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Abstract— In this paper we deal with the problem of mobile  consumption and due to the fact that cameras are able to
robot localization using omnidirectional images. We assum provide a high quantity of information. In this paper, we
that the robot is equipped with an omnidirectional camera. — cqngider that the camera is installed at a fixed orientation
In addition, we consider that the map consists of a set of ith t to th bot and inti ds in directi
omnidirectional images with known positions in the environ wi respe_c_ 0 . ero (_) and pointing upwards in direction
ment. Each omnidirectional image is represented by a single t0 an omnidirectional mirror. We also assume that the move-
Fourier descriptor that represents the appearance as wella ment of the robot is restricted to a plane. In this case, a
the orientation. Given an image captured with the camera at a rotation of the robot corresponds to a shift in the columns
certain time, the Fourier descriptor allows us to find the image of the panoramic image.

in the map that is most similar in appearance. We propose the Several authors have investigated the use of omnidirec-
use of Monte Carlo localization to estimate the most probala . ; TOTY )
pose of the robot. Based on these assumptions, in this paper tional images for robot localization. These solutions can b
we propose several methods that allow to compute a weight for divided into two main groups:
each particle and carry out a comparison in terms of the error « Feature-based solutions, in which a number of sig-
e e oot *°%"  nicant poins from each omnidecional image are
extracted. Next, each point in the image is described
. INTRODUCTION using an invariant descriptor. For example [8] uses
omnidirectional images to find the location of the robot
in a given map, using SURF features [1].
« Appearance-based solutions, in which the whole appear-
ance of the image is represented by a single descrip-
tor ([6], [5]).
In the latter case, the methods used to obtain the local-

An essential problem in mobile robotics considers the
computation of the situation of the vehicle in a given
environment. Knowing its location in the space is crucial
for an autonomous agent, since the pose is needed for a
precise navigation. During the last decades the Monte Carlo

algorithm has been extensively used in localization tasks Ization of the robot based on an observation function are

the field of mobile robotics, demonstrating a large degre o . )
of robustness and efficiency ([2], [4], [11]). The approaﬂ:he&verse' In addition, the descriptors used in each research

o : ; . are different, thus making difficult the comparison of the
to Monte Carlo localization differ basically in the nature o : S .
. . methods. This fact justifies the analysis presented here. In
the sensor installed on the robot. For example in [11] a laser : ; :
. . . . consequence, in this paper we present a study of different
range sensor is used to localize the robot in the enwronmerr]nethods that allow to compute a weiaht for each particle and
The differences between the expected and the current laser P 9 P

. : . arry out a comparison in terms of the error in localization.
measurements are used to weight the particles and dise@ard .
. - ..~ Some of the methods presented here have been used in the
most unlikely ones. In [2], a camera pointing to the ceilin ast for localization tasks using particle filters (e.g),[But
of the environment was used. The Monte Carlo algorith gp 910U

. . ; . In addition, we present some techniques that in some cases
tested the brightness in the center of the images with an ; :
: o . are able to provide also good results in terms of accuraay. Th
image of the ceiling as seen from below. The difference . :

: o esults presented also evaluate the influence of the déscrip
between the expected and actual illumination was used 1071 o localization

weight the particles and estlmgte the posmon of the rol:?o{.] The work presented here differs mainly from prior works
In [4] a stereo camera system is used to obtain observations ) - )
the two following aspects: First, the map is represented

: . . |
from a set of point features in the environment. The observeorc} a grid, where several omnidirectional images are taken at

distance comp_ute(_j from the stereo images is used to reﬂgertain positions of the environment. Other authors repres
the robot location in the map.

In this paper we deal with the problem of mobile robothe environment taking images during a given trajectory of

o . L . . tthe robot [7]. Second, we propose different methods that
localization using omnidirectional images. During thetlas : . . '
allow to localize the robot using a particle filter and new

years, installing omnidirectional cameras on robots has bﬁﬂethods that allow to refine the position of the robot rapidly

come common, due to its low cost, weight and power We describe each omnidirectional image by a single
This work has been supported by the Ministerio de Educaci@meycia, Fourier descrlptor_ that represents the appt_earancelwmlmv

by means of project number DPI12007-61197. ance to the rotation. We have chosen this descriptor based
Lorenzo Fernandez, Arturo Gil, Luis Paya and Oscar Reina® agn g prior work [9], in which the Fourier descriptor allows a

with Universidad Miguel Hernndez de Elche, Systems Enginge f . b h . d th b

Department, Avda. de la Universidad s/n, Elche (Alicant&PAIN ast comparison between the current image and the map by
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the processing time needed to compute the Fourier transfofy, y, #)) at time ¢ using a set of measuremenis; =
is comparable to common feature extraction and descriptidn, 22, ..., 2¢} from the environment and the movements
methods. ur = {u1,ue,...,u;} of the robot. In this notation, we
The methods described here are in fact independent obfnsider that the robot makes a movemenirom timet¢ —1
the descriptor used to represent the images. In particulao, timet and next obtains an observation The localization
other correspondence methods such us those based on impgsblem can be stated in a probabilistic way: we aim at
features [8] may also be applied, or other appearance-basesiimating a probability functiom(xz;|z1.¢,u1.¢) over the
methods such as PCA [5]. space of all possible poses, conditioned on all data availab
The rest of the paper is organized as follows: section Il demntil time ¢, the observations;.;, movements performedg .;
scribes the Fourier transform and its use with omnidireetio and the map. The estimation process is usually carried out
images. Section Il deals with the Monte-Carlo algorithnin two phases:
and its application to the problem of localization in mobile Prediction phase The motion model is used to com-
robotics. Next, Section IV lists the weight methods studeed pute the probability functiom(x¢|z1.4—1, u1.¢), taking only
represent the likelihood of observations during Monte €arlmotion into account. Generally, we assume that the current
localization. Section V presents the results obtainedallsin  state z; depends only on the previous state ; and the
Section VI exposes the main conclusions and proposes futur®mvementu;. The motion model is specified in the form

work. of the conditional density(z:|z:—1,u:). The probability
Il FOURIER SIGNATURE WITH function at the next step is obtained by integration:
OMNIDIRECTIONAL IMAGES x| 2101, u¢) =

To date, different description methods have been used in (2|2 we) (o1 u Ve @)
the context of omnidirectional robot vision. In this work, PATe|Te-1, Ue) PAFe-1 |1t -1, Uit -1 J0T1,

we make use of Fourier-based techniques. When we have gRere the functio(a|z;_1, ) represents the probabilistic
imagef(z,y) with N, rows andN, columns, we can obtain ,ovement model.

the m_ost relevant_ information from the image by means of Update phaseln the second phase, a measurement model

the Discrete Fourier Transform. _ is used to incorporate information from the sensors and ob-
There are several possibilities, such as to implement thg;, the posterior distributiop(z| 1.4, u1. ). In this step, the

2D Discrete Fourier Transform [9], the Spherical Fouriefyeasurement model(z|z;) is employed, which provides

Transform of omnidirectional images [10] or the Fouriefyg |ielihood of obtaining the observatiap assuming that
Signature of the panoramic image [6]. The Fourier Sigie robot is at pose;. The posteriop(z|z1., u1.), can be
nature exploits better the invariance to ground-plane rQsculated using Bayes’ Theorem:

tations in panoramic images. This transformation con-

sists in expanding each row of the panoramic image p(xt|zl:t7ulzt):p(ztmt)p(m”zlﬁt*l’ut) 3)
{a,} = {ao,a1,...,an,—1} using the Discrete Fourier p(2t|21:0-1)

Transform into the sequence of complex numbgds,} = This process is repeated recursively after the update phase
{Ao, A1,...,An,—1}. The most important information is The knowledge about the initial state at timgis generally
concentrated in the low frequency components of each rovepresented by(z). In this case two different cases are
so we can work only with the information from the generally considered:

first columns in the Signature. Also, this feature presents, The case of global localization, in which the initial

rotational invariance. It is possible to prove that if eaotvr pose of the vehicle is totally unknown. Thpéz,) is
of the original image is represented by the sequeficg} represented by a uniform distribution.
and each row of the rotated image by,.—,} (beingq the « The case of local localization or tracking, in which
amount of shift), when the Fourier Transform of the shifted  the initial pose of the vehicle is partially known. The
sequence is computed, we obtain the same amplitutles function p(xo) is commonly represented by a gaussian
than in the non-shifted sequence, and there is only a phase (jstribution centered at the known starting pose of the
change, proportional to the amount of shift(eq.1). robot.
2mqk Note that in Equations (2) and (3) nothing is said about the
Fl{an—q}] = Axexp—j a4 i k=0,...,N,—1 (1) q (2) (3) 9

Ny representation of the probability function. We concemtiat
Thanks to this shift Theorem, we can separate the corH]e Monte Carlc_) localization me_thod_, that can bg included
putation of the robot position and the orientation. It idn & Set of algorithms called particle filters, extensiveted
interesting to highlight also that the Fourier Signaturesis during last decade (e.g. [3], [11]). In Monte Carlo Localiza
inherently incremental method (what differs from the PcAion (MCL), the probability density functiop(x:|21:¢, u1.1)

Analysis). is represented by a set 8f random sampleg; = {«%,i =
1... M} extracted from it, named particles. Each particle
l1l. MONTE-CARLO LOCALIZATION can be understood as a hypothesis of the true state of the
In robot localization we are interested in the estimarobotz! = (x, y*, #%). The algorithm is described in the
tion of the pose of the vehicle (typically, the statg = next lines, and consists of a prediction and update phase:
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Prediction Phase At time ¢t a set of particlesy; is
generated based on the set of particles; and a control
signalu;. This step uses the motion mogglc;|z;—1,u:). In
order to represent this probability function, the movement
is applied to each particle while adding a pre-defined qtanti
of noise. As a result, the new set of particlgsrepresents
the densityp(x¢|2z1.0—1, u1.t)-

Update Phase In this second phase, the observatign
obtained by the robot is used to compute a weighfior each
particle in the sef;. This weight represents the observation
model p(z|z;) and is computed as{ = p(zzi). In this
paper we propose different methods for the computation of
this weight, that will be described in Section IV. The wegght
are normalized so thdf wi = 1. As a result, we obtain a
set of particles accompanied by a weigth= {z},wi}.

Finally the resulting sety; is calculated by resampling
with replacement from the ség,, where the probability of
resampling each particle is proportional to its importance
weight wi. Finally, the sety; represents the distribution
p(w¢]21:8, Ur:e)-

IV. WEIGHT METHODS

As described in the previous section, the Monte-carlo
Algorithm introduces the current observationof the robot
by means of computing a weight; for each particle and
performing a resampling process.

We consider that our map is formed by a set &f
bi-dimensional landmarkd. = {i1,1s,...,Ix}, forming a
grid in the environment with a particular resolution. Each
landmarkij has an omnidirectional imagk associated and
a Fourier descriptot; that describes the global appearance
of the image, thus; = {(l;«,l;,y).d;, I;}.

Next, we describe the localization method proposed. We
consider that at time the robot captured an image and com-
puted the Fourier descriptds. Using this Fourier descriptor
we compare the descriptet; with the rest of descriptors
d;, y =1...N and find theB landmarks in the map that are
closest in appearance with the current imégeén this sense,
we allow the correspondence of the current observation to
several landmarks in the map. We consider that this is a
special case of the data association problem. In additii, t
correspondence benefits the localization algorithm, sihce
may restrict the computation of the observation model to a
reduced set of landmarks, thus reducing the computational
effort. We will show results when varying this parameter in
order to assess its influence. In addition the selectiof of
landmarks in terms of appearance will allow us to evaluate
the importance of the description method used.

We base the localization of the robot on the Monte
Carlo algorithm explained in the previous section. Next, we .
propose several methods that allow to compute the weight
of each particlew! = p(z|zi), thus providing different
observation models:

o Weight Method 1 (W1): product of gaussians centered
on each image landmark considering the distance to the

descriptor.
B
wi = H exp{—vjEl_leT} (4)
Jj=1
where, v; = (ljxl;y) — (x',y") is the difference

between the position of the landmérkand the position
(x*,y") of the particlei. The matrix¥; is a diagonal
matrix 3, = diag(c?,0?). The variances? is chosen
experimentally in order to minimize the error in the
localization. We recall that the product of gaussian
distributions is also a gaussian. The results demonstrate
that this method tends to center the particles rapidly
near the true robot pose, however, it suffers from some
problems when the data association phase fails (e.g. the
selected landmark; lies far away from the actual robot
pose).

Weight Method 2 (W2): Sum of gaussians centered on
each image landmark.

B
wi = Zexp{fvjEl_lva} (5)

J=1
where v; and matrix¥; is analogous to the matrix
defined in W1 and its values were also selected experi-
mentally. In this case, the observation mogel;|x;) is
not gaussian, since it is formed by a sum of gaussians,
being thus multi-modal. As we will show in the exper-
imental results, this method is less sensitive to errors
in data association whereas it is able to achieve nice
localization results.
Weight method 3 (W3): sum of gaussians centered on
each image landmark and considering the difference in
the descriptors.

B
wi = Zexp{—vjEl_leT}exp{—hngthT} (6)
j=1
where v; and ¥; have been defined in the previous
methods andh; = |d; — d;| defines the difference

between the module of the Fourier descriptor associated
to the current image observed and the module of the
descriptor associated to the landm&rKThe descriptors
are normalized so that the summation of the euclidean
distance of the current descriptdy to the rest of the

B associations equals ong‘f:1 hj = 1. The matrix

Yq = diag(c3) is an k x k matrix, beingk the
length of the Fourier descriptor. The main difference
of this method with respect to W2 is the consideration
of the difference in the descriptor in the observation
modelp(z;|x¢). This fact generally gives higher weights
to particles situated near a landmark that is close in
appearance to the current observation.

Weight method 4 (W4): product of gaussians centered
on each image landmark and considering the difference
in the descriptors.

B
W = H exp{—ijflva} exp{—hnglh]T} @)
j=1
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where v;, hj, 3; and ¥4 have been defined in the
previous methods. This method is similar to method
1 but considering the effect of the similarity in the
description when computing the weight.

Weight method 5 (W5): sum of gaussians centered on
each landmark position and considering the difference
in the descriptors as well as the orientation of the
landmarks (images).

B
wi= Z exp{—vjEflvf}~
j=1

cexp{—h; 57 hT} - exp{—g;5; " g7 } (8)

Fig. 1. Pioneer P3-AT mobile robot, omnidirectional image @anoramic
where v;, h;, ¥; and ¥4 have been defined in the image .

previous methods. The variabje = (6; —6,) computes
the difference between the expected orientatlprand

0; the orientation of the particle. Given the current
descriptord; and the descriptaf; the orientatiort; can

be computed as in Equation (1). In this case, and since
the map is known, the orientation of all the landmarks
(images) in the map is known in advance. The matrix
Yy is selected experimentally.

Weight method 6 (W6): product of gaussians centered
on each landmark position and considering the differ-
ence in the descriptors as well as the orientation of the
landmarks (images).

B
wi = H exp{—vjEflv]T}~
j=1

cexp{—h;5;'hT} - exp{—g; 55 g7 } 9)

wherew;, hj, g;, £;, ¥q and Xy have been defined in
the previous methods. This method is similar to the W5,
but considering the product of the gaussian distributions.
Weight method 7 (W7): gaussian distribution at the
center of mass of a discrete particle system. This method
is inspired in a system of particles, each one having a
mass related to the similarity with the current descriptor
d; observed by the robot. The weight for each particle
is computed as:

wi =exp{—£;57' f1'} (10)
where f; = ((x',y") — ¢) computes the difference
between the position of the particieand the center
of mass computed as:

spring is related to the similarity in the description,
thus, landmarks more similar to the current observation
try to atract the mass more tightly. To simplify the
calculations,m; is equal to 1 for all the mass of the
system. The weight for each particle is computed as:

wi = exp{—f;Ssf]}

where f; = ((x%,y") — ¢) computes the difference
between the position of the particieand the center

¢ of a spring-mass system. In this case, the mafrix

is computed as the covariance associated to

Weight method 9 (W9): triangular distribution. This
method is inspired in the weight function introduced
by [7]. The weight for each particle is computed as:

(12)

B
o .
Wy = E J:Zl Sj (Dmaz - Ujv,jr) (13)

whereS; = (1—4/h;hT) andv; = (I« ljy) = (x',¥")
computes the difference between the position of the
particle i and the landmarkj. D! . is the metric
distance between the farthest landmark and the position
of the particle:. This weight method represents a
triangular distribution centered on each landmark as to

the appearance of each acquired image.

V. EXPERIMENTS

In order to acquire data for our experiments we have used
a Pioneer P3-AT mobile robot, equipped with an omnidirec-

tional camera (Figure 1). The map was built by carefully

(11)

B
CcC = E lj-mj
j=1

obtaining omnidirectional images at different positionfs o
an office-like environment. Next, the robot performed a

trajectory inside the map, gathering omnidirectional iesgmg

where the virtual massn; is computed asm; =
exp{—hngthT}. The massesn; are normalized so
that Y7, m; = 1. The covariance matrixi; is
computed as the covariance associated. to

whenever it traversed a distance abdvdm. In order to

obtain a robust result, we have performed different types
of trajectories, varying both the number of images captured
and the angles between them. The map is formed by a set

Weight method 8 (W8): gaussian distribution at theof images placed in a grid with a resolution @f2m. The
center of a spring-mass system. This method is inspirgubsition of this set of images of the map is represented with
by a spring-mass system [6]. The constant of eachlack circles in Figure 2(a)(b)(d)(e).
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Fig. 2. (a) and (b) An example of Monte-Carlo localizationngsthe W3 and 10000 particles performing a global localiratand (d) and (e) then
position tracking, (c) error in location for the previouspeximent and (f) error in orientation for the previous expent.

Figure 2 presents an example of global localization usingumber of associations grows, the weighting of particles
the method W3 using 10000 particles. The position of thbecomes more restrictive. On the other hand, Figure 4b)
landmarks is indicated with a green circle. Figure 2(apresents the results in global localization. When the numbe
presents an uniform distribution of the particles on the ersf associations is increased, the error in the location grow
vironment. In the sequence presented in Figure 2(a)(l®)d)(quicker comparing to the case of tracking (Figure 4a)).
we can observe how the particles concentrate near the triiwreover, we observe that the last 3 methods (W7, W8
pose of the robot. Please note that the trajectory of thetroband W9) require a minimum number of associations to work
does not coincide exactly with the position of any of theproperly. Finally, we can observe how when we work with
images in the map. In consequence, the localization can bee method W1, the error also increases with increasing the
performed without having to place the robot exactly on aumber of associations. This occurs because the method W1
landmark. Figure 2(c) presents the error in position at eaatoes not take into account the descriptor, using only the dat
iteration step, the figure shows that, as the robot movessociation.
around the map, the error in location is reduced and so does
the dispersion of particles, as can be observed in Figuje 2(f VI. CONCLUSION

To compare different types of weighting, we have carried In this work, we have exposed an appearance-based Monte
out a series of experiments of global localization in whictCarlo localization method using omnidirectional imaged an
we have obtained the trajectory average error in positiah anve have compared different weighting methods. We have
orientation of the robot depending on the number of padiclepuilt the image descriptors using the Fourier signature of
M. As shown in Figure 3 as we increase the number qfanoramic images. We have evaluated the performance of the
particles, the error decreases both in location and otienta  different weight methods in the case of local and globallloca
We have observed that the method W5 is able to achieve niggtion finding different behaviours. We have also evaldate
localization results even with a low number of particles. the influence of the descriptor in the localization by vagyin

To compare the weighting methods with respect to ththe number of possible associations. Our system is able to
number of associations, we have separated the globaldocatitrack the position of the robot while moving and it is able
from the tracking. Figure 4a) presents the error in trackingp estimate the position of the robot in the case of unknown
when varying the number of associatiols As shown in initial position. We proved how the precision of the methods
Figure 4a), in general, although the number of associationaries with the type of weight, the number of particles used
is low, the error in localization remains small. As the numbeand the number of associations. In the evaluated methods,
of associations increases, the error in the location isIsmals we increase the number of particles in the system, the
in the sum-of-gaussian methods, but increases rapidly average error of localization decreases rapidly. With eesp
the product of gaussian methods (W2, W4 and W6). Wheto the orientation, we obtained a similar results. We have
we multiply two gaussians we get a gaussian with varianademonstrated the strong dependence between the number
lower than the minimum variance of both. Therefore, as thef associations and the type of method used. We prove
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Fig. 4. Trajectory average error in position versus assiocis number for all methods
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using 10.000 particles. (axKireg and (b) global localization

how it is possible to correct the weighting of the particles[5] M. Jogan and A. Leonardis. Robust localization usingeeipace of
by combining a physical system of forces with a Gaussian
weight (W8).

This work opens the door to new applications of the

appearance-based methods in mobile robotics. Once we have
shown how it is possible to perform an appearance-base
Monte Carlo localization with different types of weighting

[6

spinning-images. IProc. of the IEEE Workshop on Omnidirectional
Vision, pages 37-44, Hilton Head Island, USA, 2000.

] E. Menegatti, T. Maeda, and H. Ishiguro. Image-based orgnfor

robot navigation using properties of omnidirectional ireadRobotics
and Autonomous Systen(4):251-276, 2004.

1 E. Menegatti, M. Zocaratto, E. Pagello, and H. Ishigurnage-based

monte carlo localisation with omnidirectional imageRobotics and
Autonomous Systemé8(1):17-30, 2004.

appearance-based methods.

(1]

(2]

(3]
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