
REMOTE CONTROL LABORATORY USING
MATLAB AND SIMULINK: APPLICATION TO

A DC MOTOR MODEL

Rafael Puerto, Luis M. Jiménez, Óscar Reinoso
César Fernández, Ramón Ñeco

Dpto. Ingenieŕıa de Sistemas Industriales, Universidad
Miguel Hernández, Elche (Alicante), 03202 Spain

Abstract: In this paper, the general architecture of an application for remote
real time execution via Internet of physical process controllers, is presented. This
application has been developed using the platform Matlab/Simulink (Mathworks,
2004). The motivation of this work is based on the short availability of real physical
systems or laboratories to perform the experiments in control courses. In this
way, control lab assignments with various physical processes present in the remote
laboratories can be performed. Also, some examples that show the validity and
applicability of the presented architecture, are presented. Copyright c©2004 IFAC

Keywords: Real – Time Control Systems, Internet Remote Control, Control
Education.

1. INTRODUCTION

The work presented in this paper pretends to pro-
vide a general architecture for remote execution in
real time of physical processes using Matlab plat-
form. The main motivation is, on one hand, the
lack of lab scale models or real physical systems,
and for other, the little availability of schedules in
the laboratories where the students of automatics
and process control subjects develop the practical
assignments corresponding with the theoretical
contents. Therefore, the present application is fo-
cused on the real-time remote control of a physical
system through Internet and Matlab as teaching
and development platform. This application will
allow the students to simulate the operation of a
controller for a certain physical process using In-
ternet, and the control in real time, of the physical
process in question, using the designed controller.
In this way, the student is allowed to develop these
activities without being in the laboratory where
the real system is installed. Also, the application
returns to the user all the information relating the

performed execution, besides graphic and other
data of interest.

Since 1994, engineering educators and others have
demonstrated the feasibility of making educa-
tional engineering laboratory experiments acces-
sible for student experimentation and learning
using Internet (Molly, 2000). References (Molly
and Robby, 2000) and (Molly, 2000) shown some
guidelines for the features and performance that
must have an Internet based process control sys-
tem. Recently, some authors have performed a
lot of advances in the design of remote con-
trol laboratories (Dı́ez et al., 2001), (Pastor et
al., 2001), (Puerto et al., 2001), (Sebastián et al.,
2002), (Bonivento et al., 2002), (Schmid, 2001). In
(Schmid, 2001) a real-time control system via In-
ternet is described, and in (Sebastian et al., 2003),
a practical environment based on an artificial vi-
sion system through Internet has been developed,
but the authors don’t control the system in real
time. For this purpose, the authors use several



software tools from different vendors, which can
lead to an increase in the development time, and
the maintenance cost.

The platform Matlab / Simulink (with some ad-
ditional toolboxes), has been chosen for the de-
velopment of this application for several reasons:
first, Matlab, Simulink and the necessary tool-
boxes constitute a reliable, well-known platform
and with a lot of technical support, and commonly
used in teaching control courses. Second, the time
used to obtain the prototype and in the devel-
opment is quite inferior to the time needed with
other tools and platforms (direct programming
in a programming language, etc.). Third, this
platform provides tools for remote execution of
programs, and for real-time execution on a phys-
ical system, through a data system acquisition,
using a specific control algorithm. The last reason,
and not less important, is the great quantity of
researchers that use this platform as development
tool for simulations and real applications.

2. GENERAL DESCRIPTION OF THE
SYSTEM

The general scheme of the application architec-
ture is shown in Figure 1. In this diagram, the
hardware and software elements are split in two
main blocks: local area where the user works, and
remote area where the whole physical system and
control elements are located. The detailed ele-
ments of local and remote area are the following:

Fig. 1. General Architecture diagram.

• Local area:
· Computer with Internet connection and

an HTTP 4.0 client application. The
Recolab application is optimized for In-
ternet Explorer 6 and Netscape 7 with a
minimum resolution of 800x600.

• Remote area:
· High speed Internet Connection.
· Computer Server: the current imple-

mented system consists on a PC Pentium
II (800 MHz) with 256 MB of RAM, giv-
ing enough power to run the web server
an real – time applications.

· Data acquisition system: NI 6024E ac-
quisition board with analog and digital
I/O.

· Physical system to control: DC motor
model 33-002 from Feedback. This lab-
oratory model is made of a DC mo-
tor, power amplifier, tachometer, abso-
lute encoder, potentiometer and a mag-
netic break.

· Image capture system and web video
server: Sony EVI-D31 / Axis 2400 video
server.This video server is based on em-
bedded Linux, and performs video cap-
ture for four color video cameras, motion
control of cameras, and web video server
for static images and continuous video.

· Operating system that allows to set ac-
cess security directives. The system is
currently based on Windows 2000 Pro-
fessional

· Http Server Apache v.1.3.27 with PHP
4.3.2 module. This server allows the com-
munication of the computers using the
http protocol. Also, it has been config-
ured previously so that the data process-
ing can be made by Matlab Web Server

· MATLAB R12 with SIMULINK V. 4.1:
executes the program that makes possi-
ble the real-time control of the system
and the generation of the results in a file.

· Matlab Web Server V. 1.2.1: this tool-
box allows to use the mathematical and
graphic capacities of Matlab and to
present the results in a web page.

· Real – Time Windows Target Toolbox
V. 2.1: this toolbox allows to execute
Simulink schemes in real time. For this
purpose, it provides the necessary blocks
for the interaction with the data acqui-
sition system.

· Real – Time Workshop Toolbox V. 4.1:
this toolbox generates the C code that,
once compiled, will be executed in real
time. For space reasons, we don’t de-
scribe the details of the operation of
the Real-Time Windows Target, which
is much more complex than the short
description presented in this paper.

· Control System Toolbox 5.1

2.1 Functionality of Software Application

This application has two aspects clearly differen-
tiated:

(1) Web application: this includes client-server
communication using HTTP/HTML proto-
col, the user interface, users access control,
and the main CGI application. The Common



Gateway Interface (CGI) is a standard for in-
terfacing external applications with informa-
tion servers, such as HTTP or Web servers.
This application is in charge of resource ac-
cess and communication between Apache and
both applications: Matlab and Matlab Web
Server.

(2) Real-time execution of control scheme over a
specific physical system.

Different programming languages and de-
velopment tools has been used for each part.
Non-critical tasks as user interface, security
access and resource sharing, have been coded
in PHP (v.4.3.2) running over an Apache
HTTP server (Apache, 2004). PHP (PHP,
2004) is a popular script language that has
been chosen as far it is an open language
widely supported by most web servers and
O.S. platforms, and with an extensive library
that supports most of network protocols and
data base access. PHP code runs on the web
sever so it shows a controlled environment
for the programmer and can communicate
with any other process running in the server
(Matlab application in our case).

Of course, PHP as an scripting language
is not suitable for real-time applications.
The hard real-time core of Recolab (feed-
back control of physical system) is developed
in Simulink with Real-Time Workshop, and
compiled with the Real-Time Windows Tar-
get tool (Mathworks, 2004).

2.1.1. User Interface of Recolab The user inter-
face of Recolab is based on standard HTML 4.0
markup language. The HTML code is generated
dynamically through PHP. The HTML layout is
separated from the contents in order to make of
Recolab a flexible platform. All formatting of data
is based in CSS-styles and PHP layout predefined
functions for forms. The data content is stored
in configuration text files making quite easy and
flexible to add new physical systems, and control
schemes without any modification in the PHP
code.

The user interface shown in figure 2 is based in
HTML forms dynamically generated in PHP from
the configuration files. Interactive actualization
of forms under user selection, is done through
CGI calls to the server and not through client-
side scripting. In this way security access can be
managed more effectively.

Every control Simulink scheme can be executed
in simulation or in real-time over the physical
systems using an acquisition board. The user can
choose different control strategies and regulators,
and can select its parameters accordirng to the
simulation experiments been carried out.

Fig. 2. Access control in RECOLAB.

After an execution, the whole sampled or simu-
lated variables of the process can be downloaded.
The results page shows part of this information as
a graph (the output of the system) (figure 3).

Fig. 3. Results page

2.1.2. Access Control Most of Recolab site can
be accessed from Internet without any restriction
as far it is a open teaching tool, that could be used
by any student interested in control subjet from
any University.

The most critical point in Recolab is the Real-
Time execution of the Simulink schemes over
physical systems. In order to have a more efficient
use of the laboratory resources, this processing
needs to be done under a validated access.

The validation system used for Recolab is not
based in an standard web-server supported sys-
tem, as far these are focused in control the web



resources not the application resources. Instead
the validation is coded in PHP so it permits to be
integrated with the main application. Rendered
options by the PHP code are based on the valida-
tion done by user. In this way there is no need to
maintain different PHP code for validated or not
validated users. If an user request an option that
needs validation, the PHP code itself request for
user validation.

The validation process is based in a user name and
a password. The control access to the resources is
based on a user name and a priority level. Most
of the resources in Recolab use an access control
by level.

2.1.3. CGI Application This application links
the input data from the user with the RT control
Matlab program, synchronizes the different mod-
ules, and records back the output data to the user.
To do so, it uses an middle application, Matlab
Web Server toolbox.

This toolbox permits, in a flexible way, to adapt
the data from the user interface to Matlab. Also,
this toolbox can execute matlab functions, and
generate graphical web pages with the results.
Unfortunately this toolbox is focus on easy de-
ployment of virtual laboratories but not physical
remote laboratories. It has not a mechanism to
communicate with the Real- Time Workshop and
Real-Time Windows Target toolboxes in order to
execute real-time control applications.

For the above reason, Matlab Web server is only
used for the task of adapt the data from the
user interface to Matlab. The rest of non-RT
management tasks have been developed in PHP,
using files as basic mechanism to communicate
the data needed to carry out the real-time control
(controller data, etc.), and the results obtained
once the experiment has been done. In the next
section we comment how this communication is
performed.

2.1.4. Real – Time Control Application This
application runs the real-time feedback control
using the specified control scheme over the phys-
ical system. This application has been developed
using the following tools: Matlab, Simulink, Real-
Time Workshop, and Real-Time Windows Target
(Mathworks, 2004). These last two tools allow
to generate the real-time code to execute the
Simulink schemes using an acquisition board (and
therefore, over the physical system, connected to
it). Firstly, Real-Time Workshop gives the connec-
tion between Simulink and the acquisition board,
whereas Real-Time Windows Target allows the
real-time excution of the Simulink scheme giving
compiled code. The fact of executing a Simulink

scheme directly mean an added advantage, as
far the complexity and spent time working with
Simulink are drastically decreased, allowing an
easy and fast design and modification of control
schemes.

2.1.5. Real – Time Task and CGI Interprocess
Communication As it has been described in a
previous section, Matlab software can solve sep-
arately the Web based user data communication
(through Matlab Web Server), and Real-time ex-
ecution of Simulink schemes, but it cannot deal
with both problems together, i.e. there is not a
direct and efficient communication way between
Matlab Web Server and the Matlab session run-
ning the real – time control task generated by
means the toolboxes Real-Time Workshop and
Real – Time Windows target.

To solve this problem a PHP-coded CGI starts the
Matlab real-time control task with the parameters
requested from the user and synchronises its ex-
ecution using a file-based semaphore mechanism.
The whole detailed prodecure implemented to run
a Simulink simulation or a real-time execution is
as follows:

(1) The user (client) connects to the RECOLAB
server and chooses through the user interface
the simulation or real-time execution of an
specified Simulink scheme. For example, the
user can select the type and the parameters
of the controller, giving the values of the co-
efficients of the polynomials that conform the
numerator and denominator of its transfer
function or the state feedback gain matrix.

(2) PHP module executes the CGI associated to
the user interface web page, and sends, to
Matlab Web Server, every data related to the
execution or simulation to be done.

(3) Matlab Web Server stores the necessary data
in a matlab file (.mat) and returns back the
control to the PHP module. A file based
synchronization mechanism keeps the coher-
ence of data file allowing several concurrent
connections.

(4) After Matlab Web Server processing, this
application starts the PHP module to run
the main control CGI. This CGI is in charge
of executing the Matlab control application
and resource sharing between the concurrent
connections. It also tracks for any problem
in the real-time code execution. After check-
ing access privilege, it reads the configura-
tion data of the experiment and waits for
the semaphore (waiting that no other session
is using the laboratory resources) to start
the Matlab session in background. Together
with this action the specific M-file is exe-
cuted under Matlab. This script code reads



the configuration file written by Matlab Web
Server and loads the adequate Simulink file,
updating its parameters (seleted by the user),
and launching the real-time execution or sim-
ulation.

(5) Once finished the simulation or the real-
time execution, all the result data is stored
(included the figures with time response)
and the PHP task is signalled, by means
a semaphore mechanism, showing that the
execution is ended. Main control CGI (PHP)
reads the experiment and generates the
HTML page with the graphs of the results.
In this same page, the user can download the
experiment data file (Matlab .mat file type)
for later analysis in local computer.

This procedure is shown schematically in figure 4.

Fig. 4. Functional description of RECOLAB ap-
plication.

There must be remarked that only one execution
can be done at the same time, as far it must
use the physical system and real-time resources.
This is why a semaphore control mechanism based
in files has been implemented. When more than
a request is accepted by the apache web server
they are queued waiting until previous excution
ends or a timeout expires. Obviusly, only one
user can executes a real – time experiment whit
the servomotor at the same time. When only a
simulation is requested (the system permits also

simple simulations of Simulink schemes, indeed its
is recommended before a real-time execution) it
can be done concurrently.

3. EXAMPLE

In this section some examples of using the sys-
tem through internet are presented. In the remote
area, a physical system composed by a dc ser-
vomotor has been chosen. This system has been
chosen by their features: easy identification, linear
behavior, etc. However the architecture of the
system allows to carry out several control ex-
periments with other physical systems with little
changes. This is the first advantage of the system
architecture.

In this way, the physical system located in the lab-
oratory (remote area)is composed by the following
elements:

• The Feedback Mechanical Unit 33-100. The
electromechanical components of this unit
comprise a dc motor, an analogue tacho-
generator, analogue input and output poten-
ciometers, absolute and incremental digital
encoders and magnetic brake. In figure 5 this
mechanical unit is presented.

• A Data Acquisition Card National Instru-
ments 6024E. The NI–6024E is a high speed
analog and digital I/O card for IBM PC/AT
and compatible computers. Some interesting
features of this board are:
· 16 channels (eight differential) of analog

input (12 bits resolution)
· 2 channels of analog output
· 8 lines of digital I/O
· Up to 200 KS/s sampling rate
· etc.

Using Matlab and Simulink is perfectly pos-
sible to communicate with this board. The
sampling time chosen in the system is T=0.01
seconds. This sampling time is sufficient to
accomplish the real – time experiments pro-
posed with the dc motor.

So, the purpose is to accomplish some control
experiments in the local area with the physical
system in the remote area. Nowadays, the control
experiments proposed are the following:

• System identification.
• Design of a PID-Controller to command the

position of the servomotor.
• Design of a PID-Controller to command the

speed of the servomotor.

Each experiment allow to the user in a local area
to take advantage of using the physical systems of
the laboratories without its physical presence in
them. The first task that operator must to carry



Fig. 5. Feedback Mechanical Unit 33-100

out consist of simulating the designed controllers
previous to using them over the real system. So,
the user sends to the remote area the data of
the designed controllers, and in the remote area
through Simulink this system is simulated and
analyzed. Once the system is analyzed the user
receives de results of the simulation data.

4. CONCLUSIONS

In this paper an architecture that is able to
perform real – time executions and to return the
results to the user through Internet, has been
presented. For this purpose, the Matlab/Simulink
platform with the necessary toolboxes was used.
The use of this platform is justified, on one hand,
for the fact of being broadly used in control
engineering, and for the great simplicity, speed
and reliability with which it is allowed to develop
applications.

Although the example presented in this paper is
based on a DC motor model, the general remote
control scheme using Matlab can be applied to
other physical systems available in the labora-
tory. The main advantage of the proposed control
scheme is that it can be used to do practical
work about control theory in remote laboratories
in a very simple and quick way. Also, the ideas
presented in this paper can make very easy the
validation of new control schemes, what allows
to the study of different control systems with
different physical systems.

The number of completed laboratory sessions in
the last academic course (2002/2003) has been
considerably increased using RECOLAB system.
Specially, it must be note the added flexibility
to the laboratory time table. This gives to the
student more time dedication to carry out the
experimental lessons.

REFERENCES

Apache (2004). The apache software foundation.
http://www.apache.org.

Bonivento, C.,
L.Gentili, L.Marconi and L.Rappini (2002). A
web based laboratory for control engineering
education. Second International Workshop on
Tele-Education in Engineering Using Virtual
Laboratories.

Dı́ez, J.L., M. Vallés, A. Valera and J.L. Navarro
(2001). Remote industrial process control
with matlab web server. IBCE 2001. IFAC
Proceedings.

Mathworks (2004). Matlab r12, simulink, real –
time workshop, real – time windows tar-
get and matlab web server. online manuals..
http://www.mathworks.com.

Molly, H. Shor (2000). Remote – access engi-
neering educational laboratoires: Who, what,
when, why and how?. Proceedings of the 2000
American Control Conference. Chicago, IL.

Molly, H. Shor and Robson Robby (2000). A
student – centered feedback control model
of the educational process. 30th ASEE/IEEE
Frontiers in Education Conference. Kansas
City, MO.

Pastor, R., Sánchez J. and Dormido S. (2001). Re-
lated: A framework for publish web labora-
tory control system. IBCE 2001. IFAC Pro-
ceedings.

PHP (2004). Hypertext preprocessor.
http://www.php.net.

Puerto, R., O. Reinoso, R.P. Ñeco, N.M. Garcia
and L.M. Jimenez (2001). Remote lab for
control applications using matlab. Internet
Based Control Education 2001. A proceedings
volume from the IFAC Workshop Madrid.

Schmid, C. (2001). Virtual control laboratories
and remote experimentation in control engi-
neering. Proc. 11th EAEEIE Annual Confer-
ence on Innovations in Education for Electri-
cal and Information Engineering, University
of Ulm, Ulm.

Sebastian, J.M., Garcia D. and Sanchez F.M.
(2003). Remote-access education based on
image acquisition and processing through the
internet. IEEE TRANSACTIONS ON EDU-
CATION 46 (1).

Sebastián, J.M., F.M. Sanchez, D. Santo and
R. Aracil (2002). Sivanet: Un nuevo escenario
f́ısico remoto para el autoaprendizaje de con-
trol a través de internet. EIWISA’02. III Jor-
nadas de Enseñanza v́ıa Internet/Web de la
Ingenieŕıa de Sistemas y Automática.


