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Abstract: In this paper we present an approach for robots can go to the nearest frontier [3] or a cost-utility
multi-robot cooperative exploration. The approachis model can be employed. Normally, the cost is the length
based on a potential field generated by several basioof the path to a frontier cell, whereas utility could be un-
behaviours. The main drawback when using poten- derstood in different ways: Simmomsal. [4] consider
tial field methods is the occurrence of local minima, the utility as the expected visible area behind the fron-
which may trap the robots and stop the exploration tier. Burgardet al. [5] consider in the utility function the
process. A technigue that enables to detect and esproximity of frontiers assigned to other robots. Zlet
cape from these situations is proposed. Several simu-al. [6] suggest using a market economy where the robots
lations are presented that demonstrate the validity of negotiate their assignments.

the approach. Another group of exploration techniques makes use of
potential field methods [7]. These methods take into ac-
count several behaviours to generate a resultant potential
field. The most common behaviours in exploration are
attractive fields to frontiers and repulsive fields from ob-
1. INTRODUCTION stacles and other rok_Jo_ts. This Ieads_ to the avoidance of
other robots and collisions and also improves the explo-

Lately, a large number of applications have emerged t %?on by d|spersmg the robots_. As stgted l?y many au-
thors, the main drawback of this technique is the occur-

require the utilization of groups of mobile robots. In L o .
these applications, the robots must be able to proceedrgﬂl-Ce of local minima in the potentlgl field, which may
. . trap the robot and block the exploration process.

tonomously in a coordinated manner to complete a par-
ticular mission [1, 2]. Most of these applications require There exist hybrid methods that follow a potential field
the robot team to be able to explore an environment &@sed technique until a local minimum is found. For
tonomously. Employing multiple robots instead of a si€xample, Lau [8] proposes a method based on poten-
gle robot in exploration is an advantage because the &L fields. When a local minimum appears the system
ploration time can be reduced significantly. switches from the potential field approach to a path plan-

Exploration techniques work basically using the fromung state. The work described in this article uses a sim-
tier concept introduced by Yamauchi [3]. He divided tHiar idea. It differs from Lau’s approach [8] in the be-
map into a regular grid and that are labeled as free, Bg_viours used and in the technique to locate local min-
cupied or unknown. Frontier cells are free cells that {&a-
next to an unknown cell. Based on this concept, there is &he main contribution of this paper is a new method
group of methods that employ path planning techniquies local minima detection in potential field systems. The
in order to explore frontier cells [4, 5, 6]. In this caseechnique is based on the estimation of the potential field
the main difficulty is to decide how to assign each robat the robot’s neighbourhood and allows to improve the
to a different frontier. In this category, we can find diftrajectories performed by the robots in the presence of
ferent ways to make the robot-frontier assignment: then-linearities in the field. We integrate these techniques
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in a multi-robot behavior based exploration system.

Table 2.1: Forces defined for each behavior

The remainder of the paper is structured as follows.
Section 2 presents the behaviour based exploration alt
gorithm. In Section 3 we explain the way to detect lo-
cal minima using the potential field, and how this poten-
tial field can be used to improve the control system. A
technique to escape from local minima is also presented
Next, Section 4 presents simulation results to prove the
functionality of the method proposed. Finally, the main
conclusions and future work are presented.
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M: Number of cells in the map.
2. BEHAVIOUR-BASED ALGORITHM Mp:  Number of frontier cells.
Mo: Number of obstacle cells in the range.
In order to build a map, we must know the position and X:  Number of robots. _
orientation of all the robots with respect to a global refer- e (Ejurientt?“mlberl‘)f flmir?‘“se landmarks.
. . €;: Xploration level oI cell 1.

ence_frame. This enables to put the opservatlons together . Naximum exploration level.
to build a coherent map. In typical environments (e.g. of- ol:  Landmark position measure uncertainty.

Position vector of the i-th cell.
Position vector of the j-th robot.
Position vector of the k-th robot.
q: Position vector of the 1-th landmark

fice like environments) we can find a set of highly distinc- 55
tive elements that can be easily extracted with the sensor
of a robot. These elements are typically denoted as land

1°2)
i3

marks. In our application, we assume that the robots are¢ ;.. Distance from i-th cell to robot k.
able to detect a set of distinctive 3D visual landmarks and| rjx: Distance from robot j-th to robot k.
are able to obtain relative measurements to them using__"ux:  Distance from l-th landmark to robot k.

stereo cameras. These landmarks can be extracted as in-
terest points found in the images of the environment [9]. ayoid other robots: This behaviour results in a re-

The robot team is able to cooperatively build a map Withsive force between robots that normally allows to
vision-based information. We assume that the Iocallzé'aﬁread the robots around the environment.

tion is known. Avoid obstacles: Each cell within a specific range

Landmark based maps do not represent the free or ¢y js identified as belonging to an obstacle, applies a re-
cupied areas in the environment. This is the reason Whyjye force over each robot. This range allows to easily
we make use of a grid map to represent free and occupé%%st the system, but introduces a non-linearity.
cells detected using the information of the sonar. In addi-g4 1o imprecise landmarks: This behaviour tries
tion, all the cells have a numerical value associated tha§ynrove the quality of the exploration of those areas
indicates their degree of exploration, which is increasgfl .re some landmarks have been extracted but whose
each time it falls into the field of view of the robot, unz . racy is not high enough. This allows to achieve a bet-
til it reaches a limit value when the cell is considered {g, map while the environment is explored by the team.
be fully explored. Thus, a cell with a exploration degree 116 5 1 shows how the forces are calculated for each
of zero is considered unexplored. We define the frontigty, - ior The robots keep a constant linear speed. The
cells as explored cells that lie next to an unexplored cgll,jing of the robot is indicated by the direction of the

that does not belong to an obstacle. _ resultant force. The resultant force is the combination of
Our approach to the problem of multi-robot explas,ose five behaviours on each robot:
ration consists of five basic behaviours whose composi-

tion results in the trajectory of each robot in the environ-

ment: FA =k El 4+ ko FR 4 ks FP 4+ by B}l + ks FY . (2.1)
Go to unexplored areas. Each cell attracts each

robot with a force that depends on the degree of explo-The composition of the behaviours is carried out tak-

ration of the cell. ing into account a set of weighfs whose values have
Go to frontier: This behaviour attracts the robots tbeen deduced experimentally (Table 2.2).

frontier cells since these are the cells that give way toFig. 2.1 shows the bird’s eye view of an exploring sit-

areas of interest. uation with three robots.
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Figure 3.1: Local potential field images for the ex-
ploring situation presented in the map. Robot 1 de-
tects a local minimum.
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this situation is significantly high because it is necessary
to wait this period of time before detecting a local min-
imum. In this article a faster method is presented. The
method is based on the estimation of the potential field at
the robot’s neighbourhood.

The force field is defined as the gradient of the poten-
tial field: F = VU. We are interested in computing the
potential field based on the forces defined in Section 2.
A discrete integration method is used to calculate it. We

evaluate this potential field only at a small neighborhood

The potential field model described in the previous S€fea centered on the robot's cell. As we need to evalu-
tion allows to explore successfully simple environmentgq 4| the forces for each cell in the neigbourhood, the

When we explore complex environments as, for exajajier is this area the smaller is the potential field cal-

ple, a whole floor with corridors, some problems aris@ulation time.
Local minima are likely to appear in a typical situation In practice, a neighbourhood area of 7x7 cells was cho-
where there exists a wall and there is a frontier behind it. ’ . :
When a local minimum appears the robot is blocked aS%In' _The resultant force 'S eve_lluated only for these neigh-
it can not continue with the exploration. In this case tr?é)unng cells. The ev_aluatlon 'S .made asifthe robpt were
robot would stay there indefinitely untii other robot re'-n that cell. They are integrated in the local potential field
moves this frontier, and meanwhile this robot would nr%presentation superposing a_serial of gmall difs,crejte sur
’ ces centered on each cell with slope in the direction of

contribute to the exploration. If all the robots get bIocketae resultant force for each cell. The sum of the contribu-
by local minima then the exploration process stops. .. . . ’ . -
tion for each cell in the neighbourhood area gives a bidi-
mensional array that represents the potential field. Nor-
3.1 Detection malizing this array, the local potential field could be rep-
resented as a grey-level image where local minima can
If there exist a local minimum in the potential field at Be observed with dark values.
point, the resultant force in this point is zero. The kine- Figure 3.1 shows local potential field images obtained
matic constraints of the robot and the fact that it worky this method in an exploring situation. As it can be
with constant linear speed make that the robot does abserved in the figure, robot 1 is over a local minimum
go exactly to the local minimum. Instead of gettingaused by a frontier behind a wall near it. In the local
blocked, the robots move in circles trapped in the logadtential field representation for robot 1 could be clearly
minimum. For that reason, the condition that the res@lbserved the minimum in the center of the image marked
tant force is equal to zero can not be used as a local nwith black color.
ima detector. Taking this fact into account, a local mini- Once obtained the local field image for each robot it is
mum could be detected when the movement traced by dasy to find local minima. At a normal exploring situa-
robot in a given period of time falls below a small area ¢ibn the minimum of the local potential field representa-
a specified size [8]. In this case, the time needed to detiah is placed at one of the exterior pixels of the image.

Figure 2.1: Weighted outputs of the behaviours and
resultant force in an exploring situation. Also, the
landmarks that have been detected until that mo-
ment are shown.

3. DETECTION AND ESCAPE FROM
LOCAL MINIMA



When the minimum is situated on a central pixel of tF - -
image a local minimum is detected. In this sense, t f 7" | o]
robot will be trapped at a local minimum when there e : ' :
ist a minimum in the central pixel.

3.2 Escaping from Local Minima

In the previous section, a method to detect local minir ¥
was presented. It is now necessary to propose a method

for escaping from this situation. In this sense, whenggere 3.2: Exploration blocked by local minima
local minimum is detected, the robot switches t0 & Ngfft) and exploration with detection and escape
state in which it follows a planned path to a target poity,y, 1ocal minima (right). The exploration level is
that enables the robot to get out of the local MiNIMUM |, essed in gray levels. The dark zones remain un-

This new state is triggered when a local minimum is d@)’(plored. The remaining frontier cells are also em-
tected. When the target cell is reached the robot retugs,si eq.

to the potential field based exploration technique.

The target cell could be set to the nearest frontier cell _ ) o ,
or following other of the assignment techniques used BJFY are close). This non linearity in the model of this
the path planning approaches to the exploration problé?ﬁhav'or_ produc_es a dlscoptan|ty in the potential field at
In this paper, a simple assignment to the nearest fronfféi® Maximum distance of influence of the obstacles. We
cell is used. The A* algorithm [10] was used for paﬂ:lontrol the robot by modifying its steering with the di-
planning. The cost for moving from one cell to another tection of the resultant force on the robot’s position while
set to 1 for horizontal and vertical movements af@ifor K€€ping linear speed constant. Using this control type the
diagonal movements. The total cost for a given cell is tH@ectory of the robot presents oscillations every time it
sum of the cost of arriving to that cell and the estimat&@Vels over one of those discontinuities that appear near
cost to the goal. This last cost is estimated heuristicaflff oPstacle. The oscillations are caused by theid
as the euclidean distance from the cell to the goal. Qpstaclesforce that appears only at one side of the dis-
set of cells obtained by graphically dilating the obstacfontinuity and repulses the robot from the obstacle. Once
cells on the map (in order that the path planned kedpe robot is at the other side of the discontinuity this force
sufficiently far from the obstacles) in addition with thdiS@Ppears and the robot tries to cross the discontinuity
unexplored cells are set as forbidden (infinite cost) in tA83"- . _
algorithm. To avoid this problem, the information of the poten-

Figure 3.2 shows on the left how the presence of lodi@! field is used. Instead of modifying the steering of
minima blocks an exploration process with four robofe robot with the direction of the resultant force on the
when the technique for detecting and escape from loPgfition of the robot, the new steering will be set by the
minima is not used. As it was expected, most of the mif that joins the center of the local potential field im-
remains unexplored. However, when using the propo&2f with the external pixel with the minimum value. The

approach (right figure) the exploration is completed. dimension of the area of neighbourhood plays an impor-
tant role in the control as it defines the level of filtering

in the movements. It is not necessary to use the same

dimension that the local minima detector.

Once solved the question of detecting and escaping fronfrigure 3.3 shows a detailed image of a robot trajectory

local minima, a second prob|em, Consisting in the osdi[avelling near a wall. In the left image, the oscillations

lation in the trajectories of the robots, came up in oiit the robot's trayectory when it travels over the discon-

method due to the presence of non linearities in the fieliuity in the potential field are shown. The right picture
Non-linearities are introduced, mainly, by setting $hows the improvement in the trajectory when using the

maximum distance of influence in thAvoid Obstacles control system explained above and how it corrects the

behavior. The maximum distance of influence was intr@scillating behaviour.

duced in order to easily adjust the weights of the behav-

iors (There is no sense in avoiding obstacles when ob-

stacles are far enough, but it is vital to avoid them when

3.3 Trajectory Improvement



Figure 3.3: This figure shows the oscillations (left)
over the non-linearities in the potential field and how
the control system improvement allows to filter them
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speed when using the potential field approach in large
groups of robots. The open space structure that both
scenarios present improves the coordination when the
number of robots increases. Remember that the unigue
8ordination method included in the potential field ap-

In this section, we analyze simulation results using tf _ . : o
exploration method proposed in this paper. To demd}f0ach is the Avoid Other Robots behavior which im-

strate the validity of the approach, it will be compare’t%r oves the eﬁloratlon ;’IV htek? rqbci:]s Z"?We tgnou??hspace
with a pure path planning approach. 0 move apart from each other in the direction of the re-

The scenarios chosen to test the method are shcngwsmn' The path planning approach is heavily affected

in Figure 4.1. Scenarios that represent hypothetical r cyalthe number of fropners that each scenario is able to
places like Scenario 1 or Scenario 2 were chosen at thepresent, the exploration speed saturates when the num-

same time that other artificial scenarios as for exam?%r of robots grow over the number of frontiers as could

Scenario 3 which may cause a lot of local minima or e seen forScenario 1
completely random scene &&enario 4. Note that each Potential fields have better performance for small
scenario is going to present a different number of froBfOUPS in Scenario 3. The great number of frontiers
tiers during the exploration because of its structure. Fid the narrowness of the corridors make the exploration
example, Scenario 3 is more prone to present a greate?lower for the path planning method while the potential
number of frontiers tharScenario 2 as it has more bifur- field approach is improved because of the structure of the
cations. scene that is favorable to the coordination. However, in
The test was made changing the number of robotsthiis scenario a greater number of local minima is likely
the team in order to analyze the response for big dqappear when the number of robots raises, this fact re-
small groups. The test was repeated several times ch&fif:es the performance for large groups.
ing the initial positions. The mean number of cells ex- Scenario 2 is the slowest one, the disposition of the
plored per time unit was analysed for each scenario amridor is not favorable for the coordinating behavior
number of robots. The exploration method proposed waid Other Robots. Local minima reduce the perfor-
always compared with a pure path planning approa¢hance of the potential field based method below the re-
choosing always the nearest frontier as target point. Figponse for the path planning approach.
ure 4.2 shows the results of the test. It could be observed\s a conclusion, our approach is faster than path plan-
how each scenario presents a different exploration sp@@tly methods for large groups of robots on those scenar-
and it varies in a different way as the number of robaiss that favour the coordination provided by tAeoid

raises. other Robots behavior.
Scenario 1 and Scenario 4 present faster exploration

Figure 4.1: Scenarios

4. EXPERIMENTS AND RESULTS



5. CONCLUSIONS AND FUTURE WORK [2] Stroupe, A.W.; Ravichandran, R.; Balch, T.: Value-
based action selection for exploration and dynamic
In this paper a method for multi-robot cooperative explo- target observation with robot teams. Proceedings.
ration has been presented. The method is based on the IEEE International Conference on Robotics and Au-
computation of a set of behaviours designed to rapidly tomation, 2004, vol.4, pp. 4190-4197, April 26-
explore the whole environment. As stated before, poten- May 1, 2004

tial field methods have a main disadvantage: when eEg] Yamauchi B.: A Frontier Based Approach for Au-

ploring complex environments, a robot may be trapped - tonomous Exploration. IEEE International Sympo-
at local minima in the potential field and may not move,  sjum on Computational Intelligence in Robotics and
thus stopping the exploration process. To solve this prob- Automation, Monterey, CA, July 10-11, 1997.

lem, we have presented a method that enables to detﬁﬁtSimmons R., Apfelbaum D., Burgard W., Fox D
the situation in which the robot is trapped at a local min-" " "\ £ Ve vounes M. Coordination

imum. In this case, a new state is trigggred that enables ¢ i obot exploration and mapping. In Pro-
the robot to gscape from th-e chal minimum. F)ur ap- ceedings of the AAAI National Conference on Arti-
proach considers the pote_nt_lal field at thg robot’s ne_lgh- ficial Intelligence, Austin, TX, 2000.
borhood to detect local minima. In addition, the trajec- ) )
tories performed by the robot in the presence of nor@ Burgard W., Moors M., stachnlss C. ar_ld Schnei-
linearities in the field are improved by this method, ob- der F. C_oordmated m%"“'“’b"t exploration. IEEE
taining straighter trajectories than those obtained with Transactions on Robotics, Vol. 21 No3 pp 376-386,
the basic behaviour-based method. Several simulation J4n€ 2005.
results demonstrate the validity of the approach. THE] ZlotR., Stentz A, Dias M. B. and Thayer S.: Multi-
approach presented allows tho explore the environment Robot Exploration Controlled By A Market Econ-
faster than path planning methods for large groups of omy. Proceedings of the IEEE International Con-
robots on scenarios that favour the repulsion between ference on Robotics and Automation, 2002.
robots. [7] Arkin R.and Diaz J.: Line-of-Sight Constrained Ex-
As future works we consider the extension of the ap- ploration for Reactive Multiagent Robotic Teams.
proach in dynamic environments, adding techniques to 7th International Workshop on Advanced Motion
learn automatically the multiple settings of the system. Control, AMC’02 , Maribor, Slovenia, July 2002.

New behaviors will be incorporated in order to improvetg] Lau H.: Behavioural Approach for Multi-Robot

the localization when considering error in the localiza- Exploration. Australasian Conference on Robotics

tion of the robots. Furthermore, semi-operated models and Automation (ACRA 2003), Brisbane, Decem-
will be studied, that integrate the commands expressed per 2003.

by a human operator in the exploration task, where theﬁﬁ Martinez Mozos O. Gil A Ballesta M. and

commands would be taken as an advice. Reinoso O.: Interest Point Detectors for Visual
SLAM. Proc. of the Conference of the Spanish As-
sociation for Artificial Intelligence (CAEPIA), Sala-
manca, Spain, November 2007.

[10] Hart P. E., Nilsson N. J. and Raphael B.: A Formal

Basis for the Heuristic Determination of Minimum
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