
2
0
1
0
 I

E
E

E
 I

n
te

rn
a
n

o
n

a
l 
C

o
n

fe
re

n
c
e
 o

n
 

E
m

e
rg

in
g

 T
e

c
h

n
o

lo
g

ie
s

 a
n

d
 F

a
c

to
ry

 A
u

to
m

a
ti

o
n

 
E

T
F

A
' 2

0
1

0
 

S
e
p

te
m

b
e
r 

1
3

-1
6

, 
2

0
1

0
@

 B
Il

b
ao

, 
S

p
ai

n
 

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

+
'I
E

E
E

 
In

g
c
n

ia
ri

tz
a 

G
o
i 

E
sk

o
la

T
d

n
ik

o
a

 

Es
c
:u

e
la

T
é
<

:n
ic

a
S

u
p
e

ri
o

r
d

e
ln

g
e

n
ie

ri
a
 

B
il
b

a
o

 



ETFA 2010 – Technical Program September 13-16, Bilbao, Spain 

Track 7. Intelligent Robots & Systems  
 
 
Track7 – S1. Robotics I 

Chairs: Antoni Grau and Yolanda González 
Sala TV – 11:30-13:00 – Monday, September 13rd, 2010 

Order ETFA Ref Title/Authors 

1 MF-003689 An Application of the Underactuated Nonlinear H-infinity Controller to Two-
Wheeled Self-Balanced Vehicles 
!"#$%&'(&)*#+,,+)-+../0)*#1&,2&)3+4&'/0)3+,"&$)!#$)5'2&6+)
)

2 MF-002607 Sampling-based Safe Path Planning for Robotic Manipulators 
7+8#')9+1&:#10);+/$/)-/11/)
)

3 MF-003743 General Environment for Human Interaction with a Robot Hand-Arm System 
and Associated Elements 
</=&)>/'2#,0)-+"$)?"+'&@)
)

4 MF-000493 High Precision Motion Control of Parallel Robots with Imperfections and 
Manufacturing Tolerances 
A=$+()?B)3B)C%+$#$0)D4#,)!/$"E/:#1)+,4)F=#.)?+E+,/:#1)
)

 
 
Track7 – S2. Robotics II 

Chairs: Antoni Burguera and Fabrizio Abrate 
Sala TV – 14:00-16:00 – Tuesday, September 14th, 2010 

Order ETFA Ref Title/Authors 

1 MF-001449 A Trajectory Based Framework to Perform Underwater SLAM using Imaging 
Sonar Scans 
F,2/,#)7"'6"&'+0)!+E'#&$)5$#:&'0)G/$+,4+)!/,@H$&@)
)

2 MF-002291 Beyond RatSLAM: Improvements to a Biologically Inspired SLAM System 
I#8/)?J,4&'%+".0);&2&');'/2@&$)
)

3 MF-002275 Cooperative Robotic Teams for Supervision and Management of Large 
Logistic Spaces: Methodology and Applications 
>+E'#@#/)FE'+2&0)7+=#$#/)7/,+0)9"1+)K+'$/,&0)3+'#,+)A,4'#)
)

4 MF-000248 Multi-source Sound Localization using the Competitive K-means Clustering 
7L/",6M6#)9&&0)</,6?"8)K%/#)
)

5 MF-000922 Comparison of Mapping Techniques in Appearance-Based Topological Maps 
Creation 
9/'&,@/)>&',+,4&@)-/N/0)9"#=);+L+)K+=2&$$/0)5=1+')-&#,/=/)!+'1#+0)</=&)3+'#+)3+'#,)
9/O&@0)F'2"'/)!#$)FO+'#1#/)
)

 
 

file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-000922.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-003689.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-002607.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-003743.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-000493.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-001449.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-002291.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-002275.pdf
file://localhost/Users/arturogil/Desktop/ETFA/Papers/MF-000248.pdf


Comparison of Mapping Techniques in Appearance-Based Topological Maps 
Creation. 

Lorenzo Fernández Rojo, Luis Payá, Oscar Reinoso, José María Marín, Arturo Gil 
Departamento de Ingeniería de Sistemas Industriales. 

Miguel Hernández University. Avda. de la Universidad s/n. 03202, Elche (Alicante), Spain 
l.fernandez@umh.es, lpaya@umh.es, o.reinoso@umh.es, jmarin@umh.es, arturo.gil@umh.es 

 
 

Abstract 

In this paper we compare two methods to carry out 
topological mapping using only visual information 
captured by a robot. This map should contain enough 
information so that the robot can estimate its position 
and orientation and redundant information should be 
removed to get an acceptable computational cost during 
the localization process. Apart from this, it is also 
important to know the topology of the map created since 
it will make possible a high-level planification of the 
path to move to the target points. We propose to build 
this topological map only using the panoramic images 
taken by an omnidirectional vision system and using 
appearance-based methods. We have carried out an 
exhaustive experimentation to study the validity of the 
proposed methods and to perform an objective 
comparison between them. Also, we have tested the 
processing time to create the topological map. 

 

1. Introduction 

In most cases, when a mobile robot or a team of 
mobile robots have to carry out a task in a large 
environment, they have to take decisions about their 
localization and about the trajectory to follow to move 
from their current position to the target point. A map or 
an internal representation of the environment is needed 
to solve this problem. Omnidirectional visual systems 
are a widespread kind of sensors used with this aim due 
to their low cost and the large amount of information 
they provide. The study of algorithms to construct a 
representation of the environment from visual 
information is a major area of research in robotics. One 
of the existing options consists in using appearance-
based techniques, which work with the information in 
the images as a whole. As an example, [4] describes a 
probabilistic SLAM (Simultaneous Localization and 
Mapping) approach to the problem of recognizing places 
based on their appearance and in [3] a probabilistic bail-
out condition test to accelerate an appearance-only 
SLAM system is applied. These techniques offer a 
systematic and intuitive way to construct the map. 

Nevertheless, as no relevant information is extracted 
from the images, it is usually necessary to apply some 
compression technique to reduce the computational cost 
of the mapping and localization processes. 

A widely used method that meets this requirement is 
PCA (Principal Components Analysis). For example, [8] 
creates a database by means of PCA. But the main 
problem of PCA methods is that they are not inherently 
invariant to the orientation of the robot. [13] studies the 
problem of invariance to ground-plane rotations taking 
into account this fact and [7] applies these concepts to 
build an appearance-based map of an environment 
including information not only about the localization 
where the images were taken, but also about the possible 
orientations at that points. Other researchers make use of 
Fourier transform methods to get the most relevant 
information from the images. As an example, [9] defines 
the concept of Fourier Signature and [11] applies this 
concept to the construction of appearance-based dense 
maps. The Fourier Signature exploits better the rotational 
ground-plane invariance and concentrates the most 
relevant information in the low frequency components of 
each row of the panoramic image. 

The appearance of an image depends strongly of the 
lighting conditions of the environment to map [1]. The 
images can be previously treated to minimize these 
effects, as [5] does by means of applying a bank of 
homomorphic filters. 

With respect to the mapping problem, the current 
research can be classified into two approaches: metric 
and topological. The first one consists in modelling the 
environment using a metric map obtained with 
geometrical accuracy when representing the position of 
the robot in the map. For example [10] describes a sonar-
based mapping system developed for mobile robot 
navigation and [2] analyses the performance of several 
established mapping techniques using identical test data. 
On the other side, topological maps are graphical models 
of the environment that capture places and their 
connectivity in a compact form. An example of this 
method is presented in [9] where a topological map of 
the environment is obtained by means of the application 
of a method based on the physics of harmonic 
oscillators. Also [15] presents a method for topological 
SLAM using fast vision techniques. [14] studies how to 
build a topological map of large indoor and outdoor 
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environments using local features extracted from 
omnidirectional images and the epipolar constraint, and a 
clustering method to perform localization more 
efficiently. [12] presents an appearance-based method 
for path-based map learning by means of a clustering of 
the PCA features extracted from a set of panoramic 
images into distinctive visual aspects.  

In this paper a methodology to build a robust 
appearance-based topological map under changing 
lighting conditions is presented. We show how it is 
possible to extend this method to construct the 
topological map incrementally. The main advantage of 
our incremental method comparing to non-incremental 
methods is the possibility of constructing the map in real 
time while the robot is exploring the environment. Also, 
as we show throughout the paper, it avoids possible 
errors in the construction of the map when a incremental 
method is used. 

The work is structured as follows. Section 2 makes a 
brief review of homomorphic filtering to remove the 
dependence on changes in the lighting conditions and a 
method for non-incremental topological mapping. 
Section 3 presents a technique for building topological 
maps incrementally. Section 4 shows the results of the 
experiments. Finally, the conclusions of the work are 
presented in section 5. 

 

Figure 1. 40x40 cm grid, omnidirectional 
image and panoramic image taken in a 
laboratory. 

2. Topological mapping 

To construct the topological map, a graph model in 
which nodes represent positions and links represent the 
connectivity between them has been used. To build the 
maps we have captured several omnidirectional image 
sets in several predefined grids with different shapes and 
number of images, both in unstructured indoor 
environments (a laboratory, a room, etc.) and in a 

structured indoor environment (a corridor). We can see 
an example on Fig. 1. 

On the other hand, as appearance-based methods do 
not extract any relevant point or region from the images, 
but use them as a whole, some method that allow us to 
reduce the high computational cost further reducing the 
amount of memory necessary for the mapping and 
localization processes must be used. Among the different 
compression techniques applied we have chosen the 
Fourier Signature, due to the fact that we can achieve a 
high compression level, it is a very fast method and it 
presents invariance to changes in the orientation of the 
panoramic images [11]. It is also an incremental method 
because we do not need information from the rest of the 
images to compute the Fourier transform (what differs 
from PCA). 

Although the goal in this work is to build a 
topological map from a database consisting of the 
Fourier Signature of the different images, it is necessary 
to put into relief that the map created, and therefore the 
database must be robust against small variations in the 
environment, such as the change of the state or position 
of some objects and against lighting conditions. There 
are different methodologies to provide robustness to the 
map created. [5] shows how it is possible to increase the 
accuracy in locating a robot in a previously created map 
applying Homomorphic filtering techniques on the 
panoramic images captured. This is the reason why in 
this paper to provide robustness to the map, panoramic 
images are previously filtered employing a 
Homomorphic filter. 

2.1. Homomorphic filter 
By means of the application of a Homomorphic 

Filtering we can filter separately the luminance and 
reflectance components of an image [6]. It allows us to 
control the influence of each component on the image 
appearance. To separate the components of luminance 
and reflectance, the Homomorphic Filter uses the 
Neperian logarithm operator on the image: 

 

! 

f (x,y) = i(x,y) " r(x,y)
z(x,y) = ln( f (x,y))
z(x,y) = ln(i(x,y))+ ln(r(x,y))

 (1) 

 
Where 

! 

f (x,y)  corresponds to the panoramic image 
that can be expressed as a multiplication of the 
luminance 

! 

i(x,y)  and the reflectance 

! 

r(x,y)  
components. Once the components have been separated, 
the image can be filtered in the frequency domain 
applying previously the 2D Discrete Fourier Transform: 

 

! 

" z(x,y)( ) =" ln(i(x,y))( ) +" ln(r(x,y))( )
" z'(x,y)( ) =" z(x,y)( ) # $(u,v)

 (2) 

 



Where 

! 

"(u,v)  is the filter transfer function in the 
frequency domain. As low frequency components are 
associated with the illumination of the image and the 
high frequency ones with the reflectance, we apply a 
high pass filter constructed from a Butterworth low pass 
filter, to reduce the effects of changes in the lighting of 
the scenes [6]: 

 

! 

D(u,v) = u2 + v 2( )
1/ 2

" lp (u,v) =
1

1+ D(u,v)
D0

# 
$ % 

& 
' ( 

2n

"'hp (u,v) =1)" lp (u,v)

"hp (u,v) = *h )* l( ) + "'hp (u,v) +* l

 
(3) 

 
Where 

! 

D(u,v)  is the distance to the origin in the 
frequency domain. 

! 

D0  is the filter cut-off frequency to 
construct the low pass filter, 

! 

n  is the order of the filter 
and 

! 

" lp (u,v) is the low pass filter transfer function in 
the frequency domain. The last two expressions are used 
to build the high pass filter from the low pass filter, 
where 

! 

"h  and 

! 

" l  correspond to the maximum and 
minimum value of Homomorphic filter and 

! 

"hp (u,v)  is 
the high pass filter transfer function in the frequency 
domain. Fig. 2 shows an example of Homomorphic 
Filter Transfer Function. The optimal parameters are the 
choice of a 

! 

D0  of 50Hz, 

! 

n  equal to 3, 

! 

"h  equal to 0.21 
and 

! 

" l  equal to 0.20. Further information can be found 
in [5]. 

 

Figure 2. Transfer Function Amplitude of a 
Homomorphic Filter. 

2.2. Mass-spring-damper model 
The topological map is a graph whose nodes 

correspond to distinct locations in the environment and 
whose edges model the neighboring relations between 
the nodes. To create the map, first we have captured the 
image grid by teleoperating the robot through the 

environment. Once all the images have been captured, 
we have implemented a method that allows us to create a 
topological map from them, without taking into account 
the storage order. The method is capable of ordering the 
captures and situates them in the corresponding place of 
the topological map. 

To do this a method based on Hooke's law and 
Newton's second law, known as mass-spring-damper 
system [9] has been used. Fig. 3 shows an example of 
the physical principle to build the map. Each particle 

! 

Pi  
is an image and the springs 

! 

Sij  connecting the particles 
together represent the distances between images 
captured. Each particle of the system will be connected 
with other particles (with all of the nearest). To calculate 
the lengths of the springs of the system we use the 
Euclidean Distance between the Fourier Signature of 
stored images. When we let the system to evolve freely, 
it is expected to tend to a similar topology compared to 
the real system [9]. 

 

Figure 3. Spring model for topological map. 

To construct the mass-spring-damper system we have 
taken into account the following system of forces: 

 

  

! 

! 
F i = "kij # (lij 0 " lij ) "$ ij # (vi " v j )( )

Sij %S
&

! a i =
! 
F i

mi
'
! ˙ v i =
! a i '

! ˙ r i =
! v i

! r i(t + (T) =
! r i(t) +

! v i(t) # (T +1 2 # ! a i(t) # (T 2

! v i(t + (T) =
! v i(t) +

! a i(t) # (T

 
(4) 

 
Where the first equation corresponds to Hooke's 

Harmonic Oscillator Law and depends both on the length 
of the spring 

! 

lij  and on the difference of velocities where 

! 

kij  is the elastic and 

! 

" ij  the damping constant. The 
second expression refers to Newton's second law and 
allows to obtain the equations of motion of the system 
from the force   

! 

! 
F i  provided by the Hooke's law and the 

mass 

! 

mi  of the particle. To simplify the system we have 
used the same mass for all particles. This mass is equal 
to 1. Finally the last two equations show how to 
calculate the position   

! 

! r i  and velocity   

! 

! v i of every 
particle of the system at each iteration. 

It is interesting to highlight the importance of the 
parameter 

! 

"T  in the system relaxation time. If 

! 

"T  takes 
a too large value, the system is very unstable and 



therefore it will be difficult to reach the steady-state. By 
contrast, if a too small value is chosen, it will take too 
long to reach the rest. This is the reason why we have 
achieved a compromise between speed and stability. To 
do this we set a maximum number of steps 

! 

stot  and we 
let 

! 

"T  be dependent on it: 
 

! 

"T = # $ (1% s
stot
)  (5) 

 
Where 

! 

s corresponds to the number of steps until a 
given time and 

! 

"  is a constant. 
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Figure 4. Euclidean distance between 
Fourier Signatures versus real geometric 
distance between the points where images 
were captured. 

Another issue to consider is the value of the elastic 
constant 

! 

kij  of each spring system. As it can be 
observed in Fig. 4, the Euclidean distance between the 
Fourier projections behaves approximately linear in the 
surroundings of the point where the image was captured, 
but this linearity disappears as we move away from it. 
To solve the problem we have taken elastic constants 
dependent on Euclidean distance 

! 

L2
ij  between the 

Fourier projections and, to build the map, we only use 
the images closer to each image. So we just add springs 
between the images that are below a distance threshold. 

3. Incremental topological mapping 

One of the main problems that it can be found when 
constructing a topological map from the stored database 
resides in the fact that the computational cost increases 
exponentially with the number of images captured, due 
to the growing number of forces on each particle of the 
mass-spring-damper system. Also it is necessary to have 
all the images stored in the database to create the 
topological map, so it is only possible to build it in an 
offline process, once all the images have been captured. 

To avoid this problem, it is interesting to exploit the 
benefits offered by working with the Fourier Signature. 

One of the most important features is the fact that the 
Fourier Signature is an inherently incremental method. 
Thus we can build the topological map incrementally 
and also in real time. 

3.1. Incremental mass-spring-damper model 
The incremental topological map has been 

implemented from a process based on the system used in 
the previous section to construct the non-incremental 
topological map. To build the map incrementally we 
have several options. When a new image arrives, we can 
relax only the new particle with respect to other particles 
that are already in the system or otherwise we can relax 
the whole system of particles. After several experiments  
we reached the conclusion that the best option was a 
compromise between both of them. Every time we add a 
new particle to the system we allow this particle to relax 
while maintaining the position of other particles fixed. 
Once the particle is at rest, the whole system relaxes. So, 
the system compensates the nonlinearity that occurs in 
the Euclidean distance as we move away from the 
particle metrically. 

 

Figure 5. False minimum in a square grid 
of 5x5 images for non-incremental 
topological mapping. 

Besides providing the benefits mentioned above, 
when the topological map is built incrementally, a very 
important advantage is provided to the system, it is more 
stable and does not produce false minima in the 
relaxation of the system. In Fig. 5 an example of a false 
minimum in a square grid of 5x5 images for non-
incremental topological mapping can be seen. In 
structured environments where visual appearance of far 
points may be similar, false minima are a common 
problem. 

 
 



  

 

Figure 6. (a) Time elapsed to build a non-incremental topological map (discontinuous line) and 
an incremental topological map (continuous line), (b) comparison between the real map (small 
red circles) and the topological map obtained by the non-incremental method (big yellow 
circles), (c) comparison between the real topological map (small red circles) and the topological 
map obtained by the incremental method (big yellow circles), for 

! 

"  equal 0.5. (d), (e) and (f) 
show the same results for 

! 

"  equal 0.1 and (g), (h) and (i) for 

! 

"  equal 0.01. 

4. Experimental results 

The results obtained from experiments are presented 
in this section. Several sets of omnidirectional images 
with different topologies, varying the shape, the number 

of images and the distance between them, have been 
taken to perform the experiments. Once all the scenes 
have been obtained, these have been transformed to 
panoramic images and we have obtained the 
corresponding Fourier signature. We have a total of 6 
sets, whose main features are shown on table 1. 



 
 
Set Size x 

(Images) 
Size y 

(Images) 
Resolution Grid 

step 
Lab. 1 10 15 56x256 pixels 30 cm 
Lab. 2 10 20 56x256 pixels 50 cm 
Office 6 8 56x256 pixels 50 cm 
Hall 12 9 56x256 pixels 10 cm 

Corr. 1 22 10 56x256 pixels 10 cm 
Corr. 2 35 10 56x256 pixels 10 cm 

Table 1. Relevant physical parameters of 
the image sets. 

The Euclidean distance 

! 

L2 between the main 
harmonics in the Fourier Signature of each image has 
been used to calculate the distance for each spring of the 
mass-spring-damper system. We work only with the first 
16 harmonics of each row of Fourier Signature because, 
as [11] shows, it is desirable to reject the harmonics in 
the upper spectrum of the Fourier signature. 

Time consumption is used as a parameter to compare 
the two methods of topological mapping. Moreover, to 
check the dependence of both methods regarding the 
time to build the map and the accuracy of the resulting 
map, the time constant 

! 

"  has been used. Taking it into 
account, we have compared different topologies obtained 
for each grid of images using both methods.  

When we construct the topological map using the 
non-incremental method, as it can be observed on Fig. 6 
(a), (d) and (g), the computing time increases 
exponentially with the number of images. In this case, 
the time for each iteration has a mean of 2.51 sec and a 
standard deviation of 0.12 sec for 

! 

"  equal 0.5, 2.32 sec 
of mean and 0.10 sec of standard deviation for 

! 

"  equal 
0.1, and 1.74 sec of mean and 0.11 sec of standard 
deviation for 

! 

"  equal 0.01. The computing time 
increases exponentially with the number of images 
because it increases the number of neighbors for each 
image and therefore, at each iteration, a greater number 
of forces in the mass-spring-damper system must be 
computed. On the other hand when the incremental 
method it is used, it can be observed that the time grows 
to a lesser extent. In this case, the time for each iteration 
has a mean of 2.01 sec and a standard deviation of 0.11 
sec for 

! 

"  equal 0.5, 1.91 sec of mean and 0.09 sec of 
standard deviation for 

! 

"  equal 0.1, and 0.16 sec of mean 
and 0.01 sec of standard deviation for 

! 

"  equal 0.01. As 
we increase 

! 

" , the computation times increase, but 
when we use too high or too low values for 

! 

" , the shape 
obtained does not represent the real shape of the map 
(Fig. 6 (b), (c), (e), (f), (h) and (i)). That is why a 
compromise between the computation times versus the 
accuracy of the shape obtained comparing to the real 
shape must be attained. 

As we can see on Fig. 6 (e) and Fig. 6 (f), with the 
incremental method it can be obtained a topological map 

that represents the shape of the real map of the 
environment by tuning correctly the value of 

! 

" . Fig. 6 
(e) shows the topological map obtained by applying non-
incremental topological mapping and Fig. 6 (f) shows 
the topological map obtained by applying incremental 
topological mapping. The Incremental approach, besides 
improving the computing time, allows us to build a 
topological map that approximates better the topology of 
the real map of the environment. Finally, we must also 
take into consideration that during the course of the 
experiments, when we used the non-incremental method 
often false minimum appeared. However, by building the 
topological map incrementally a correct topological map 
was always obtained. 

It should be stressed that, although the results shown 
in Fig. 6 correspond only with the results for the Office 
Set (table 1), for the process of tuning of the time 
constant 

! 

" , we have used all sets of images that appear 
on table 1. It is why we can assert that our incremental 
topological mapping improves the results obtained 
regarding the non-incremental method. 

5. Conclusions and future work 

This paper shows how it is possible to construct a 
topological map of the environment incrementally from 
a set of omnidirectional images (views) obtained on a 
grid within the environment using only the appearance of 
each omnidirectional image without extracting salient 
points or regions. 

The database has been built by applying a 
compression process to the visual information. We have 
previously applied a bank of Homomorphic filters on the 
panoramic images captured to obtain a robust map 
against illumination changes in the environment. Also, 
we have used the Fourier signature due to the fact that it 
presents a good performance in terms of amount of 
memory and computation time needed to build the 
database and it is also invariant to ground-plane rotations 
and an inherently incremental method, to compress the 
information. 

 For the creation of a robust topological map of the 
real environment we have presented two methods. As we 
have shown, the application of the non-incremental 
method (topological mapping) allow us to obtain a 
topological map of the environment that in most cases 
corresponds roughly with the actual shape of it, but 
sometimes erroneous topologies are presented. However, 
applying an incremental topological mapping allow to 
obtain a topological map of the environment that in all 
cases corresponds roughly with the actual shape and also 
reduces the computation time compared to the previous 
method. The incremental method also permits building 
the map online, while the robot is exploring the 
environment. 

This work opens the door to new applications of 
appearance-based methods in mobile robotics. As we 



have shown, the topological map created is robust 
against changes of lighting conditions, and permits us to 
know the actual topology of the map. With our 
incremental method, the computing time and the shape 
of the topological map obtained are improved. Moreover 
thanks to our method, it is possible to build the map 
online. If we know the topology of the environment and 
we know which node is the robot situated in, we will be 
able to create an algorithm that allows the robot to reach 
the objective points travelling the shortest path. 

Further plans for future work include a study of the 
performance of our method when occlusions occur in the 
environment. In addition, a study of the possibility of 
using appearance-based Monte Carlo localization and 
mapping methods as well as appearance-based SLAM 
methods, will be carried out. 
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