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Abstract:This paper describes an approach to solve
the Simultaneous Localization and Mapping (SLAM)
problem for autonomous mobile robots using visual
landmarks and a Rao-Blackwellized particle filter.
Our map is represented by a set of three dimensional
landmarks referred to a global reference frame. We
use significant points extracted from stereo images as
natural landmarks. In particular we employ SIFT
features found in the environment. Each landmark is
associated with a visual descriptor that partially dif-
ferentiates it from others. We concentrate on a re-
duced set of highly stable landmarks. In order to do
that, we track a visual feature for a significant num-
ber of frames prior to integrating it in the filter. As a
result, we obtain different examples that represent the
same natural landmark. Using this procedure, a bet-
ter model for each landmark is obtained, which lets
us improve data association among the landmarks in
the map.
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1. INTRODUCTION

Building an accurate map of a given environment is one
of the hardest tasks for a mobile robot. It is inher-
ently difficult, since noise in the estimation of the ro-
bot pose leads to errors in the estimation of the map and
vice versa. Here, we consider the problem of Simulta-
neous Localization and Mapping (SLAM) using a Rao-
Blackwellized Particle Filter (RBPF).

Most work on SLAM so far has focussed on building
2D maps of environments using range sensors such as
SONAR and laser [1], [2]. Recently, Rao-Blackwellized
particle filters have been used as an effective mean
of solving the SLAM problem using occupancy grid
maps [3]. In this approach, each particle constructs its

own map based on the observations and the trajectory for
that particle.

Recently, some authors have been concentrating on
building three dimensional maps using visual informa-
tion extracted from cameras. Cameras are typically less
expensive than laser sensors and are able to provide 3D
information from the scene using stereo vision. In this
scenario, the map is represented by a set of three dimen-
sional landmarks related to a global reference frame. In
[4] and [5] stereo vision is used to track 3D visual land-
marks extracted from the environment. During the ex-
ploration phase, the robot extracts SIFT features from
stereo images and calculates relative measurements to
them. Landmarks are then integrated in the map with
an EKF associated to each one. The work in [6] deploys
a Rao-Blackwellized particle filter to estimate both the
path and the map. Three dimensional SIFT features are
extracted from the environment and integrated in the fil-
ter.

The major contribution of this paper is twofold. First,
we present a mechanism to deal with the data association
problem in the context of visual SLAM. Second, our ap-
proach tracks landmarks prior to integrating them in the
map. As a result, only those landmarks that are more sta-
ble are incorporated in the map. By using this approach,
our map typically consists of a reduced number of land-
marks compared to those of [5] and [6], for comparable
map sizes. The work presented here differs mainly from
the work in [6] in two ways: First, we track each land-
mark for consecutive frames prior to integrating it in the
filter, thus concentrate on a reduced set of highly stable
landmarks. Second, we deploy an improved method to
manage Data Association among the landmarks in the
map, which improves the quality of the estimated path
and the map.

The remainder of the paper is structured as follows.
Section 2 deals with visual landmarks and their util-



ity in SLAM. Section 3 explains the basics of the Rao-
Blackwellized particle filter. Next, Section 4 presents our
solution to the data association problem in the context of
visual landmarks. In Section 5 we present our experi-
mental results. Finally, Section 6 sums up the most im-
portant conclusions and proposes future extensions.

2. VISUAL LANDMARKS

In the approach presented here, we use SIFT (Scale In-
variant Feature Transform) features as natural landmarks
in the environment. SIFT features were developed for
image feature generation, and used initially in object
recognition applications (see [7] and [8] for further de-
tails). SIFT features are located at maxima and min-
ima of a difference of Gaussian function applied in scale
space. They are computed by building an image pyra-
mid with resampling between each level. SIFT locations
extracted with this procedure may be understood as sig-
nificant points in space that are highly distinctive. In ad-
dition, each SIFT location is given a descriptor that pro-
vides invariance to image translation, scaling, rotation
and partial invariance to illumination changes and view
point changes. Thus, this fact enables the same points
in the space to be recognized from different viewpoints,
if the viewing angle does not differ too much. Lately,
SIFT features have been used in robotic applications as
visual landmarks for localization and SLAM tasks ([4],
[5], [6]).

Given two images, captured with a stereo system, we
extract natural landmarks which correspond to points in
the 3-dimensional space. In order to do that, we ex-
tract SIFT features from the left and the right image of
the stereo cameras. Each location is accompanied by its
SIFT descriptor. Following, we find the correspondence
for the points across images. The correspondence is con-
strained by the epipolar geometry of the stereo system.
In addition, a comparison between SIFT descriptors as-
sociated to the keypoints is used to avoid false correspon-
dences. As a result, at a timet we obtain a set ofB ob-
servations denoted byzt = {zt,1, zt,2, . . . , zt,B}. Each
observation is constituted byzt,k = (vt,k, dt,k), where
vt,k = (X l, Y l, Z l) is a three dimensional vector referred
to the left camera reference frame anddt,k is the SIFT de-
scriptor associated to that point.

3. RAO-BLACKWELLIZED SLAM

Following the usual nomenclature in Rao-Blackwellized
SLAM, we callxt the robot pose at timet. On the other

hand, the robot path until timet will be denoted asxt =
{x1, x2, . . . , xt}, the set of observations made by the ro-
bot until timet will be denotedzt = {z1, z2, . . . , zt} and
the set of actionsut = {u1, u2, . . . , ut}. We formulate
the SLAM problem as that of determining the location of
all landmarks in the mapm and robot posesxt from a set
of measurementszt and robot actionsut. Thus, it can be
stated as the estimation of the posterior over robot paths
and mapsp(xt,m|zt, ut, ct).

While exploring the environment, the robot has to
determine whether a particular observationzt,k =
(vt,k, dt,k) corresponds to a previously seen landmark or
to a new one. This problem is known as the Data As-
sociation problem and will be further explained in Sec-
tion 4. Provided that, at a timet the map is formed
by N landmarks, the correspondence is represented by
ct = {ct,1, ct,2, . . . , ct,B}, wherect,i ∈ [1 . . . N ]. In con-
sequence, at a timet the observationzt,k corresponds to
the landmarkct,k in the map. When no correspondence
is found we denote it asct,i = N + 1, indicating that a
new landmark should be initialized.

The mapm is represented by a collection ofN land-
marksm = {θ1, θ2, ..., θN}. Each landmark is described
as: θk = {µk, Σk, dk}, whereµk = (Xg

k , Y g
k , Zg

k) is a
vector describing the position of the landmarkk referred
to a global reference frame with associated covariance
matrix Σk. In addition, each landmarkθk is associated
with a SIFT descriptordk. This map representation is
compact and has previously been used to localize a robot
in indoor environments [9].

3.1. Particle filter estimation

The conditional independence property of the SLAM
problem implies that the posterior over robot paths and
maps can be factored as [10]:

p(xt,m|zt, ut, ct) = p(xt|zt, ut, ct)
N∏

k=1

p(θk|xt, zt, ut, ct)

(3.1)
This equation states that the full SLAM posterior is

decomposed into two parts: one estimator over robot
paths, andN independent estimators over landmark po-
sitions, each conditioned on the path estimate. We ap-
proximate the posteriorp(xt|zt, ut, ct) using a set of
M particles, each particle havingN independent land-
mark estimators (implemented as EKFs), one for each
landmark in the map. Each particle is thus defined as
S

[m]
t = {xt,[m], µ

[m]
t,1 , Σ[m]

t,1 , . . . , µ
[m]
t,N ,Σ[m]

t,N}, whereµ
[m]
t,i



is the best estimation at timet for the position of land-
mark θi based on the path of the particlem and Σ[m]

t,i

is the associated covariance matrix. The particle set
St = {S[1]

t , S
[2]
t , . . . , S

[M ]
t , } is calculated incrementally

from the setSt−1 at timet − 1 and the robot controlut.
Thus, each particle is sampled from a proposal distrib-
ution x

[m]
t ∼ p(xt|xt−1, ut). Next, and following the

approach of [10] each particle is then assigned a weight
according to:

ω
[m]
t,i =

1√
|2πZct,i |

e{−
1
2
(vt,i−v̂t,ct,i )

T [Zct,i ]
−1(vt,i−v̂t,ct,i )}

(3.2)
Wherevt,i is the current measurement andv̂t,ct,i is the

predicted measurement for the landmarkct,i based on the

posex[i]
t . The matrixZct,i is the covariance matrix asso-

ciated with the innovation(vt,i − v̂t,ct,i). Note that we
implicitly assume that each measurementvt,i has been
assigned to the landmarkct,i of the map. This problem
is, in general, hard to solve, since similar-looking land-
marks may exist. In section 4. we describe our approach
to this problem. In the case thatB observations from dif-
ferent landmarks exist at a timet, we calculate the total
weight assigned to the particle multiplying the weights
computed using Equation (3.2).

4. DATA ASSOCIATION

While the robot moves through the environment, it must
decide whether the observationzt,k = (vt,k, dt,k) corre-
sponds to a previously mapped landmark or to a different
landmark. In most existing approaches ([4], [5], [7]) the
data association is performed using the squared Euclid-
ean distance between SIFT descriptors

E = (di − dj)(di − dj)T , (4.1)

wheredj is the SIFT descriptor associated with the
current measurement, whiledi is the descriptor associ-
ated with a landmark in the map. Then, the landmark
in the map that minimizes the distanceE is regarded as
the correct data association. Whenever the distanceE is
below a certain threshold, the two landmarks are consid-
ered to be the same. Otherwise, a new landmark is cre-
ated. Figure 1 shows the same point in space as seen from
different viewpoints. We experimentally compared the
SIFT descriptor of the same point in the different frames.
When the same point is viewed from slightly different
viewpoints and distances (e.g. Figure 1(a)-(c)), the dis-
tanceE remains low. However, when the same point is

viewed from significantly different viewpoints (e.g. Fig-
ure 1(a)-(d)) the difference in the descriptor is remark-
able and the check using the Euclidean distance is likely
to produce a wrong data association. Figure 2(a) com-
pares the two SIFT vectors computed for the views (a)
and (b) of the point in Figure 1. We can observe that,
in views (a)-(b) the vectors remain similar. Figure 2(b)
compares the two SIFT vectors computed for the views
(a) and (d). We can clearly observe that the vectors are
significantly different in the latter case.

We propose a different method to deal with the data
association in the context of SIFT features. We address
the problem from a pattern classification point of view.
We consider the problem of assigning a patterndj to a
classCi, where each classCi models a landmark. When-
ever a landmark is found, it is tracked alongp frames,
and its descriptorsd1, d2, . . . , dp are stored. We consider
different views of the same visual landmark as different
elements of classCi and compute a mean valuēdi that
represents the prototype of the classCi. A covariance
matrixSi is estimated, assuming the elements in the SIFT
vector independent of each other. Thus,Si is a diagonal
matrix whose elements are the variance of each element
in the SIFT vector, computed using thep example vec-
tors of the landmark. Whenever a new landmarkdj is
found, we compute the squared Mahalanobis distance to
each stored landmark, represented byd̄i andSi as

L = (d̄i − dj)S−1
i (d̄i − dj)T . (4.2)

We compute the distanceL for the landmarks in the
map of each particle and assign the correspondence to the
landmark that minimizesL. If none of the values exceeds
a predefined threshold, we create a new landmark. As we
will show in the experiments, this technique allows us to
make better data associations and, as a result, produce
better maps of the environment.

In order to test this distance function we have recorded
a set of images with slight variations of viewpoint and
distance (see Figure 1). SIFT landmarks are easily
tracked across consecutive frames, since the variance in
the descriptor is low. In addition, we visually judged the
correspondence across images. Based on these data we
computed the matrixSi for each SIFT point tracked for
more than5 frames. Following, we computed the dis-
tance to the same class using Equation (4.1) and (4.2).
For each experiment, we select the class that minimizes
the distance function. Since we already know the truth
correspondences, we can compute the number of mis-
takes and correct matches. A total of3000 examples
were used for this purpose. Using the Euclidean dis-



tance we obtained a83.85% of correct matches. When
using the squared Mahalanobis distance, a94.04% of
correct matches were obtained. The number of correct
matches is significantly increased by using the squared
Mahalanobis distance (4.2). Since most of the false cor-
respondences are avoided, we can obtain better estimates
of the map and the path traversed by the robot.

5. EXPERIMENTAL RESULTS

During the experiments we have used a B21r robot
equipped with a stereo head and a LMS laser range
finder. We manually steered the robot along the rooms
of the building 79 of the University of Freiburg. A to-
tal of 507 stereo images at a resolution of320x240 were
collected. The total traversed distance of the robot is
approximately80m. For each pair of stereo images a
number of correspondences were established and obser-
vations were obtained. After stereo correspondence, each
point is tracked for a number of frames. In a practical
way, when a landmark has been tracked for more than
5 frames it is considered a new observation and is inte-
grated in the filter.

Figure 4 shows a map built using100 particles. A to-
tal number of1500 landmarks were estimated. It can
be seen that, with only100 particles, the map is topo-
logically correct. Some areas of the map do not pos-
sess any landmark, which correspond to feature-less ar-
eas (i.e. texture-less walls), where no SIFT features were
found.

In order to test the quality of our results, we compared
the estimated pose of our method with the estimated pose
using laser data recorded during exploration. In order
to calculate the pose based on laser measurements, the
method exposed in [3] was used. Figure 3(a) shows the
error in localization for each movement of the robot dur-
ing exploration using100 particles.

In addition, we have compared both approaches to data
association as described in Section 4.. To do this, we
have made a number of simulations varying the number
of particles used in each simulation. The process was
repeated using both data association methods. As can
be seen in Figure 3(b) for the same number of particles,
better localization results are obtained when the squared
Mahalanobis distance is used, thus improving the quality
of the estimated map.

Finally, our maps typically consist of about1500 land-
marks, a much more compact representation than the pre-
sented in [6], where the map contains typically around
10.000 landmarks.

6. CONCLUSION

We have presented a solution to SLAM based on a Rao-
Blackwellized particle filter that uses visual information
extracted from cameras. In particular SIFT features have
been used as natural landmarks. The method is able to
build 3D maps of an indoor environment using relative
measurements extracted from a stereo pair of cameras.

We also have proposed an alternative method to deal
with the data association problem in the context of visual
landmarks. When different examples of a particular SIFT
descriptor exist (belonging to the same landmark) we ob-
tain a probabilistic model for it. By this procedure, the
data association is improved, and consequently, better re-
sults are obtained since most of the false correspondences
are avoided.

Maps created by this procedure do not directly repre-
sent the occupied or free areas of the environment. In
consequence, the map can be used to effectively local-
ize the robot, but cannot be directly used for navigation.
This fact is derived from the nature of the sensors and it
is not a failure of the proposed approach. For navigation
tasks other low-cost sensors such as SONAR should be
deployed.
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Figure 3: Figure (a) shows the absolute position error during the SLAM process. Figure (b) shows the
error in localization when varying the number M of particles. The RMS error in odometry is shown as a
dotted line. The results using Equation (4.1) are shown as a dashed line and results using Equation (4.2)
are shown as a continuous line.
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Figure 4: The figure shows a map created using 100 particles. Each black point represents a landmark.
We also show superimposed the ground truth path estimated using laser range data (continuous) and the
estimated path using our approach (dashed).


