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Abstract: In this paper we present an approach for
multi-robot cooperative exploration. The approach is
based on a potential field generated by several basic
behaviours. The main drawback when using poten-
tial field methods is the occurrence of local minima,
which may trap the robots and stop the exploration
process. A technique that enables to detect and es-
cape from these situations is proposed. Several simu-
lations are presented that demonstrate the validity of
the approach.
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1. INTRODUCTION

Lately, a large number of applications have emerged that
require the utilization of groups of mobile robots. In
these applications, the robots must be able to proceed au-
tonomously in a coordinated manner to complete a par-
ticular mission [1, 2]. Most of these applications require
the robot team to be able to explore an environment au-
tonomously. Employing multiple robots instead of a sin-
gle robot in exploration is an advantage because the ex-
ploration time can be reduced significantly.

Exploration techniques work basically using the fron-
tier concept introduced by Yamauchi [3]. He divided the
map into a regular grid and that are labeled as free, oc-
cupied or unknown. Frontier cells are free cells that lie
next to an unknown cell. Based on this concept, there is a
group of methods that employ path planning techniques
in order to explore frontier cells [4, 5, 6]. In this case,
the main difficulty is to decide how to assign each robot
to a different frontier. In this category, we can find dif-
ferent ways to make the robot-frontier assignment: the

robots can go to the nearest frontier [3] or a cost-utility
model can be employed. Normally, the cost is the length
of the path to a frontier cell, whereas utility could be un-
derstood in different ways: Simmonset al. [4] consider
the utility as the expected visible area behind the fron-
tier. Burgardet al. [5] consider in the utility function the
proximity of frontiers assigned to other robots. Zlotet
al. [6] suggest using a market economy where the robots
negotiate their assignments.

Another group of exploration techniques makes use of
potential field methods [7]. These methods take into ac-
count several behaviours to generate a resultant potential
field. The most common behaviours in exploration are
attractive fields to frontiers and repulsive fields from ob-
stacles and other robots. This leads to the avoidance of
other robots and collisions and also improves the explo-
ration by dispersing the robots. As stated by many au-
thors, the main drawback of this technique is the occur-
rence of local minima in the potential field, which may
trap the robot and block the exploration process.

There exist hybrid methods that follow a potential field
based technique until a local minimum is found. For
example, Lau [8] proposes a method based on poten-
tial fields. When a local minimum appears the system
switches from the potential field approach to a path plan-
ning state. The work described in this article uses a sim-
ilar idea. It differs from Lau’s approach [8] in the be-
haviours used and in the technique to locate local min-
ima.

The main contribution of this paper is a new method
for local minima detection in potential field systems. The
technique is based on the estimation of the potential field
at the robot’s neighbourhood and allows to improve the
trajectories performed by the robots in the presence of
non-linearities in the field. We integrate these techniques



in a multi-robot behavior based exploration system.
The remainder of the paper is structured as follows.

Section 2 presents the behaviour based exploration al-
gorithm. In Section 3 we explain the way to detect lo-
cal minima using the potential field, and how this poten-
tial field can be used to improve the control system. A
technique to escape from local minima is also presented.
Next, Section 4 presents simulation results to prove the
functionality of the method proposed. Finally, the main
conclusions and future work are presented.

2. BEHAVIOUR-BASED ALGORITHM

In order to build a map, we must know the position and
orientation of all the robots with respect to a global refer-
ence frame. This enables to put the observations together
to build a coherent map. In typical environments (e.g. of-
fice like environments) we can find a set of highly distinc-
tive elements that can be easily extracted with the sensors
of a robot. These elements are typically denoted as land-
marks. In our application, we assume that the robots are
able to detect a set of distinctive 3D visual landmarks and
are able to obtain relative measurements to them using
stereo cameras. These landmarks can be extracted as in-
terest points found in the images of the environment [9].
The robot team is able to cooperatively build a map with
vision-based information. We assume that the localiza-
tion is known.

Landmark based maps do not represent the free or oc-
cupied areas in the environment. This is the reason why
we make use of a grid map to represent free and occupied
cells detected using the information of the sonar. In addi-
tion, all the cells have a numerical value associated that
indicates their degree of exploration, which is increased
each time it falls into the field of view of the robot, un-
til it reaches a limit value when the cell is considered to
be fully explored. Thus, a cell with a exploration degree
of zero is considered unexplored. We define the frontier
cells as explored cells that lie next to an unexplored cell
that does not belong to an obstacle.

Our approach to the problem of multi-robot explo-
ration consists of five basic behaviours whose composi-
tion results in the trajectory of each robot in the environ-
ment:

Go to unexplored areas: Each cell attracts each
robot with a force that depends on the degree of explo-
ration of the cell.

Go to frontier: This behaviour attracts the robots to
frontier cells since these are the cells that give way to
areas of interest.

Table 2.1: Forces defined for each behavior
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M : Number of cells in the map.

MF : Number of frontier cells.

MO: Number of obstacle cells in the range.

X: Number of robots.

nt: Current number of imprecise landmarks.

ei: Exploration level of cell i.

ν: Maximum exploration level.

σl: Landmark position measure uncertainty.

~si: Position vector of the i-th cell.

~pj : Position vector of the j-th robot.

~pk: Position vector of the k-th robot.

~ql: Position vector of the l-th landmark

ri,k: Distance from i-th cell to robot k.

rj,k: Distance from robot j-th to robot k.

rl,k: Distance from l-th landmark to robot k.

Avoid other robots: This behaviour results in a re-
pulsive force between robots that normally allows to
spread the robots around the environment.

Avoid obstacles: Each cell within a specific range
that is identified as belonging to an obstacle, applies a re-
pulsive force over each robot. This range allows to easily
adjust the system, but introduces a non-linearity.

Go to imprecise landmarks: This behaviour tries
to improve the quality of the exploration of those areas
where some landmarks have been extracted but whose
accuracy is not high enough. This allows to achieve a bet-
ter map while the environment is explored by the team.

Table 2.1 shows how the forces are calculated for each
behaviour. The robots keep a constant linear speed. The
heading of the robot is indicated by the direction of the
resultant force. The resultant force is the combination of
those five behaviours on each robot:
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The composition of the behaviours is carried out tak-
ing into account a set of weightski whose values have
been deduced experimentally (Table 2.2).

Fig. 2.1 shows the bird’s eye view of an exploring sit-
uation with three robots.



Table 2.2: Weights assigned to each behaviour.
k1 k2 k3 k4 k5

1 2.5 0.8 40 1
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Figure 2.1: Weighted outputs of the behaviours and
resultant force in an exploring situation. Also, the
landmarks that have been detected until that mo-
ment are shown.

3. DETECTION AND ESCAPE FROM
LOCAL MINIMA

The potential field model described in the previous sec-
tion allows to explore successfully simple environments.
When we explore complex environments as, for exam-
ple, a whole floor with corridors, some problems arise.
Local minima are likely to appear in a typical situation
where there exists a wall and there is a frontier behind it.
When a local minimum appears the robot is blocked and
it can not continue with the exploration. In this case the
robot would stay there indefinitely until other robot re-
moves this frontier, and meanwhile this robot would not
contribute to the exploration. If all the robots get blocked
by local minima then the exploration process stops.

3.1 Detection

If there exist a local minimum in the potential field at a
point, the resultant force in this point is zero. The kine-
matic constraints of the robot and the fact that it works
with constant linear speed make that the robot does not
go exactly to the local minimum. Instead of getting
blocked, the robots move in circles trapped in the local
minimum. For that reason, the condition that the resul-
tant force is equal to zero can not be used as a local min-
ima detector. Taking this fact into account, a local mini-
mum could be detected when the movement traced by the
robot in a given period of time falls below a small area of
a specified size [8]. In this case, the time needed to detect

Figure 3.1: Local potential field images for the ex-
ploring situation presented in the map. Robot 1 de-
tects a local minimum.

this situation is significantly high because it is necessary
to wait this period of time before detecting a local min-
imum. In this article a faster method is presented. The
method is based on the estimation of the potential field at
the robot’s neighbourhood.

The force field is defined as the gradient of the poten-
tial field: ~F = ~∇U . We are interested in computing the
potential field based on the forces defined in Section 2.
A discrete integration method is used to calculate it. We
evaluate this potential field only at a small neighborhood
area centered on the robot’s cell. As we need to evalu-
ate all the forces for each cell in the neigbourhood, the
smaller is this area the smaller is the potential field cal-
culation time.

In practice, a neighbourhood area of 7x7 cells was cho-
sen. The resultant force is evaluated only for these neigh-
bouring cells. The evaluation is made as if the robot were
in that cell. They are integrated in the local potential field
representation superposing a serial of small discrete sur-
faces centered on each cell with slope in the direction of
the resultant force for each cell. The sum of the contribu-
tion for each cell in the neighbourhood area gives a bidi-
mensional array that represents the potential field. Nor-
malizing this array, the local potential field could be rep-
resented as a grey-level image where local minima can
be observed with dark values.

Figure 3.1 shows local potential field images obtained
by this method in an exploring situation. As it can be
observed in the figure, robot 1 is over a local minimum
caused by a frontier behind a wall near it. In the local
potential field representation for robot 1 could be clearly
observed the minimum in the center of the image marked
with black color.

Once obtained the local field image for each robot it is
easy to find local minima. At a normal exploring situa-
tion the minimum of the local potential field representa-
tion is placed at one of the exterior pixels of the image.



When the minimum is situated on a central pixel of the
image a local minimum is detected. In this sense, the
robot will be trapped at a local minimum when there ex-
ist a minimum in the central pixel.

3.2 Escaping from Local Minima

In the previous section, a method to detect local minima
was presented. It is now necessary to propose a method
for escaping from this situation. In this sense, when a
local minimum is detected, the robot switches to a new
state in which it follows a planned path to a target point,
that enables the robot to get out of the local minimum.
This new state is triggered when a local minimum is de-
tected. When the target cell is reached the robot returns
to the potential field based exploration technique.

The target cell could be set to the nearest frontier cell
or following other of the assignment techniques used by
the path planning approaches to the exploration problem.
In this paper, a simple assignment to the nearest frontier
cell is used. The A* algorithm [10] was used for path
planning. The cost for moving from one cell to another is
set to 1 for horizontal and vertical movements and

√
2 for

diagonal movements. The total cost for a given cell is the
sum of the cost of arriving to that cell and the estimated
cost to the goal. This last cost is estimated heuristically
as the euclidean distance from the cell to the goal. A
set of cells obtained by graphically dilating the obstacle
cells on the map (in order that the path planned keeps
sufficiently far from the obstacles) in addition with the
unexplored cells are set as forbidden (infinite cost) in the
algorithm.

Figure 3.2 shows on the left how the presence of local
minima blocks an exploration process with four robots
when the technique for detecting and escape from local
minima is not used. As it was expected, most of the map
remains unexplored. However, when using the proposed
approach (right figure) the exploration is completed.

3.3 Trajectory Improvement

Once solved the question of detecting and escaping from
local minima, a second problem, consisting in the oscil-
lation in the trajectories of the robots, came up in our
method due to the presence of non linearities in the field.

Non-linearities are introduced, mainly, by setting a
maximum distance of influence in theAvoid Obstacles
behavior. The maximum distance of influence was intro-
duced in order to easily adjust the weights of the behav-
iors (There is no sense in avoiding obstacles when ob-
stacles are far enough, but it is vital to avoid them when

Figure 3.2: Exploration blocked by local minima
(left) and exploration with detection and escape
from local minima (right). The exploration level is
expressed in gray levels. The dark zones remain un-
explored. The remaining frontier cells are also em-
phasized.

they are close). This non linearity in the model of this
behavior produces a discontinuity in the potential field at
this maximum distance of influence of the obstacles. We
control the robot by modifying its steering with the di-
rection of the resultant force on the robot’s position while
keeping linear speed constant. Using this control type the
trajectory of the robot presents oscillations every time it
travels over one of those discontinuities that appear near
an obstacle. The oscillations are caused by theAvoid
Obstacles force that appears only at one side of the dis-
continuity and repulses the robot from the obstacle. Once
the robot is at the other side of the discontinuity this force
disappears and the robot tries to cross the discontinuity
again.

To avoid this problem, the information of the poten-
tial field is used. Instead of modifying the steering of
the robot with the direction of the resultant force on the
position of the robot, the new steering will be set by the
line that joins the center of the local potential field im-
age with the external pixel with the minimum value. The
dimension of the area of neighbourhood plays an impor-
tant role in the control as it defines the level of filtering
in the movements. It is not necessary to use the same
dimension that the local minima detector.

Figure 3.3 shows a detailed image of a robot trajectory
travelling near a wall. In the left image, the oscillations
in the robot’s trayectory when it travels over the discon-
tinuity in the potential field are shown. The right picture
shows the improvement in the trajectory when using the
control system explained above and how it corrects the
oscillating behaviour.
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Figure 3.3: This figure shows the oscillations (left)
over the non-linearities in the potential field and how
the control system improvement allows to filter them
(right).

Figure 4.1: Scenarios

4. EXPERIMENTS AND RESULTS

In this section, we analyze simulation results using the
exploration method proposed in this paper. To demon-
strate the validity of the approach, it will be compared
with a pure path planning approach.

The scenarios chosen to test the method are shown
in Figure 4.1. Scenarios that represent hypothetical real
places likeScenario 1 or Scenario 2 were chosen at the
same time that other artificial scenarios as for example
Scenario 3 which may cause a lot of local minima or a
completely random scene asScenario 4. Note that each
scenario is going to present a different number of fron-
tiers during the exploration because of its structure. For
example, Scenario 3 is more prone to present a greater
number of frontiers thanScenario 2 as it has more bifur-
cations.

The test was made changing the number of robots in
the team in order to analyze the response for big and
small groups. The test was repeated several times chang-
ing the initial positions. The mean number of cells ex-
plored per time unit was analysed for each scenario and
number of robots. The exploration method proposed was
always compared with a pure path planning approach,
choosing always the nearest frontier as target point. Fig-
ure 4.2 shows the results of the test. It could be observed
how each scenario presents a different exploration speed
and it varies in a different way as the number of robots
raises.

Scenario 1 and Scenario 4 present faster exploration

Figure 4.2: Mean number of cells per time unit for
3 to 7 robots in proposed method (black) and path
planning method (grey).

speed when using the potential field approach in large
groups of robots. The open space structure that both
scenarios present improves the coordination when the
number of robots increases. Remember that the unique
coordination method included in the potential field ap-
proach is the Avoid Other Robots behavior which im-
proves the exploration when robots have enough space
to move apart from each other in the direction of the re-
pulsion. The path planning approach is heavily affected
by the number of frontiers that each scenario is able to
present, the exploration speed saturates when the num-
ber of robots grow over the number of frontiers as could
be seen forScenario 1.

Potential fields have better performance for small
groups in Scenario 3. The great number of frontiers
and the narrowness of the corridors make the exploration
slower for the path planning method while the potential
field approach is improved because of the structure of the
scene that is favorable to the coordination. However, in
this scenario a greater number of local minima is likely
to appear when the number of robots raises, this fact re-
duces the performance for large groups.

Scenario 2 is the slowest one, the disposition of the
corridor is not favorable for the coordinating behavior
Avoid Other Robots. Local minima reduce the perfor-
mance of the potential field based method below the re-
sponse for the path planning approach.

As a conclusion, our approach is faster than path plan-
ning methods for large groups of robots on those scenar-
ios that favour the coordination provided by theAvoid
other Robots behavior.



5. CONCLUSIONS AND FUTURE WORK

In this paper a method for multi-robot cooperative explo-
ration has been presented. The method is based on the
computation of a set of behaviours designed to rapidly
explore the whole environment. As stated before, poten-
tial field methods have a main disadvantage: when ex-
ploring complex environments, a robot may be trapped
at local minima in the potential field and may not move,
thus stopping the exploration process. To solve this prob-
lem, we have presented a method that enables to detect
the situation in which the robot is trapped at a local min-
imum. In this case, a new state is triggered that enables
the robot to escape from the local minimum. Our ap-
proach considers the potential field at the robot’s neigh-
borhood to detect local minima. In addition, the trajec-
tories performed by the robot in the presence of non-
linearities in the field are improved by this method, ob-
taining straighter trajectories than those obtained with
the basic behaviour-based method. Several simulation
results demonstrate the validity of the approach. The
approach presented allows tho explore the environment
faster than path planning methods for large groups of
robots on scenarios that favour the repulsion between
robots.

As future works we consider the extension of the ap-
proach in dynamic environments, adding techniques to
learn automatically the multiple settings of the system.
New behaviors will be incorporated in order to improve
the localization when considering error in the localiza-
tion of the robots. Furthermore, semi-operated models
will be studied, that integrate the commands expressed
by a human operator in the exploration task, where these
commands would be taken as an advice.
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