the students the use of this remote

laboratory.

Even though the current version of RECOLAB is

operative and working, the system is continuously under

development. Some improvements for future versions include:

supervision of variables using a new Java client; increase in the

number of practice sessions and control schemes available;

transmission of higher compressed video in order to deal with

limited bandwidth networks; and addition of control theory

tutorials.

REFERENCES

[1] A. Ausserhofer, Web-based teaching and learning: A panacea?

IEEE Commun Mag 37 (1999), 92�96.

[2] M. Casini, D. Prattichizzo, and A. Vicino, The automatic control

telelab: A user-friendly interface for distance learning, IEEE

Trans Educ 46 (2003), 252�257.

[3] S. Ayasun and G. Karbeyaz, DC motor speed control methods

using MATLAB/Simulink and their integration into undergradu-

ate electric machinery courses, Computer Appl. Eng. Educ 15

(2007), 347�354.

[4] M. Exel, S. Gentil, F. Michau, and D. Rey, Simulation workshop

and remote laboratory: Two web-based training approaches for

control, Proc Am Control Conf 5 (2000), 3468�3472.

[5] M. Shor, Remote-access engineering educational laboratories:

Who, what, when, why, and how? Proc Am Control Conf 4

(2000), 2949�2950.

[6] R. Robson and M. Shor, A student-centered feedback control

model of the educational process, Front Educ Conf 2 (2000),

14�19.

[7] N. A. Kleir, K. J. Astrom, D. Auslander, K. Cheok, G. F. Franklin, N.

Masten, and M. Rabins, Control systems engineering education,

Automatica 32 (1996), 147�166.

[8] R. Pastor, J. Sanchez, and S. Dormido, Related: A framework for

publish web laboratory control system, In IFAC Internet Based

Control Educ 1 (2001), 207�212.

[9] R. Puerto, O. Reinoso, R. Neco, N. Garcia, and L. M. Jimenez,

Remote lab for control applications using matlab, In IFAC

Internet Based Control Educ 1 (2001), 121�127.

[10] C. Schmid, Virtual control laboratories and remote experimenta-

tion in control engineering, Proc 11th Annual Conference on

Innovations in Education for Electrical and Information Engineer-

ing, 213�218 (2001).

[11] R. Puerto, L. M. Jimenez, O. Reinoso, C. Fernandez, and R. Neco,

Remote control laboratory using Matlab and Simulink: Applica-

tion to a dc control model, In IFAC Internet Based Control Educ 1

(2004)), 53�59.

[12] W. Dixon, D. Dawson, B. Costic, and M. de Queiroz, Towards

the standardization of a matlab-based control systems laboratory

experience for undergraduate students, Proc Am Control Conf

(2001), 1161�1166.

[13] W. Dixon, D. Dawson, B. Costic, and M. de Queiroz, A matlab-

based control systems laboratory experience for undergraduate

students: Toward standardization and shared resources, IEEE

Trans Educ 45 (2002), 218�226.

[14] C. Bonivento, L. Gentili, L. Marconi, and L. Rappini, Aweb based

laboratory for control engineering education, Second Interna-

tional Workshop on Tele-Education in Engineering Using Virtual

Laboratories, 2002.

[15] J. L. Diez, M. Valles, A. Valera, and J. L. Navarro, Remote

industrial process control with Marlab web Server, Internet Based

Control Educ 1 (2002), 139�143.

[16] Online PHP documentation http://www.php.net.

[17] Online Apache documentation http://www.apache.org.

[18] Online Matlab documentation http://www.mathworks. com.

[19] RECOLAB web portal http://isa.umh.es/recolab/.

[20] Online Feedback educational models documentation http://

www.fbk.com.

BIOGRAPHIES

Rafael Puerto was born in Alicante (Spain)

in 1969. He received his MSc degree in

Computer Science in 1994 and his is

working in his PhD in Control Engineering

at the Miguel Hernández University of

Elche (Spain). From 1996 to 1999 he

worked in the Polytechnic University of

Valencia. His current position is as assistant

professor of Automatic Control (1998�),

Miguel Hernández University of Elche,

teaching subjects in the area of control engineering. His research

interests include Real-Time Systems, Multirate Control, Advanced

Control Systems, and Control Engineering Education. He has taken

part in several national and European research projects.

Table 2 Students Survey Results

Questions

Fully

disagree (%)

Partial

disagree (%)

Partial

agree (%) Agree (%)

Fully

agree (%)

a. Were the learning procedures clearly defined? 0 0 10 23 67

b. Was clear the use of the system? 0 0 5 18 77

c. What about the help system? 0 0 0 12 88

d. Do allow the system help to understand the

importance of practical experiments

in the subjects enrolled? 0 0 0 10 90

e. What is your opinion about the use of this

tool to improve your knowledge in control

engineering? 0 0 2 15 83

f. Overall, how would you rate this tool? 0 0 1 14 85

REMOTE LAB USING MATLAB/SIMULINK 701



Luis M. Jimenez was born in Avila (Spain)

in 1967. He received his MSc degree in

industrial engineering in 1992 from the

Polytechnical University of Madrid (Spain).

His current position is as assistant professor

of Automatic Control (1998�), Miguel

Hernández University of Elche, teaching

subjects in the area of control engineering.

From 1995 to 1998 he worked as assistant

professor at University of Alicante. His research interests include

Robotics control, Real-Time Systems, Advanced Control Systems,

and Engineering Education.

Oscar Reinoso received the industrial

engineer and PhD degrees from Polytechnic

University of Madrid (UPM) in 1991 and

1996, respectively. From 1994 to 1997 he

worked in the Research & Development

Department of Protos Desarrollo in a visual

inspection system. Since 1997, he has been

at the Miguel Hernández University, as

professor in control, robotics, and computer

vision. His research interests include Robotics, Teleoperated

Robots, Climbing Robots, Visual Servoing, Visual Inspection

Systems. He is author of several books, articles, and communica-

tions in the cited topics. Prof. Reinoso is a member of the CEA-

IFAC and IEEE.

702 PUERTO, JIMÉNEZ, AND REINOSO


