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SIMULTANEOUS LOCALIZATION AND MAPPING IN INDOOR
ENVIRONMENTS USING SIFT FEATURES

A. Gil, L. Pay4, O. Reinoso, C. Ferndndez, R. Puerto
System Engineering Department
Universidad Miguel Herndndez
Avda. de la Universidad s/n
03202 Eiche (Alicante)
email: arturo.gil@umbh.es

ABSTRACT

We consider the problem of building a map of an unmod-
ified environment using only visual information extracted
from cameras. In order to build a map, we must estimate
both robot’s location and a map of its surrounding environ-
ment. In general, this problem is known as Simultaneous
Localization and Mapping (SLAM). It is an inherently hard
problem because noise in the estimate of the robot’s pose
leads to noise in the estimate of the map and vice versa.
Past work on this area has centered on building maps using
distance sensors (i.e. laser and SONAR sensors). However,
in our case, we propose a method to build a map based only
on visual information . While the robot moves along the en-
vironment, it extracts a number of interesting points from
images (i.e. corners) and calculates a relative measurement
vector V; = (X, Y;, Z,) to each one of them using stereo
vision. We are using SIFT features as the relevant points
extracted from images. SIFT features, are said to be in-
variant to image translation, scaling and rotation and par-
tially invariant to illumination changes and affine projec-
tion. In consequence those points are suitable for localiz-
ing the robot in a particular environment. Qur map consist
of a number of L three dimensional landmarks referred to a
global frame Sg. In addition, each of the 3D landmarks is
assigned a SIFT descriptor that enables us to partially dif-
ferentiate that particular landmark from the rest. Our ap-
proach to SLAM is based on a Rao-Blackwellised Particle
Filter. This permits us to separate the estimation process
in two parts: On the one hand, we estimate the path of
the robot using a particle filter and estimate the map condi-
tioned to each path of the robot. We present experimental
results that validate our approach to vision-based SLAM in
large unmodified environments.
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1 Introduction

Mobile robots rely normally on a map of the environment
in order to complete their navigation tasks. However, fre-
quently an accurate map of the environment is not avail-
able, thus the robot faces the problem of building it up from
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readings obtained from its sensors. Building an accurate
map of a given environment is one of the hardest tasks for a
mobile robot. It is inherently difficult, since noise in the es-
timation of robot’s pose leads to errors in the estimation of
the map and vice-versa. This problem is generally known
as Simultaneous Localization and Mapping (SLAM). The
aim of SLAM is to build an accurate map of an unknown
environment and simultaneously localise the robot with re-
spect to this map. Our approach solves this problem using
a Rao-Blackwellized Particle Filter (RBPF) and integrating
measurements extracted from a stereo head.

Most work on SLAM so far has focussed on build-
ing 2D maps of environments using range sensors such as
SONAR and laser [1], [2]. SONAR sensors are typically
inaccurate, thus providing little information for the local-
ization process. Laser sensors, provide generally highly
accurate measurements, but need typically expensive and
heavy devices. In addition, the information acquired lies
normally on a plane, in consequence the robot is not able to
build a complete representation of the world. Cameras are
typically low-weight devices that provide a vast quantity
of information. Stereo systems are typically less expensive
than laser sensors and are able to provide directly 3D infor-
mation from the scene. Recently, some authors have been
concentrating on building three dimensional maps using vi-
sual information extracted from cameras. In this scenario,
the map is represented by a set of three dimensional land-
marks related to a global reference frame. In [3] and [4]
stereo vision is used to track 3D visual landmarks extracted
from the environment. In this work, SIFT features are used
as visual landmarks. During exploration, the robot extracts
SIFT features from stereo images and calculates relative
measurements to them. Landmarks are then integrated in
the map with and an EKF is associated to it. However, this
approach does not manage correctly the uncertainty asso-
ciated with robot motion, and only one hypothesis over the
pose of the robot is maintained. Consequently it may fail
in the presence of large odometric errors (e.g. while clos-
ing a loop). In [5] a Kalman filter is used to estimate an
augmented state constituted by the robot pose and N land-
mark positions [6]. SIFT features are used too to manage
data association among visual landmarks. Since only oné
hypothesis is maintained over the robot pose, the method



- would fail in the presence of incorrect data associations. In
addition, in the presence of a significant number of land-
marks the method would be computationally expensive.

The most relevant contribution of this paper is
twofold. First, we present a new mechanism to deal with
the data association problem in the case of different land-
marks which look quite similar. This fact may occur in
most environments. Second, our approach actively tracks
Jandmarks prior to integrating them in the map. As a result,
only those landmarks that are more stable are incorporated
in the map. By using this approach, our map typically con-
sists of a reduced number of landmarks compared to those
of [4] and [7], for comparable map sizes. In addition, we
have applied effective resampling techniques. As exposed
in [8], this fact reduces the number of particles needed to
build the map, thus reducing computational time.

The remainder of the paper is structured as fol-
lows. Section 2 deals with visual landmarks and their util-
ity in SLAM. Section 3 explains the basics of the Rao-
Blackwellized particle filter. Next, section 4 presents our
solution to the data association problem in the context of
visual landmarks. In section 5 we present our experimen-
tal results. Finally, section 6 sums up the most important
conclusions and proposes future extensions.

2 SIFT features

Our representation of the world is formed by set of three
dimensional points referred to a common reference system.
In this sense, each landmark is constituted by a significant
point in space, which can be perceived by the robot from
different viewpoints. In this paper we use visual landmarks
as features to make the map. SIFT features (Scale Invari-
ant Feature Transform) were developed for image feature
generation, and used initially in object recognition applica-
tions (see [9] and [10] for some examples). These signifi-
cant points (key point locations in SIFT nomenclature) are
selected at maxima and minima of a difference of Gaus-
sian function applied in scale space. The features are in-
variant to image translation, scaling, rotation, and partially
invariant to illumination changes and affine or 3D projec-
tion. They are computed by building an image pyramid
with resampling between each level. The SIFT locations
extracted by this procedure may be understood as signifi-
cant points in space that are highly distinctive, thus can be
found from a set of robot poses. In addition, each SIFT
location is given a descriptor that describes this landmark.
Thus, this enables the same points in the space to be rec-
ognized from different viewpoints, which may occur while
the robot moves around its workplace, thus providing in-
formation for the localization process. SIFT features have
been used in robotic applications, showing its suitability for
localization and SLAM tasks [3], [4], [7]. Figure 1 shows
a set of visual features extracted from an image.
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Figure 1. Image shows SIFT locations extracted from a typ-
ical image. The size of the arrow is proportional to SIFT’s
scale.

3 Rao-Blackwellized SLAM

We estimate the map and the path of the robot using a
Rao-Blackwellized particle filter. Using the typical nomen-
clature in this context, we denote as s; the robot pose
at time ¢{. On the other hand, the robot path until time
¢t will be denoted s* = {s1,82,...,8;}, the set of ob-
servations made by the robot until time ¢ will be de-
noted 2% = {z1,2s,..., 2} and the set of actions u =
{u1,us,...,us}. Therefore, the SLAM problem can be
formulated as that of determining the location of ali land-
marks in the map @ and robot poses st from a set of mea-
surements ¢ and robot actions u!. The map is composed as
a set of differente landmarks © = {61,02,...6;,...,0n}.
In consequence, the SLAM can be formulated as the prob-
lem of estimating the following:

p(st, Ozt ut, ) N

where ¢! are landmark correspondences of the land-
marks extracted from the association.

The map © is represented by a collection of N land-
marks. Each landmark is described as: 6, = {uk, 2k, di },
where = (X7,Y/, Z{) is a vector describing the po-
sition of the landmark referred to a global reference frame
O, with associated covariance matriz X. In addition, each
landmark 6y is associated with a SIFT descriptor dj, that
partially differentiates it from others. This map representa-
tion is compact and has been used to effectively localize a
robot in unmodified environments [11].

While exploring a particular environment, the robot
needs to determine whether a particular observation z: k
corresponds to a previously mapped landmark or to a new
one. For the moment, we consider this correspondence
as known. Given that, at a time ¢ the map is formed
by N landmarks, the correspondence is represented by
¢t = {ct1,¢t2,. .. 08}, where ci; € [1...N|. Incon-
sequence at a time ¢ the observation z; ; corresponds to
the landmark ¢; ; in the map. When no correspondence is




Figure 2. Stereo correspondences using SIFT features. The
epipolar constrain is used to find correspondences across
images.

found we denote it as ¢; ; = N + 1, indicating that it is a
new landmark.

3.1 Stereo SIFT

Given two images [ tL and IE, captured with a stereo head
at a time ¢, we extract natural landmarks which correspond
to points in the 3-dimensional space. Each point is accom-
panied by its SIFT descriptor and then matched across im-
ages. The following constrains are applied during stereo
correspondence:

o Epipolarity restriction: The feature location in the
right image must be placed in the same row as the in
the left image. In practice, this condition was relaxed,
permitting a maximum =£2 pixel displacement.

e SIFT restriction: The euclidean distance between two
SIFT descriptors must not surpass a certain threshold
(determined experimentally).

Each time a SIFT feature is matched correctly
in both images, a 3D reconstruction of the point is
obtained relative to the left camera reference frame.
As a result, at a time t we obtain a set of B ob-
servations denoted by z = {2z41,2t2,....2,B} =
{vi1,de1,ve2,de2,- .-, ve,B,de, B} A particular obser-
vation is constituted by z; x = (vt k. dek), Where vy =
(XT, Y™, Z7) is a three dimensional vector represented in
the left camera reference frame and d; is the SIFT de-
scriptor associated to that point. Figure 2 shows two stereo
images of the environment. Correspondences found across
both images are shown. After stereo correspondence, a 3D
reconstruction of the points is obtained, obtaining B mea-
surements vy = (X", Y", Z") relative to the left camera
reference frame.
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3.2 Particle filter estimation

The conditional independence property of the SLAM prob-
lem implies that the posterior (1) can be factored as [12]:

N
p(sta @|2t7 utv ct) = p(st|zt: ut’ ct) H p(9k|3t7 Zt’ utv Ct)

k=1
@
This equation states that the full SLAM posterior is
decomposed into two parts: one-estimator over robot paths,
and N independent estimators over landmark positions,
each conditioned on the path estimate. This factorization
was first presented by Murphy in 1999 [13]. We approxi-
mate p(s?|zt, ut, ct) using a set of M particles, each par-
ticle having N independent landmark estimators (imple-
mented as EKFs), one for each landmark in the map. Each
particle is thus defined as:

SL[m] = {st,[m}7 /im]v E:[&T,rll]’ g ”Lfnlé’ EET]L\]’ ()

Where uk?] is the best estimation at time ¢ for the
position of landmark 6; based on the path of the particle m
and T its associated covariance matrix. The particle set
Sy = {Sﬁll, St[?], ceey St“\'[],} is calculated incrementally
from the set S;_; at time £ — 1 and the robot control u;.
Thus, each particle is sampled from a proposal distribution

sim] ~ p(84|8¢-1, ur). Next, and following the approach of
[12] each particle is then assigned a weight according to:

[m] _

1 1
wit = - 4
= (=39 )

where
— (B Tiz 1Y, . — b 5
a= ('Utﬂ/ Ut,ct.i) { Ct.i] (Ut,l Ut,ct,i) &)

Where v, ; is the current measurement and Oz, ; is
the predicted measurement for the landmark c; ; based on

the pose s,[f]. The matrix Z,, , is the covariance matrix as-
sociated with the innovation (v;; — 0y, ,). Note that we
implicitly assume that each measurement ¢4 has been as-
signed to the landmark c; ; of the map. This problem is,
in general, hard to solve, since similar-looking landmarks
may exist. In section 4 we describe our approach to this
problem. In the case that B observations from different
landmarks exist at a time £, we calculate the total weight

assigned to the particle as:

B
wz[,m] _ H wi"?] 6)
i=1

3.3 Efficient resampling

In order to assess for the difference between the proposal
and the target distribution, each particle is drawn with re-
placement with probability proportional to this importance
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Figure 3. Figures (a)-(c) show different SIFT points tracked along different images with variations in scale and orientation.

weight. During resampling, particles with a low weight are
normally replaced by others with a higher weight. It is a
well known problem that the resampling step may delete
good particles from the set and cause particle depletion. In
order to avoid this problem we follow an approach similar
to [14]. Thus we calculate the number of efficient particles

Neypy as:
1

i ul!

We resample each time N.;; drops below a prede-
fined threshold (set to A /2 in our application). By using
this approach we have verified that the number of particles
needed to achieve good results is reduced.

Nepr = @)

4 Data Association

When navigating through the world, the robot finds differ-
ent landmarks, then, it must decide whether the observa-
tion z¢; = (Vg i, de 1) corresponds to a previously mapped
landmark or to a new one. Data association is based in the
SIFT descriptor and in the spatial position of the landmark.
Each SIFT descriptor is a 128-long vector computed from
the image gradient at a local neighbourhood of the inter-
est point. Experimental results in object recognition appli-
cations have showed that this description is robust against
changes in scale, viewpoint and illumination [9]. In the ap-
proaches of [3], [4] and [7], data association is based on the
squared Euclidean distance between descriptors. In conse-
quence, given two SIFT descriptors d; and d; the following
distance function is computed:

E = (d; — d;)(di — dj)” ®)

Then, the landmark of the map that minimizes the dis-
tance F is chosen. Whenever the distance E is below a cer-
tain threshold the two landmarks are considered to be the
same. On the other hand, a new landmark is created when-
ever the distance E exceeds a pre-defined threshold. When
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the same point is viewed from slightly different viewpoints
and distances, the values in its SIFT descriptor remain al-
most unchanged. However, when the same point is viewed
from significantly different viewpoints (e.g. 30 degrees
apart) the difference in the descriptor is remarkable. In the
presence of similar looking landmarks, this fact causes a
significant number of false correspondences, as can be seen
in the first column of table 1.

A significant number of false data associations may
produce a divergence of the filter, thus failing to produce a
correct map. We propose a different method to deal with
the data association in the context of SIFT features. We
address the problem from a pattern classification point of
view. We consider the problem of assigning a pattern d; to
a class C;. Each class C; models a landmark. While map-
ping the environment, the robot tracks each landmark for a
significant number of frames, thus, we have different pat-
terns for the same class. When a landmark has been tracked
for p frames, its descriptors d1, da, . . . , d,, are stored. Then,
for each landmark C; we compute a mean value d; and es-
timate a covariance matrix .S;, assuming the elements in the
SIFT descriptor independent. Based on this data we com-
pute the Mahalanobis distance:

L= (d; - dj)S; " (di — d;)T ©

Where S; is a diagonal covariance matrix associated
with the class C; with mean value d;. When a landmark is
detected, we compute the distance L for all the landmarks
in the map of each particle and assign the correspondence
to the landmark that minimizes L. If none of the values
exceeds a predefined threshold it is considered a new land-
mark.

In order to test this distance function we have
recorded a set of images with little variations of viewpoint
and distance (see figure 3). SIFT landmarks are easily
tracked across consecutive frames, since the variance in the
descriptor is low. In table 1 we compare results using equa-
tions 9 and 8. A total of 3000 SIFT descriptors were used.




Table 1. Comparison of correct and incorrect matches us-
ing the Buclidean distance and the Mahalanobis distance

Correct | Incorrect
, matches | matches
Euclidean distance 83.85 16.15
\ﬁMahalanobB distance | 94.04 5.96

By using a Mahalanobis we obtain the data association is
more robust, thus improving the map building process.

5 Results

During the experiments we used a B21r robot equipped
with a stereo head and a LMS laser range finder.
We manually steered the robot and moved it through
the rooms of the building 79 of the University of
Freiburg. A total of 507 stereo images at a resolution
of 320x240 were collected. The total traversed distance
of the robot is approximately 80m. For each pair of
stereo images a number of correspondences were estab-
lished and observations z; = {2t1,2t2,---22t,B} =
{ve1,de1, V2, @e,25- -1 Ve, By d g} were obtained. After
stereo correspondence, each point is tracked for a num-
ber of frames. By this procedure we can assure that the
SIFT point is stable and can be viewed from a significant
number of robot poses. Practically, when a landmark has
been tracked for more than 5 frames it is considered a
new observation and is integrated in the filter. As men-
tioned in section 4, each descriptor is now represented by
dy; = {dt,i, Si} where dy.; is the SIFT vector computed as
the mean of the p tracked landmarks and S; is the corre-
sponding diagonal covariance matrix.

Figure 4 shows the map constructed with 1, 10, and
100 particles. A total number of 1500 landmarks were es-
timated. It can be seen that, with only 10 particles, the map
is topologically correct. As can be seen in the figures, some
areas of the map do not possess any landmark. These cor-
respond to feature-less areas (i.e. texture-less walls), where
no SIFT features have been found.

Compared to preceding approaches our method uses
less particles to achieve similar results. For example, in
{7], a total of 400 particles are needed to compute a topo-
logically correct map, while correct maps have been built
using 50 particles with our method. In addition, our maps
typically consists of about 1500 landmarks, a much more
compact representation than the presented in [7], where the
map contains typically around 100.000 landmarks.

6 Conclusion

In this paper a solution to SLAM based on a Rao-
Blackwellized particle filter has been presented. The pro-
posed solution is based on information extracted from g
stereo head. We calculate both a representation of each
landmark (SIFT descriptor) and spatial information from
the stereo reconstruction of the points. Both data are thep
integrated in the map, estimating both the map and the path
of the robot.

Differing from prior approaches, we propose an alter-
native method to deal with the data association problem in
the context of visual landmarks. In the case where a sig-
nificant number of similar looking points exist, a solution
based on the Mahalanobis distance helps us improve the
results of our map and avoids false correspondences,

Opposite to maps created by means of occupancy or
certainty grids, the visual map generated by the process
presented in this paper does not represent directly the occu-
pied or free areas of the environment. Also, in some areas
there may not exist landmarks in the map (i.c. featureless
areas such as blank walls of glass). The map can be used
to effectively localize the robot, but cannot be directly used
for navigation. We believe, that this fact is originated from
the nature of the sensors and it is not a failure of the pro-
posed approach. Other low-cost sensors such as SONAR
would definitely help the robot in navigation tasks.

As a future work we think that it is of particular inter-
est to further research in exploration techniques when this
representation of the world is used. We would also like to
extend the method to the case where several robots explore
an unmodified environment and construct a visual map of
1t.
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