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Abstract— In this paper we deal with the problem of mobile
robot localization using omnidirectional images. We assume
that the robot is equipped with an omnidirectional camera.
In addition, we consider that the map consists of a set of
omnidirectional images with known positions in the environ-
ment. Each omnidirectional image is represented by a single
Fourier descriptor that represents the appearance as well as
the orientation. Given an image captured with the camera at a
certain time, the Fourier descriptor allows us to find the image
in the map that is most similar in appearance. We propose the
use of Monte Carlo localization to estimate the most probable
pose of the robot. Based on these assumptions, in this paper
we propose several methods that allow to compute a weight for
each particle and carry out a comparison in terms of the error
in localization. Experimental results are presented usingindoor
omnidirectional images and a real robotic platform.

I. INTRODUCTION

An essential problem in mobile robotics considers the
computation of the situation of the vehicle in a given
environment. Knowing its location in the space is crucial
for an autonomous agent, since the pose is needed for a
precise navigation. During the last decades the Monte Carlo
algorithm has been extensively used in localization tasks in
the field of mobile robotics, demonstrating a large degree
of robustness and efficiency ([2], [4], [11]). The approaches
to Monte Carlo localization differ basically in the nature of
the sensor installed on the robot. For example in [11] a laser
range sensor is used to localize the robot in the environment.
The differences between the expected and the current laser
measurements are used to weight the particles and discard the
most unlikely ones. In [2], a camera pointing to the ceiling
of the environment was used. The Monte Carlo algorithm
tested the brightness in the center of the images with an
image of the ceiling as seen from below. The difference
between the expected and actual illumination was used to
weight the particles and estimate the position of the robot.
In [4] a stereo camera system is used to obtain observations
from a set of point features in the environment. The observed
distance computed from the stereo images is used to refine
the robot location in the map.

In this paper we deal with the problem of mobile robot
localization using omnidirectional images. During the last
years, installing omnidirectional cameras on robots has be-
come common, due to its low cost, weight and power
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consumption and due to the fact that cameras are able to
provide a high quantity of information. In this paper, we
consider that the camera is installed at a fixed orientation
with respect to the robot and pointing upwards in direction
to an omnidirectional mirror. We also assume that the move-
ment of the robot is restricted to a plane. In this case, a
rotation of the robot corresponds to a shift in the columns
of the panoramic image.

Several authors have investigated the use of omnidirec-
tional images for robot localization. These solutions can be
divided into two main groups:

• Feature-based solutions, in which a number of sig-
nificant points from each omnidirectional image are
extracted. Next, each point in the image is described
using an invariant descriptor. For example [8] uses
omnidirectional images to find the location of the robot
in a given map, using SURF features [1].

• Appearance-based solutions, in which the whole appear-
ance of the image is represented by a single descrip-
tor ([6], [5]).

In the latter case, the methods used to obtain the local-
ization of the robot based on an observation function are
diverse. In addition, the descriptors used in each research
are different, thus making difficult the comparison of the
methods. This fact justifies the analysis presented here. In
consequence, in this paper we present a study of different
methods that allow to compute a weight for each particle and
carry out a comparison in terms of the error in localization.
Some of the methods presented here have been used in the
past for localization tasks using particle filters (e.g. [7]), but,
in addition, we present some techniques that in some cases
are able to provide also good results in terms of accuracy. The
results presented also evaluate the influence of the descriptor
in the localization.

The work presented here differs mainly from prior works
in the two following aspects: First, the map is represented
by a grid, where several omnidirectional images are taken at
certain positions of the environment. Other authors represent
the environment taking images during a given trajectory of
the robot [7]. Second, we propose different methods that
allow to localize the robot using a particle filter and new
methods that allow to refine the position of the robot rapidly.

We describe each omnidirectional image by a single
Fourier descriptor that represents the appearance with invari-
ance to the rotation. We have chosen this descriptor based
on a prior work [9], in which the Fourier descriptor allows a
fast comparison between the current image and the map by
means of a vector distance measurement. Finally, in general
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the processing time needed to compute the Fourier transform
is comparable to common feature extraction and description
methods.

The methods described here are in fact independent of
the descriptor used to represent the images. In particular,
other correspondence methods such us those based on image
features [8] may also be applied, or other appearance-based
methods such as PCA [5].

The rest of the paper is organized as follows: section II de-
scribes the Fourier transform and its use with omnidirectional
images. Section III deals with the Monte-Carlo algorithm
and its application to the problem of localization in mobile
robotics. Next, Section IV lists the weight methods studiedto
represent the likelihood of observations during Monte Carlo
localization. Section V presents the results obtained. Finally,
Section VI exposes the main conclusions and proposes future
work.

II. FOURIER SIGNATURE WITH
OMNIDIRECTIONAL IMAGES

To date, different description methods have been used in
the context of omnidirectional robot vision. In this work,
we make use of Fourier-based techniques. When we have an
imagef(x, y) with Nx rows andNy columns, we can obtain
the most relevant information from the image by means of
the Discrete Fourier Transform.

There are several possibilities, such as to implement the
2D Discrete Fourier Transform [9], the Spherical Fourier
Transform of omnidirectional images [10] or the Fourier
Signature of the panoramic image [6]. The Fourier sig-
nature exploits better the invariance to ground-plane ro-
tations in panoramic images. This transformation con-
sists in expanding each row of the panoramic image
{an} = {a0, a1, . . . , aNy−1} using the Discrete Fourier
Transform into the sequence of complex numbers{An} =
{A0, A1, . . . , ANy−1}. The most important information is
concentrated in the low frequency components of each row,
so we can work only with the information from thek
first columns in the Signature. Also, this feature presents
rotational invariance. It is possible to prove that if each row
of the original image is represented by the sequence{an}
and each row of the rotated image by{an−q} (beingq the
amount of shift), when the Fourier Transform of the shifted
sequence is computed, we obtain the same amplitudesAk

than in the non-shifted sequence, and there is only a phase
change, proportional to the amount of shiftq, (eq.1).

F [{an−q}] = Ak exp−j
2πqk

Ny

; k = 0, . . . , Ny − 1 (1)

Thanks to this shift Theorem, we can separate the com-
putation of the robot position and the orientation. It is
interesting to highlight also that the Fourier Signature isan
inherently incremental method (what differs from the PCA
Analysis).

III. MONTE-CARLO LOCALIZATION

In robot localization we are interested in the estima-
tion of the pose of the vehicle (typically, the statext =

(x, y, θ)) at time t using a set of measurementsz1:t =
{z1, z2, . . . , zt} from the environment and the movements
u1:t = {u1, u2, . . . , ut} of the robot. In this notation, we
consider that the robot makes a movementut from timet−1
to time t and next obtains an observationzt. The localization
problem can be stated in a probabilistic way: we aim at
estimating a probability functionp(xt|z1:t, u1:t) over the
space of all possible poses, conditioned on all data available
until time t, the observationsz1:t, movements performedu1:t

and the map. The estimation process is usually carried out
in two phases:

Prediction phase: The motion model is used to com-
pute the probability functionp(xt|z1:t−1, u1:t), taking only
motion into account. Generally, we assume that the current
statext depends only on the previous statext−1 and the
movementut. The motion model is specified in the form
of the conditional densityp(xt|xt−1, ut). The probability
function at the next step is obtained by integration:

p(xt|z1:t−1, ut) =
∫

p(xt|xt−1, ut).p(xt−1|z1:t−1, u1:t−1)dxt−1, (2)

where the functionp(xt|xt−1, ut) represents the probabilistic
movement model.

Update phaseIn the second phase, a measurement model
is used to incorporate information from the sensors and ob-
tain the posterior distributionp(xt|z1:t, u1:t). In this step, the
measurement modelp(zt|xt) is employed, which provides
the likelihood of obtaining the observationzt assuming that
the robot is at posext. The posteriorp(xt|z1:t, u1:t), can be
calculated using Bayes’ Theorem:

p(xt|z1:t, u1:t) =
p(zt|xt)p(xt|z1:t−1, ut)

p(zt|z1:t−1)
(3)

This process is repeated recursively after the update phase.
The knowledge about the initial state at timet0 is generally
represented byp(x0). In this case two different cases are
generally considered:

• The case of global localization, in which the initial
pose of the vehicle is totally unknown. Thusp(x0) is
represented by a uniform distribution.

• The case of local localization or tracking, in which
the initial pose of the vehicle is partially known. The
function p(x0) is commonly represented by a gaussian
distribution centered at the known starting pose of the
robot.

Note that in Equations (2) and (3) nothing is said about the
representation of the probability function. We concentrate on
the Monte Carlo localization method, that can be included
in a set of algorithms called particle filters, extensively used
during last decade (e.g. [3], [11]). In Monte Carlo Localiza-
tion (MCL), the probability density functionp(xt|z1:t, u1:t)
is represented by a set ofM random samplesχt = {xi

t, i =
1 . . .M} extracted from it, named particles. Each particle
can be understood as a hypothesis of the true state of the
robot xi

t = (xi, yi, θi). The algorithm is described in the
next lines, and consists of a prediction and update phase:
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Prediction Phase: At time t a set of particlesχt is
generated based on the set of particlesχt−1 and a control
signalut. This step uses the motion modelp(xt|xt−1, ut). In
order to represent this probability function, the movementut

is applied to each particle while adding a pre-defined quantity
of noise. As a result, the new set of particlesχt represents
the densityp(xt|z1:t−1, u1:t).

Update Phase: In this second phase, the observationzt
obtained by the robot is used to compute a weightωi

t for each
particle in the setχt. This weight represents the observation
model p(zt|xt) and is computed asωi

t = p(zt|x
i
t). In this

paper we propose different methods for the computation of
this weight, that will be described in Section IV. The weights
are normalized so that

∑

ωi
t = 1. As a result, we obtain a

set of particles accompanied by a weigthχt = {xi
t, ω

i
t}.

Finally the resulting setχt is calculated by resampling
with replacement from the setχt, where the probability of
resampling each particle is proportional to its importance
weight ωi

t. Finally, the setχt represents the distribution
p(xt|z1:t, u1:t).

IV. WEIGHT METHODS

As described in the previous section, the Monte-carlo
Algorithm introduces the current observationzt of the robot
by means of computing a weightwi for each particle and
performing a resampling process.

We consider that our map is formed by a set ofN

bi-dimensional landmarksL = {l1, l2, . . . , lN}, forming a
grid in the environment with a particular resolution. Each
landmarklj has an omnidirectional imageIj associated and
a Fourier descriptordj that describes the global appearance
of the image, thuslj = {(lj,x, lj,y), dj , Ij}.

Next, we describe the localization method proposed. We
consider that at timet the robot captured an image and com-
puted the Fourier descriptordt. Using this Fourier descriptor
we compare the descriptordt with the rest of descriptors
dj , j = 1 . . .N and find theB landmarks in the map that are
closest in appearance with the current imageIt. In this sense,
we allow the correspondence of the current observation to
several landmarks in the map. We consider that this is a
special case of the data association problem. In addition, this
correspondence benefits the localization algorithm, sinceit
may restrict the computation of the observation model to a
reduced set of landmarks, thus reducing the computational
effort. We will show results when varying this parameter in
order to assess its influence. In addition the selection ofB

landmarks in terms of appearance will allow us to evaluate
the importance of the description method used.

We base the localization of the robot on the Monte
Carlo algorithm explained in the previous section. Next, we
propose several methods that allow to compute the weight
of each particleωi

t = p(zt|x
i
t), thus providing different

observation models:

• Weight Method 1 (W1): product of gaussians centered
on each image landmark considering the distance to the

descriptor.

ωi
t =

B
∏

j=1

exp{−vjΣ
−1
l vTj } (4)

where, vj = (lj,x, lj,y) − (xi, yi) is the difference
between the position of the landmarklj and the position
(xi, yi) of the particlei. The matrixΣl is a diagonal
matrix Σl = diag(σ2

l , σ
2
l ). The varianceσ2

l is chosen
experimentally in order to minimize the error in the
localization. We recall that the product of gaussian
distributions is also a gaussian. The results demonstrate
that this method tends to center the particles rapidly
near the true robot pose, however, it suffers from some
problems when the data association phase fails (e.g. the
selected landmarklj lies far away from the actual robot
pose).

• Weight Method 2 (W2): Sum of gaussians centered on
each image landmark.

ωi
t =

B
∑

j=1

exp{−vjΣ
−1
l vTj } (5)

where vj and matrixΣl is analogous to the matrix
defined in W1 and its values were also selected experi-
mentally. In this case, the observation modelp(zt|xt) is
not gaussian, since it is formed by a sum of gaussians,
being thus multi-modal. As we will show in the exper-
imental results, this method is less sensitive to errors
in data association whereas it is able to achieve nice
localization results.

• Weight method 3 (W3): sum of gaussians centered on
each image landmark and considering the difference in
the descriptors.

ωi
t =

B
∑

j=1

exp{−vjΣ
−1
l vTj } exp{−hjΣ

−1
d hT

j } (6)

where vj and Σl have been defined in the previous
methods andhj = |dj − dt| defines the difference
between the module of the Fourier descriptor associated
to the current image observed and the module of the
descriptor associated to the landmarklj . The descriptors
are normalized so that the summation of the euclidean
distance of the current descriptordt to the rest of the
B associations equals one,

∑B

j=1 hj = 1. The matrix
Σd = diag(σ2

d) is an k × k matrix, being k the
length of the Fourier descriptor. The main difference
of this method with respect to W2 is the consideration
of the difference in the descriptor in the observation
modelp(zt|xt). This fact generally gives higher weights
to particles situated near a landmark that is close in
appearance to the current observation.

• Weight method 4 (W4): product of gaussians centered
on each image landmark and considering the difference
in the descriptors.

ωi
t =

B
∏

j=1

exp{−vjΣ
−1
l vTj } exp{−hjΣ

−1
d hT

j } (7)

Proceedings of the 2nd. Workshop on Omnidirectional Robot Vision
A workshop of the 2010 IEEE International Conference on Robotics and Automation (ICRA2010)

Anchorage, Alaska, USA, May 7, 2010, ISBN 978-88-95872-02-5
pp. 13-18



where vj , hj , Σl and Σd have been defined in the
previous methods. This method is similar to method
1 but considering the effect of the similarity in the
description when computing the weight.

• Weight method 5 (W5): sum of gaussians centered on
each landmark position and considering the difference
in the descriptors as well as the orientation of the
landmarks (images).

ωi
t =

B
∑

j=1

exp{−vjΣ
−1
l vTj }·

· exp{−hjΣ
−1
d hT

j } · exp{−gjΣ
−1
θ gTj } (8)

where vj , hj , Σl and Σd have been defined in the
previous methods. The variablegj = (θj−θi) computes
the difference between the expected orientationθj and
θi the orientation of the particle. Given the current
descriptordt and the descriptordj the orientationθj can
be computed as in Equation (1). In this case, and since
the map is known, the orientation of all the landmarks
(images) in the map is known in advance. The matrix
Σθ is selected experimentally.

• Weight method 6 (W6): product of gaussians centered
on each landmark position and considering the differ-
ence in the descriptors as well as the orientation of the
landmarks (images).

ωi
t =

B
∏

j=1

exp{−vjΣ
−1
l vTj }·

· exp{−hjΣ
−1
d hT

j } · exp{−gjΣ
−1
θ gTj } (9)

wherevj , hj , gj , Σl, Σd andΣθ have been defined in
the previous methods. This method is similar to the W5,
but considering the product of the gaussian distributions.

• Weight method 7 (W7): gaussian distribution at the
center of mass of a discrete particle system. This method
is inspired in a system of particles, each one having a
mass related to the similarity with the current descriptor
dt observed by the robot. The weight for each particle
is computed as:

ωi
t = exp{−fjΣ

−1
f fT

j } (10)

where fj = ((xi, yi) − ĉ) computes the difference
between the position of the particlei and the center
of mass computed as:

ĉ =

B
∑

j=1

lj ·mj (11)

where the virtual massmj is computed asmj =
exp{−hjΣ

−1
d hT

j }. The massesmj are normalized so
that

∑B

j=1 mj = 1. The covariance matrixΣf is
computed as the covariance associated toĉ.

• Weight method 8 (W8): gaussian distribution at the
center of a spring-mass system. This method is inspired
by a spring-mass system [6]. The constant of each

Fig. 1. Pioneer P3-AT mobile robot, omnidirectional image and panoramic
image .

spring is related to the similarity in the description,
thus, landmarks more similar to the current observation
try to atract the mass more tightly. To simplify the
calculations,mj is equal to 1 for all the mass of the
system. The weight for each particle is computed as:

ωi
t = exp{−fjΣsf

T
j } (12)

where fj = ((xi, yi) − c) computes the difference
between the position of the particlei and the center
c of a spring-mass system. In this case, the matrixΣs

is computed as the covariance associated toc.
• Weight method 9 (W9): triangular distribution. This

method is inspired in the weight function introduced
by [7]. The weight for each particle is computed as:

ωi
t =

1

B

B
∑

j=1

Sj(D
i
max −

√

vjv
T
j ) (13)

whereSj = (1−
√

hjh
T
j ) andvj = (lj,x, lj,y)−(xi, yi)

computes the difference between the position of the
particle i and the landmarkj. Di

max is the metric
distance between the farthest landmark and the position
of the particle i. This weight method represents a
triangular distribution centered on each landmark as to
the appearance of each acquired image.

V. EXPERIMENTS

In order to acquire data for our experiments we have used
a Pioneer P3-AT mobile robot, equipped with an omnidirec-
tional camera (Figure 1). The map was built by carefully
obtaining omnidirectional images at different positions of
an office-like environment. Next, the robot performed a
trajectory inside the map, gathering omnidirectional images
whenever it traversed a distance above0, 1m. In order to
obtain a robust result, we have performed different types
of trajectories, varying both the number of images captured
and the angles between them. The map is formed by a set
of images placed in a grid with a resolution of0, 2m. The
position of this set of images of the map is represented with
black circles in Figure 2(a)(b)(d)(e).
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Fig. 2. (a) and (b) An example of Monte-Carlo localization using the W3 and 10000 particles performing a global localization and (d) and (e) then
position tracking, (c) error in location for the previous experiment and (f) error in orientation for the previous experiment.

Figure 2 presents an example of global localization using
the method W3 using 10000 particles. The position of the
landmarks is indicated with a green circle. Figure 2(a)
presents an uniform distribution of the particles on the en-
vironment. In the sequence presented in Figure 2(a)(b)(d)(e)
we can observe how the particles concentrate near the true
pose of the robot. Please note that the trajectory of the robot
does not coincide exactly with the position of any of the
images in the map. In consequence, the localization can be
performed without having to place the robot exactly on a
landmark. Figure 2(c) presents the error in position at each
iteration step, the figure shows that, as the robot moves
around the map, the error in location is reduced and so does
the dispersion of particles, as can be observed in Figure 2(f).

To compare different types of weighting, we have carried
out a series of experiments of global localization in which
we have obtained the trajectory average error in position and
orientation of the robot depending on the number of particles
M . As shown in Figure 3 as we increase the number of
particles, the error decreases both in location and orientation.
We have observed that the method W5 is able to achieve nice
localization results even with a low number of particles.

To compare the weighting methods with respect to the
number of associations, we have separated the global location
from the tracking. Figure 4a) presents the error in tracking
when varying the number of associationsB. As shown in
Figure 4a), in general, although the number of associations
is low, the error in localization remains small. As the number
of associations increases, the error in the location is small
in the sum-of-gaussian methods, but increases rapidly in
the product of gaussian methods (W2, W4 and W6). When
we multiply two gaussians we get a gaussian with variance
lower than the minimum variance of both. Therefore, as the

number of associations grows, the weighting of particles
becomes more restrictive. On the other hand, Figure 4b)
presents the results in global localization. When the number
of associations is increased, the error in the location grows
quicker comparing to the case of tracking (Figure 4a)).
Moreover, we observe that the last 3 methods (W7, W8
and W9) require a minimum number of associations to work
properly. Finally, we can observe how when we work with
the method W1, the error also increases with increasing the
number of associations. This occurs because the method W1
does not take into account the descriptor, using only the data
association.

VI. CONCLUSION

In this work, we have exposed an appearance-based Monte
Carlo localization method using omnidirectional images and
we have compared different weighting methods. We have
built the image descriptors using the Fourier signature of
panoramic images. We have evaluated the performance of the
different weight methods in the case of local and global local-
ization finding different behaviours. We have also evaluated
the influence of the descriptor in the localization by varying
the number of possible associations. Our system is able to
track the position of the robot while moving and it is able
to estimate the position of the robot in the case of unknown
initial position. We proved how the precision of the methods
varies with the type of weight, the number of particles used
and the number of associations. In the evaluated methods,
as we increase the number of particles in the system, the
average error of localization decreases rapidly. With respect
to the orientation, we obtained a similar results. We have
demonstrated the strong dependence between the number
of associations and the type of method used. We prove
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Fig. 3. (a) Trajectory average error in position and (b) orientation versus the number of particles M of different methods of weighted.
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Fig. 4. Trajectory average error in position versus associations number for all methods using 10.000 particles. (a) Tracking and (b) global localization

how it is possible to correct the weighting of the particles
by combining a physical system of forces with a Gaussian
weight (W8).

This work opens the door to new applications of the
appearance-based methods in mobile robotics. Once we have
shown how it is possible to perform an appearance-based
Monte Carlo localization with different types of weighting,
we are now working on new SLAM applications using
appearance-based methods.
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