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In the field of mobile autonomous robots, visual odometry entails the retrieval of a motion transformation between two
consecutive poses of the robot by means of a camera sensor solely. A visual odometry provides an essential information for
trajectory estimation in problems such as Localization and SLAM (Simultaneous Localization and Mapping). In this work we
present a motion estimation based on a single omnidirectional camera. We exploited the maximized horizontal field of view
provided by this camera, which allows us to encode large scene information into the same image. The estimation of the motion
transformation between two poses is incrementally computed, since only the processing of two consecutive omnidirectional images
is required. Particularly, we exploited the versatility of the information gathered by omnidirectional images to perform both an
appearance-based and a feature-based method to obtain visual odometry results. We carried out a set of experiments in real
indoor environments to test the validity and suitability of both methods. The data used in the experiments consists of a large sets
of omnidirectional images captured along the robot’s trajectory in three different real scenarios. Experimental results demonstrate
the accuracy of the estimations and the capability of both methods to work in real-time.

1. Introduction

The problems of robot localization and SLAM (simultaneous
localization and mapping) are of paramount importance in
the field of mobile autonomous robots, since a model of the
environment is often required for navigation purposes. To
the present days, the estimation of the robot motion through
the environment has been a task of large interest, since it
provides a helpful tool when it lacks any previous knowledge
about the environment. Normally, this motion is computed
incrementally at each step of the robot’s trajectory. With this
aim, several types of sensors such as GPS, IMS, 3D laser
data, and wheel encoders (robot odometry) have been used
to acquire valid information to compute an estimation.
However, visual sensors arise as an emerging tendency for
such purpose as they present several benefits such as low
power consumption, low weight, relative low cost, and the
richness of the information from the environment they offer.

Likewise, the term of visual odometry involves the determi-
nation of the current pose of the robot and the path covered
by retrieving a motion transformation between images,
which are captured at every pose traversed by the robot. This
process is performed in an incremental manner by processing
consecutive images. The estimation is inferred from the
motion effects revealed by the apparent changes on the scene.
Figure 1 establishes the relative motion parameters, θ, φ, and
ρ, between two consecutive poses.

As it will be detailed in Section 2, different types of visual
sensors may be used to estimate a visual odometry. Our
approach is based on a single omnidirectional camera. Due
to its capability to represent the scene with a maximum field
of view, we expect this sensor to generate a robust represen-
tation of the environment and to provide us with more infor-
mation compared to other common camera sensors when
variations in large-scale scenarios are considered. Therefore,
the harmful instability effects on the scene, which appear
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Figure 1: Two consecutive poses of the robot and the relative
motion constraints between them.

in large uneven scenarios, may be reduced by exploiting
omnidirectional image benefits. For instance, in presence of
occlusions or big lighting changes, the appearance of a per-
spective image could be dramatically modified, whereas this
effect is diminished in the case of an omnidirectional image
since its field of view is wider. In this sense omnidirectional
images achieve to get successful results when localizing the
robot in long-distance runs. Moreover we take advantage
from the versatility of the omnidirectional images to process
the information with appearance-based and feature-based
methods. A set of experiments with real data have been car-
ried out by using an indoor robot equipped with an omni-
directional camera. Experimental results reveal the validity
of both types of methods. The feasibility of both schemes
is analyzed in terms of accuracy and computational cost in
order to demonstrate its validity for real-time applications.

The paper is organized as follows. Section 2 introduces
some related work in the field of visual odometry. Next,
Sections 3 and 4 describe the appearance-based and feature-
based methods respectively. Section 5 presents the results
gathered from the experiments carried out with real data.
Finally, Section 6 states a brief discussion to analyze the
results obtained.

2. Related Work

Approaches to visual odometry can be classified according
to the kind of data sensor used to estimate the trajectory of
the robot. For instance, stereo cameras have been extensively
used to estimate a visual odometry. In [1] an orientation
sensor was introduced together with a stereo pair to outper-
form previous visual odometry results [2] obtained by taking
advantage of Moravec’s work [3]. In [4] a precedent was set
in terms of real-time working and error removal. However,
single cameras, as well denoted as monocular visual sensors,
have also achieved successful results despite the fact that they
only can recover a 2D relative motion. There exists appli-
cation of both pinhole cameras [5, 6] and omnidirectional
cameras [7, 8]. First, single camera examples introduced a
RANSAC algorithm for outlier removal, whereas the last

omnidirectional camera examples went further through the
obtention of the car’s trajectory along large scenarios.

Some distinctions may also be defined depending on
the image-processing model. Main classifications are referred
to appearance-based methods and feature-based methods.
Appearance-based methods concentrate their efforts on the
information extracted from the pixel intensity. For instance
in [9] a Fourier-Mellin transform is applied to omnidi-
rectional images in order to obtain a visual descriptor for
a visual odometry application. In the same manner, [10]
implements a Fourier signature [11] with the aim of retriev-
ing a visual odometry with panoramic images. An other
example is [12] where an appearance method based on ori-
entations histograms is implemented to get the ego-motion
of an autonomous vehicle.

Regarding feature-based methods, these approaches try
to detect distinctive and robust points or regions between
consecutive images. In [13] monocular feature point detec-
tion is combined with optical flow to retrieve a visual
odometry. In [14], a search of repeatable points is set up with
the same aim. In [15] some robust points are also extracted to
obtain a relative motion transformation intended for SLAM
applications. After the statement of [16] where an efficient
algorithm was presented for outlier removal, most parts of
feature-based methods are sustained by modifications of it,
such as the approach presented in [7].

In the next sections we present our methods for the
appearance- and feature-based odometry.

3. Appearance-Based Visual Odometry

In this section, we face the visual odometry problem as an
appearance-based relative camera pose-recovering problem,
using the whole appearance of the panoramic images, with-
out any feature extraction process. We describe a real-time
algorithm for computing an appearance-based map through
visual and robot odometry.

3.1. Global Appearance Descriptor. When we have to build
on an appearance descriptor, this must be robust against
changes in the environmental lighting conditions. It has to be
built in an incremental way to allow us to obtain the visual
odometry while the robot is going through the environment.
Moreover, the computational cost to obtain the descriptor
must be low, to permit working in real time. We build
our descriptor using the Fourier signature over a set of
previously filtered omnidirectional images as it presents all
these features [11, 17].

3.1.1. Fourier Signature. To date, different description meth-
ods have been used in the context of omnidirectional robot
vision. The advantages of the Fourier signature are its
simplicity, computational cost, and the fact that it exploits
better the invariance against ground-plane rotations using
panoramic images. This transformation consists in the
expansion of each row of the panoramic image {an} =
{a0, a1, . . . , aNy−1} using the discrete Fourier transform into
the sequence of complex numbers {An} = {A0,A1, . . . ,ANy−1}.
With this transform, the most relevant information is
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concentrated in the low-frequency components of each row,
so it is possible to work only with the information from the
k first columns in the Fourier transform. Also, this feature
presents rotational invariance when working with panoramic
images. If each row of the original panoramic image is
represented by the sequence of complex number {an} and
each row of the rotated image by {an−q} (being q the
amount of shift), it is possible to prove that when the Fourier
transform of the shifted sequence is computed, we obtain the
same amplitudes Ak than in the nonshifted sequence, and
there is only a phase change, proportional to the amount of
shift q

F
[{

an−q
}]
= Ak exp− j

2πqk
Ny

; k = 0, . . . ,Ny − 1. (1)

Taking advantage of this property, we can compute the
robot orientation using only the phase information of the
Fourier signature.

3.1.2. Homomorphic Filtering. When we work in a real envi-
ronment, it can be expected that small changes in the appear-
ance of the environment occur. These changes are mainly
due to the lighting conditions and changes in the position of
some objects. This way, the descriptor must be robust against
these small variations in the environment.

In a previous work [18], we show how it is possible
to increase the accuracy of the localization of a robot in a
previously created map by applying homomorphic filtering
techniques on the panoramic images captured. In this work,
we have used such techniques to filter the images as a
preprocessing step before extracting the Fourier signature.

This filtering technique allows us to filter separately the
luminance and reflectance components of an image [19].
Accordingly, it is possible to control the influence of each
component on the image appearance. From the natural log-
arithm operator on the image, the homomorphic operator
separates the components of luminance and reflectance:
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(2)

where the panoramic image I(x, y) is represented as a multi-
plication of the luminance l(x, y) and the reflectance com-
ponent r(x, y) of the image. Once the components have
been separated and we have applied the 2D discrete Fourier
transform on the panoramic image, we apply a filter on the
frequency domain image:
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·H(u, v),

(3)

where the filter transfer function in the frequency domain
is represented by H(u, v). Due to the fact that the low-
frequency components are associated with the illumina-
tion of the image and the high-frequency ones with the
reflectance, we apply a high-pass filter constructed from a
Butterworth low pass filter to reduce the effects of changes
in the lighting of the scenes [19].

3.2. Visual Odometry Estimation. To carry out the relative
camera pose recovering, we have to establish some relation-
ships between the stored poses. It can be shown that when
we have the Fourier signature of two panoramic images that
have been captured in two points that are geometrically close
in the environment, it is possible to compute their relative
orientation using the shift theorem (1).

Taking into account that the Fourier Signature is invari-
ant to ground-plane rotations, we can establish a relationship
between the phases of the Fourier signature of a panoramic
image captured at one position and the phases of the Fourier
signature of another panoramic image captured at the same
point but with a different orientation. We can expand this
property and get the approximate rotation φt+1,t, between
two panoramic images taken on two consecutive poses. To
obtain this angle, we convolute the phases of the Fourier
signature of the panoramic images of the two poses. This
operation implies a comparison between the first image
and a rotated versions of the second one. The number of
rotations equals the row size of the image. Once we have the
Euclidean distance for each comparison, we retain the image
with minimum distance and calculated the angle using the
number of pixels for the rotated image.

Once we have shown how the relative rotation between
two consecutive images has been computed, we have to
establish the method employed to build a visual odometry
for a robot’s trajectory. We build a poses-based graph where
when a new image is captured, a new pose is added to the
graph, and the topological relationships with the previous
pose are computed using the global appearance information
of the scenes. With our procedure, this computation is made
online as the robot is going through the environment, in a
simple and robust way.

In this case we consider that the trajectory that the robot
traverses is composed of a set of poses L = {l1, l2, . . . , lN},
where each pose l j is represented by an omnidirectional
image I j ∈ %Nx ,Ny and a Fourier descriptor composed of
a modules matrix d j ∈ %Nx ,k1 and a phases matrix p j ∈
%Nx ,k2 . Therefore, with the algorithm used, we can obtain
the position (l jx, l jy) and the orientation l

j
φ of each pose of

the trajectory with respect to the previous one; thus l j =
{(l jx, l jy , l jφ),d j , p j , I j}.

The robot captures a new image at time t+1, and then, the
Fourier descriptors dt+1 and pt+1 are computed. Comparing
pt+1 with the descriptor of the previously captured image
pt, we can find the relative position between these two
poses. We obtain the Euclidean distance Dt+1,t between two
consecutive poses by using data supplied by the robot’s
internal odometry, denoted as odot

x and odot
y referring to

the x and y cartesian coordinates at the instant t. On the
other hand, thanks to the visual compass implemented, we
can estimate the relative orientation between images. After
this process, the position of the current pose is computed
from the previous one as

lt+1
x = ltx + Dt+1,t · cos

(
φt+1,t),

lt+1
y = lty + Dt+1,t · sin

(
φt+1,t),
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lt+1
φ = ltφ +

(
φt+1,t),

Dt+1,t =
√
(
odot+1

x − odot
x

)2 +
(

odot+1
y − odot

y

)2
.

(4)

These relationships are shown graphically in Figure 2.

4. Feature-Based Visual Odometry

The objective of this section is to present the procedure to
obtain a visual odometry by using specific feature points
extracted from the omnidirectional images. As already
mentioned, the horizontal field of view of omnidirectional
cameras is maximum so that images provide a large infor-
mation of the current scene captured. This fact allows us to
obtain a set of significative pixel points in the image plane
that correspond to a set of physical 3D points. These points
are expected to show high saliency, concept that measures
their visual relevance on the image, and in addition it is
used to classify them as interest points whether they fulfill a
specific metric applied to the pixel and its local surrounding.
This visual significance of each interesting point is encoded
into a visual descriptor; therefore later comparisons can be
established when looking for corresponding points between
images.

4.1. Detection of Interest Points. Traditionally, some tracking
techniques have been used to find corresponding points [1],
provided that there exists a short scale between consecutive
poses from where images were taken. On the other hand, cur-
rent approaches [4] use global searches at the whole image
together with similarity descriptor tests in order to find
correspondences. We have adopted a modification of this
later scheme because of our purpose in computing motion
in large-scale scenarios, where image appearance may vary
considerably from one image to another. In this context, dif-
ferent combination of feature point detectors and descriptors
has been commonly used, such as Harris corner detector
[20], SIFT features [21], and more recently SURF features
[22]. In [23], SURF features outperform other detection
methods and description encodings in terms of invariance
and robustness of the detected points and their descriptors.
In addition, SURF features have been successfully performed
[24] with omnidirectional images. Consequently, these facts
suggested us the use of SURF features to detect points and
describe their visual appearance. Particularly we transform
the omnidirectional images into a panoramic view in order
to increase the number of valid matches between images due
to the lower appearance variation obtained with this view.

4.2. Visual Odometry Estimation. Once a set of interest
points have been detected and matched in two images, it is
necessary to compute the relative motion of the robot. As
shown in Figure 1, this motion is formed by a rotation and
a translation, which are stated by two relative angles θ and
φ and a scale factor ρ. The same relation can be expressed
into the image plane, which is observed in Figure 3 with
some correspondences indicated. Retrieving a certain camera
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Figure 2: Position and orientation of the new pose in the map
computed incrementally from the previous pose.

rotation and translation to recover a relative motion has been
generally performed by applying epipolar constraints to solve
a 6DOF problem, such as [16, 25, 26], whereas in our case,
according to the planar motion on the XY plane, we simplify
the estimation to a 3DOF problem.

The same point detected in two images can be expressed
as p = [x, y, z]T and p′ = [x′, y′, z′]T in the first and second
camera reference system, respectively. Then, the epipolar
condition establishes the relationship between two 3D points
p and p′ seen from different poses:

p
′TEp = 0, (5)

where matrix E is denoted as the essential matrix. Notice that
E is composed by a certain rotation R and a translation T (up
to a scale factor) that relate both images, being E = R · Tx.
Therefore, according to R andT , the essential matrix presents
the following structure:

E =




cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


, (6)

R =




0 0 sin
(
φ
)

0 0 − cos
(
φ
)

sin
(
θ − φ

)
cos
(
θ − φ

)
0


, (7)

T = ρ
[

cos
(
φ
)

sin
(
φ
)

0
]T

. (8)

Being φ and θ the relative angles that define a motion
transformation between two different poses are shown in
Figures 1 and 3.
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Figure 3: Real omnidirectional images acquired at different poses of
the robot with the correspondences and relative motion constraints
indicated.

Matrix E can be computed by directly applying the
epipolar condition to the N detected points in the following
manner:




p′1
p′2
. . .
p′N




T

·



e11 e12 e13

e21 e22 e23

e31 e32 e33


 ·




p1

p2

. . .
pN


 = !0. (9)

This last equation leads to a common N-linear equation
system:

D!e = 0 (10)

being !e = {e13, e23, e31, e32} and D the coefficient matrix.
Please note the simplification due to the planar motion char-
acteristics, since only 4 variables are required to solve (10).
Thus, we face the overdetermined system (10) by using only
N = 4 corresponding points which suffice to solve the prob-
lem; however we use a larger number of correspondences in
order to obtain a reliable solution in presence of outliers.
A singular value decomposition (SVD) has been adopted to
solve (10). Then, following [27, 28] it is easy to retrieve R and
T . Next subsection deals with the error point considerations
and introduces our approach to avoid outliers.

4.3. Error Propagation and Outlier Removal. In the suggested
framework, the problem of finding correspondences between
images is troublesome. An error propagation term is always
associated to each motion transformation. This error is not
only introduced by the sensor deviation when detecting
feature points. Besides, the number of outliers considered as
true matched points are error points that deviate the esti-
mated solution, but also the current uncertainty of the pose
of the robot corrupts the estimation. As long as the robot
moves, each relative motion transformation (from now on,
denoted as Mj) introduces an error term that deviates the
robot’s pose accumulatively, so that the uncertainty of the
pose increases. In this situation, methods as RANSAC [8],
histogram voting [14], or epipolar matching [29] have been
used cope with uncertainties. In this approach, we alterna-
tively suggest the use of a gaussian distribution to model the
error and propagate it to the computation of Mj in a more
realistic manner. Furthermore, this propagation becomes
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Figure 4: Given a detected point !p1 in the first image reference
system, a point distribution is generated to obtain a set of multi-
scale points λi!p1. By using the predicted motion transformation M̂j ,

they can be transformed to !q′i in the second image reference system

through M̂j ∼N(θ̂, φ̂, σθ , σθ). Finally !q′i are projected into the image
plane to determine a restricted area where correspondences have to
be found.

into a helpful tool in order the restrict the search for valid
correspondences.

In an idealistic case, the epipolar restriction (5) may equal
a fixed threshold, meaning that the epipolar curve between
images always presents a little static deviation. On a realistic
approach we should consider that this threshold depends on
the existing uncertainty of the pose. To do that, we assume
that the robot’s odometry is known, which allows to predict
a motion transformation M̂j . Eventually the epipolar condi-
tion becomes

p′TÊp < δ
(
M̂j

)
, (11)

where δ(M̂j) expresses the uncertainty on the pose of the
robot, since it is directly correlated with the predicted
transformation M̂j .

This approach enables a reduction in the search for
corresponding points between images. Figure 4 depicts the
procedure. A detected point P(x, y, z) is represented in the
first image reference system by a normalized vector !p1 due
to the unknown scale. To deal with this scale ambiguity,
we suggest a generation of a Gaussian point distribution to
get a set of multiscale points λi!p1 for !p1. Please note that
the current uncertainty of the pose of the robot has to be
propagated along the procedure. Next, since we obtained a
predicted motion transformation M̂j , we can transform the
distribution λi!p1 into the second image reference system,

obtaining !q′i . We propagate the uncertainty of the pose
to redefine the motion transformation through a normal
distribution, being M̂j ∼N(θ̂, φ̂, σθ , σφ), and thus implying

that !q′i is a gaussian distribution correlated with the current

uncertainty of the pose. Once !q′i are obtained, they are pro-
jected into the image plane of the second image, represented
as crosses in Figure 5. This projection of the normal multi-
scale distribution defines a predicted area in the omnidi-
rectional image which is drawn with a curved continuous
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Figure 5: Correspondences for a specific point in the first image
are searched for in the predicted area, which is projected into
the second image. Crossed points represent the projection of the
normal point distribution for the multiscale points that determine
this area. Dash lines show the candidate points in the second image
which are inside the predicted area. Continuous line represents the
correct correspondence for a certain point in the first image. Curved
continuous line shows the shape of the predicted area.

Table

Table

Door

Window

Cabinet
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Figure 6: Trajectory followed by the robot when capturing data set
1.

line. This area establishes the specific image pixels where
correspondences for !p1 must be searched for. The shape of
this area depends on the error of the prediction, which is
directly correlated with the current uncertainty of the pose
of the robot. Dash lines represent the possible candidate
points located in the predicted area. Therefore, the problem
of matching is reduced to finding the correct corresponding
point for !p1 from those candidates inside the predicted area
by comparing their visual descriptor, instead of searching for
them at the whole image. Notice that using this technique,
the number of false correspondences is reduced since we
avoid them through this restricted matching process, limited
to a specific image areas as explained above.

5. Experimental Settings

5.1. Description of the Environment. In order to acquire
the necessary data for the experiments, we have used
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Figure 7: Trajectory followed by the robot when capturing data set
2.
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Door
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Window

Window

Window
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Figure 8: Trajectory followed by the robot when capturing data set
3.

a Pioneer P3-AT mobile robot, equipped with a DMK
21BF04 omnidirectional camera, an internal odometer, and
a SICK LMS-200 laser (Figure 1). The robot performed three
different trajectories in three different indoor environments,
capturing a new omnidirectional image, odometry, and laser
data whenever it traversed a distance equal to 0.1 m. The
characteristics of the three paths traversed by the robot are
shown in Table 1. The paths followed by the robot and some
examples of panoramic images for each set are shown in
Figures 6, 7, and 8, respectively.
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Figure 9: (a) Example of an experiment using the data set 1 and the appearance-based method, using 64 Fourier components for each row
of the Fourier signature. (b) RMS error and step time versus the number of Fourier components for each row of the Fourier signature using
the appearance-based method. (c) X , Y and θ error for each step of the visual odometry estimation process using the appearance-based
method and using 64 Fourier components for each row of the Fourier signature.

5.2. Experimental Results. To test the performance and com-
pare our appearance-based and feature-based visual odome-
try methods, we have carried out a series of simulation exper-
iments using the sets of images described in the previous
subsection. To demonstrate the feasibility of the procedures
we have computed the RMS (root mean squared) error in
the robot position along the trajectory, the error in x, the
error in y, and the error in θ for each step of the process
and the computational time necessary to calculate each pose
of the robot. In each case, we test the influence of the main
parameters of the descriptors used.

The RMS error has been obtained taking as a reference
the real path (Figures 9(a), 10(a), and 11(a). To get the real

path, we have used a SICK LMS range finder in order to com-
pute a ground truth using the method presented in [30]. We
must take into account the RMS error of the robot odometry
data comparing with the ground truth is 0.665 m for the data
set 1, 0.768 m for the data set 2 and 1.112 m for the data set
3.

Figures 9(a), 10(a), and 11(a) show an example of the
visual odometry (black dots) computed, the ground truth
(blue circles) that represent the real path, and the robot
odometry (red crosses), for the first, the second, and the third
set of images, respectively. This visual odometry has been
built using the appearance-based method and a number of
Fourier components for each row of the Fourier signature
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Figure 10: (a) Example of an experiment using the data set 2 and the appearance-based method, using 64 Fourier components for each row
of the Fourier signature. (b) RMS error and step time versus the number of Fourier components for each row of the Fourier signature using
the appearance-based method. (c) X , Y , and θ error for each step of the visual odometry estimation process using the appearance-based
method and using 64 Fourier components for each row of the Fourier signature.

Table 1: Relevant parameters of the image sets used in the experiments.

Environment Name Number images Image resolution Distance traversed Environment size

Laboratory 1 Data set 1 858 720 × 720 pixels 85.8 m 1.8 × 1.7 m
Laboratory 2 Data set 2 267 720 × 720 pixels 26.7 m 3.7 × 5.4 m
Corridor Data set 3 416 720 × 720 pixels 41.6 m 1.4 × 7.1 m

equal to 64 for the three cases. The visual odometry obtained
outperforms the robot odometry for all scenarios, for any
number of Fourier components chosen. Figures 9(b), 10(b),
and 11(b) show the average error of the entire experiment
comparing to the real path when using the first set of images
and the computational time needed to add a new pose to

the visual odometry. As we can see, for the three scenarios,
this figure gives us information about the number of Fourier
components that allows to outperform the robot odometry
and to work in a realtime. It is worthy to note that generally
it exists an optimum number of Fourier components in
terms of RMS error. The increasing in the number of Fourier
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Figure 11: (a) Example of an experiment using the data set 3 and the appearance-based method, using 64 Fourier components for each row
of the Fourier signature. (b) RMS error and step time versus the number of Fourier components for each row of the Fourier signature using
the appearance-based method. (c) X , Y , and θ error for each step of the visual odometry estimation process using the appearance-based
method and using 64 Fourier components for each row of the Fourier signature.

components does not involve better RMS error results since
high-frequency components of the Fourier descriptor may
introduce noise, as it can be observed in Figures 10(b)
and 11(b). However, in Figure 9(b) we obtain a different
result due to the circular movement of the robot along the
environment, so that the robot traverses around close poses,
fact that makes the RMS error not to increase in a dramatic
manner. In Figures 9(c), 10(c), and 11(c), we plot the X , Y ,
and θ error both for robot odometry (red dashed line) and
visual odometry (blue line) for each step of the procedure
in one of the experiments carried out. In general, the figures
show that our method outperforms the robot odometry at
each step for the three data sets. With this method it is

possible to obtain an average error of the visual odometry
data comparing with the ground truth of 0.485 m for the
data set 1, 0.575 m for the data set 2, and 0.705 m for the
data set 3 with a computational time that allows us to work
in real time (0.594 s for the data set 1, 0.533 s for the data
set 2, and 0.549 s for the data set 3) when we use 64 Fourier
components.

On the other hand, we have carried out the same exper-
iments, but in this case the visual odometry has been built
using the feature-based method. Figures 12(a), 13(a), and
14(a) show an example of the visual odometry (black dots)
computed, the ground truth (blue circles) that represent the
real path and the robot odometry (red crosses), for the three
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Figure 12: (a) Example of an experiment using the data set 1 and the feature-based method, using 20 matched points. (b) RMS error and
step time versus the number of matched points using the feature-based method. (c) X , Y , and θ error for each step of the visual odometry
estimation process using the feature-based method using 40 matched points.

sets of images, consecutively. This visual odometry has been
built using a number of matched points equal to 40 for the
three cases. The figures show that, for the number of matched
points chosen, the visual odometry obtained outperforms
the robot odometry for all scenarios. Figures 12(b), 13(b),
and 14(b) show the average error of the entire experiment
comparing to the real path when using the first set of images
and the computational time needed to add a new pose to
the visual odometry. We can see as for the three scenarios,
we can used a number of matched points that allow us to
clearly outperform the robot odometry and to work in a real
time. Particularly, looking at Figures 12(b), 13(b), and 14(b)
we can observe that the increase of the number of matched

points considered is not a dramatic fact for the real-time
operation. It is worthy to note that the main computational
load is caused by the feature point detection, which always
has to be carried out between two images. Once we have
extracted the entire set of feature points, both matching
and the SVD-solving processes are optimized in terms of
computational cost, so that it is shown a low dependency
on the number of feature points versus the time increase.
In Figures 12(c), 13(c), and 14(c), we show an example of
an experiment where we plot the X , Y , and θ error both for
robot odometry (red dashed line) and visual odometry (blue
line) for each step of the procedure. In general, the figures
show that our method outperforms the robot odometry at
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Figure 13: (a) Example of an experiment using the data set 2 and the feature-based method, using 20 matched points. (b) RMS error and
step time versus the number of matched points using the feature-based method. (c) X , Y , and θ error for each step of the visual odometry
estimation process using the feature-based method using 40 matched points.

each step for the three data sets. With this method it is
possible to obtain an average error of the visual odometry
data comparing with the ground truth of 0.239 m for the data
set 1, 0.494 m for the data set 2, and 0.340 m for the data set
3 with a computational time that allow us to work in a real
time (0.512 s for the data set 1, 0.551 s for the data set 2, and
0.527 s for the data set 3) when we use a number of matched
points equal to 40.

Finally, we must highlight the fact that in cases where
we work with appearance-based methods, we only represent
the average error for the experiments and not the standard
deviation. This is due to the fact that it is a deterministic
method. In contrast, when working with the method based

on features, it is necessary to represent the standard deviation
in error, because it is nondeterministic.

6. Conclusions

In this paper we have presented two visual odometry
approaches with omnidirectional images, which may be
intended for Localization and SLAM applications in the
context of mobile autonomous robotics. We suggest taking
advantage of the benefits provided by omnidirectional
images, since large information about the scene is encap-
sulated in a single image. Consequently we extract the esti-
mation of the relative motion transformation between
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Figure 14: (a) Example of an experiment using the data set 3 and the feature-based method, using 20 matched points. (b) RMS error and
step time versus the number of matched points using the feature-based method. (c) X , Y , and θ error for each step of the visual odometry
estimation process using the feature-based method using 40 matched points.

consecutive poses, which is computed from the processing
of two consecutive omnidirectional images through both
appearance-based and feature-based methods, respectively.
This estimation is completely obtained in an incremental
manner. A set of experiments carried out with real data
acquired with an indoor robot have been presented in order
to verify the reliability of both methods. The results gathered
from the three different scenarios show that accurate estima-
tions for the motion of the robot can be achieved. Further
analysis of these results comes up with the determination of
a specific setting parameters for both appearance-based and
feature-based methods that generate an optimal solution in
terms of accuracy. Besides, the solution accomplishes with

real-time requirements. This fact is highly recommended for
many applications in mobile robotics.
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[10] L. Fernández, L. Payá, O. Reinoso, and F. Amorós, “Appear-
ance-based visual odometry with omnidirectional images. A
practical application to topological mapping,” in Proceedings
of the International Conference on Informatics in Control, Auto-
mation and Robotics (ICINCO ’11), 2011.

[11] E. Menegatti, T. Maeda, and H. Ishiguro, “Image-based mem-
ory for robot navigation using properties of omnidirectional
images,” Robotics and Autonomous Systems, vol. 47, no. 4, pp.
251–267, 2004.

[12] D. Scaramuzza and R. Siegwart, “Appearance-guided monocu-
lar omnidirectional visual odometry for outdoor ground vehi-
cles,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1015–
1026, 2008.

[13] P. Corke, D. Strelow, and S. Singh, “Omnidirectional visual
odometry for a planetary rover,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS ’04), pp. 4007–4012, October 2004.

[14] D. Scaramuzza, “Performance evaluation of 1-point RANSAC
visual odometry,” Journal of Field Robotics, vol. 28, no. 5, pp.
792–811, 2011.

[15] A. Gil, D. Valiente, O. Reinoso, L. Fernández, and J. M. Marı́n,
“Building visual maps with a single omnidirectional camera,”
in Proceedings of the International Conference on Informatics in
Control, Automation and Robotics (ICINCO ’11), 2011.

[16] D. Nistér, “An efficient solution to the five-point relative pose
problem,” in Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition (CVPR ’03),
pp. 195–202, June 2003.
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