Managing Data Association in visual SLAM using SIFT features
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Abstract: This paper describes an approach to solve own map based on the observations and the trajectory for
the Simultaneous Localization and Mapping (SLAM) that particle.

problem for autonomous mobile robots using visual Recently, some authors have been concentrating on
landmarks and a Rao-Blackwellized particle filter. jiding three dimensional maps using visual informa-
Our map is represented by a set of three dimensional iy extracted from cameras. Cameras are typically less
landmarks referred to a global reference frame. We expensive than laser sensors and are able to provide 3D
use significant points extracted from stereo images asinformation from the scene using stereo vision. In this
natural landmarks. In particular we employ SIFT  scenario, the map is represented by a set of three dimen-
features found in the environment. Each landmark is gjonal landmarks related to a global reference frame. In
associated with a visual descriptor that partially dif- [4] and [5] stereo vision is used to track 3D visual land-
ferentiates it from others. We concentrate on a re- marks extracted from the environment. During the ex-
duced set of highly stable landmarks. In order to do pjoration phase, the robot extracts SIFT features from
that, we track a visual feature for a significant num-  giare images and calculates relative measurements to
ber of frames prior to integrating it in the filter. Asa  ihem. Landmarks are then integrated in the map with
result, we obtain different examples that represent the 5, EKFE associated to each one. The work in [6] deploys
same natural landmark. Using this procedure, a bet- 5 Rao-Blackwellized particle filter to estimate both the
ter model for each landmark is obtained, which lets haty and the map. Three dimensional SIFT features are

Uhs improve data association among the landmarks in gxiracted from the environment and integrated in the fil-
the map. er.

Key-Words: Mobile Robots, Visual SLAM, Visual The major contribution of this paper is twofold. First,
Landmarks. Particle Filter ’ ' we present a mechanism to deal with the data association

problem in the context of visual SLAM. Second, our ap-
proach tracks landmarks prior to integrating them in the
map. As a result, only those landmarks that are more sta-

Building an accurate map of a given environment is oRi§ @re incorporated in the map. By using this approach,
of the hardest tasks for a mobile robot. It is inheRUr map typically consists of a reduced number of land-
ently difficult, since noise in the estimation of the rgnarks compared to those of [5] and [6], for comparable
bot pose leads to errors in the estimation of the map 4R@P Sizes. The work presented here differs mainly from
vice versa. Here, we consider the problem of Simulf€ work in [6] in two ways: First, we track each land-
neous Localization and Mapping (SLAM) using a Radnark for consecutive frames prior to integrating it in the
Blackwellized Particle Filter (RBPF). filter, thus concentrate on a reduced set of highly stable
Most work on SLAM so far has focussed on buildinfthdmarks. Second, we deploy an improved method to
2D maps of environments using range sensors suctd12ge Data Association among the landmarks in the
SONAR and laser [1], [2]. Recently, Rao-Blackwellize@aP, Which improves the quality of the estimated path
particle filters have been used as an effective meaf the map.
of solving the SLAM problem using occupancy grid The remainder of the paper is structured as follows.
maps [3]. In this approach, each particle constructs 8sction 2 deals with visual landmarks and their util-

1. INTRODUCTION



ity in SLAM. Section 3 explains the basics of the Radwand, the robot path until timewill be denoted as® =

Blackwellized particle filter. Next, Section 4 presents oy, xo, ...,z }, the set of observations made by the ro-
solution to the data association problem in the contexthaft until timet will be denotect! = {z1, 2», ..., 2} and
visual landmarks. In Section 5 we present our expettie set of actions’ = {uy,us,...,u;}. We formulate

mental results. Finally, Section 6 sums up the most ithe SLAM problem as that of determining the location of
portant conclusions and proposes future extensions. all landmarks in the mam and robot poses’ from a set

of measurements’ and robot actions!. Thus, it can be
stated as the estimation of the posterior over robot paths
and map(xt, m|zt, ul, ).

In the approach presented here, we use SIFT (Scale InVhile exploring the environment, the robot has to

variant Feature Transform) features as natural landmafigéermine whether a particular observatiop; =

in the environment. SIFT features were developed fGi.- ;) COrresponds to a previously seen landmark or

image feature generation, and used initially in objet @ neéw one. This problem is known as the Data As-

recognition applications (see [7] and [8] for further dé_ociation prqblem and will be_ further explai_ned in Sec-

tails). SIFT features are located at maxima and miien 4. Provided that, at a time the map is formed

ima of a difference of Gaussian function applied in scd®¥ v landmarks, the correspondence is represented by

space. They are computed by building an image pyfa— {¢t.1;ct2, .., ¢;,p}, Wherec,; € [1... N]. In con-

mid with resampling between each level. SIFT locatio§§duence, at a timethe observatiorn; . corresponds to

extracted with this procedure may be understood as SR landmarke; . in the map. When no correspondence

nificant points in space that are highly distinctive. In a#f found we denote itas; = IV + 1, indicating that a

dition, each SIFT location is given a descriptor that prg&W landmark should be initialized.

vides invariance to image translation, scaling, rotationThe mapm is represented by a collection &f land-

and partial invariance to illumination changes and viewarksm = {01,6s, ..., 6 }. Each landmark is described

point changes. Thus, this fact enables the same pofsfr = {#k, Sk, di}, wherep, = (X7, Y/, Z}) is a

in the space to be recognized from different viewpointector describing the position of the landmérkeferred

if the viewing angle does not differ too much. LatelyO & global reference frame with associated covariance

SIFT features have been used in robotic applications™atrix . In addition, each landmark;, is associated

visual landmarks for localization and SLAM tasks ([4}vith @ SIFT descripto;,. This map representation is

5], [6]). compact and has previously been used to localize a robot

Given two images, captured with a stereo system, Jadndoor environments [9].

extract natural landmarks which correspond to points in

the 3-dimensional space. In order to do that, we €X-1. Particle filter estimation

tract SIFT features from the left and the right image of

the stereo cameras. Each location is accompanied byf ft¢ conditional independence property of the SLAM

SIFT descriptor. Following, we find the correspondenggoblem implies that the posterior over robot paths and

for the points across images. The correspondence is d9aps can be factored as [10]:

strained by the epipolar geometry of the stereo system.

In addition, a comparison between SIFT descriptors as- N

sociated to the keypoints is used to avoid false corresp]gpit’ m|2t,ut, ) = p(at] 2t ) H p(Oulzt, 2 it &)
k=1

2. VISUAL LANDMARKS

dences. As a result, at a tinh@ve obtain a set oB ob-

servations denoted by, = {z:1,2:2,...,2,8}. Each (3.1)
observati?n ils c;)n_stituted bt = (vik,drr), Where  This equation states that the full SLAM posterior is
vk = (X0, Y7, Z7) is a three dimensional vector referregecomposed into two parts: one estimator over robot
to the left camera reference frame ahg is the SIFT de- paths, andV independent estimators over landmark po-

scriptor associated to that point. sitions, each conditioned on the path estimate. We ap-
proximate the posteriop(zt|2t,u!,ct) using a set of
3. RAO-BLACKWELLIZED SLAM M particles, each particle haviny independent land-

mark estimators (implemented as EKFs), one for each
Following the usual nomenclature in Rao-Blackwellizdgndmark in the map. Each particle is thus defined as
SLAM, we call z; the robot pose at time On the other S/™ = {xt’[m],ugrf}, El[fff], . “%\}/7 EE’?}\],}, Whereygff]



is the best estimation at timefor the position of land- viewed from significantly different viewpoints (e.g. Fig-

mark 0; based on the path of the particle and 22[;’2?] ure 1(a)-(d)) the difference in the descriptor is remark-
is the associated covariance matrix. The particle é&le and the check using the Euclidean distance is likely
S, = {SM, s ... 5™ 1 is calculated incrementallyto Produce a wrong data association. Figure 2(a) com-
from the setS;_; at timet — 1 and the robot contral,. Pares the two SIFT vectors computed for the views (a)

Thus, each particle is sampled from a proposal distrj2d () of the point in Figure 1. We can observe that,
[m] in views (a)-(b) the vectors remain similar. Figure 2(b)

ution z; ' ~ p(z¢|zi—1,us). Next, and following the :
approach of [10] each particle is then assigned a wei§RPares the two SIFT vectors computed for the views
according to: a) and (d). We can clearly observe that the vectors are
significantly different in the latter case.
We propose a different method to deal with the data

w™ = b @it )T Ze ) (i—tee,)} association in the context of SIFT features. We address
’ \/ 127 Ze, | the problem from a pattern classification point of view.

(3.2) We consider the problem of assigning a pattéjrto a
Whereu, ; is the current measurement aiyg, , is the classC;, where each clags; models a landmark. When-

7

predicted measurement for the landmarkbased on the ever a landmark is found, it is tracked alopdrames,

pose:c,[f]- The matrixZ., , is the covariance matrix asso@nd its descriptordy, da, . . ., d,, are stored. We consider

ciated with the innovatiorfv,; — ., ,). Note that we different views of the same visual landmark as different
»2 sCtyi)”

implicitly assume that each measurement has been €/éments of clase; and compute a mean valdg that
assigned to the landmark; of the map. This Iorc)blemrepresents the prototype of the class A covariance

is, in general, hard to solve, since similar-looking lanfatrix S; is estimated, assuming the elements in the SIFT

marks may exist. In section 4. we describe our appro&@ftor independent of each other. Théisjs a diagonal
to this problem. In the case thBtobservations from dif- matrix whose elements are the variance of each element
ferent landmarks exist at a tintlewe calculate the totaln the SIFT vector, computed using theexample vec-

weight assigned to the particle multiplying the weigh{g's Of the landmark. Whenever a new landmaykis
computed using Equation (3.2). found, we compute the squared Mahalanobis distance to

each stored landmark, representedipgnd.S; as
4. DATA ASSOCIATION _ . .

L = (di —dj)S; " (di — dj)" . (4.2)
While the robot moves through the environment, it mustWe compute the distanck for the landmarks in the

decide whether the observatiofn = (vir, dik) COITe~ 11130 of each particle and assign the correspondence to the
sponds to a previously mapped landmark or to a differgQf, 2 i that minimizes. If none of the values exceeds
landmark. In most existing approaches ([4], [5], [7]) thg , e defined threshold, we create a new landmark. As we
data association is performed using the squared Eudlifly show in the experiments, this technique allows us to
ean distance between SIFT descriptors make better data associations and, as a result, produce
B = (d; — d)(ds — ;)T (4.1) better maps of the environment.

R A S P ‘ In order to test this distance function we have recorded
whered; is the SIFT descriptor associated with tha set of images with slight variations of viewpoint and
current measurement, whitg is the descriptor associ-distance (see Figure 1). SIFT landmarks are easily
ated with a landmark in the map. Then, the landmatriacked across consecutive frames, since the variance in

in the map that minimizes the distanékeis regarded asthe descriptor is low. In addition, we visually judged the
the correct data association. Whenever the dist@hise correspondence across images. Based on these data we
below a certain threshold, the two landmarks are const@mputed the matrix¥; for each SIFT point tracked for
ered to be the same. Otherwise, a new landmark is arere than5 frames. Following, we computed the dis-
ated. Figure 1 shows the same point in space as seen framce to the same class using Equation (4.1) and (4.2).
different viewpoints. We experimentally compared tHeor each experiment, we select the class that minimizes
SIFT descriptor of the same point in the different framethie distance function. Since we already know the truth
When the same point is viewed from slightly differerdorrespondences, we can compute the number of mis-
viewpoints and distances (e.g. Figure 1(a)-(c)), the diakes and correct matches. A total 00 examples
tanceFE remains low. However, when the same point i8ere used for this purpose. Using the Euclidean dis-



tance we obtained &3.85% of correct matches. WhenG. CONCLUSION
using the squared Mahalanobis distance)4a@4% of
correct matches were obtained. The number of corrée have presented a solution to SLAM based on a Rao-
matches is significantly increased by using the squaBdckwellized particle filter that uses visual information
Mahalanobis distance (4.2). Since most of the false cextracted from cameras. In particular SIFT features have
respondences are avoided, we can obtain better estimbées used as natural landmarks. The method is able to
of the map and the path traversed by the robot. build 3D maps of an indoor environment using relative
measurements extracted from a stereo pair of cameras.
We also have proposed an alternative method to deal
with the data association problem in the context of visual
During the experiments we have used a B21lr robI Pd”?arks- When differgnt examples of a particular SIFT
equipped with a stereo head and a LMS laser ran eescrlptoreX|§F (pelonglng to t.he same landmark) we ob-
finder. We manually steered the robot along the roo ha prob_ab_lllst!c _model forit. By this procedure, the
of the building 79 of the University of Freiburg. A to_data assomat!on is |'mproved, and consequently, better re-
tal of 507 stereo images at a resolutiona#0x240 were sults are obtained since most of the false correspondences

are avoided.

collected. The total traversed distance of the robot’is d by thi dure d directl
approximately8Om. For each pair of stereo images a Maps created by this procedure do not directly repre-

number of correspondences were established and obaet the occupied or free areas of the environment. In

vations were obtained. After stereo correspondence, eﬁgﬂshequeglce,bthe map csn db_e usled to defffectlvgly Igcal-
point is tracked for a number of frames. In a practicglet e robot, but cannot be directly used for navigation.

way, when a landmark has been tracked for more th'gl)]is fact is derived from the nature of the sensors and it

5 frames it is considered a new observation and is int%—nkOt a fhallulre of the proposed apr;])roach. EZara\r:'gﬁgog
grated in the filter. tasks other low-cost sensors such as SO shou e

Figure 4 shows a map built usin@o particles. A to- deployed.
tal number of1500 landmarks were estimated. It can
be seen that, with only00 particles, the map is topo-A
logically correct. Some areas of the map do not pos-

sess any landmark, which correspond to feature—less.lar{i—S research has been supported by the spanish gov-
eas (i.e. texture-less walls), where no SIFT features WeIR ment through project DPI2004-07433-C02-01 (Min-

found. , isterio de Educabn y Ciencia.  Twlo: HER-

In order to test the quality of our results, we comparegd \1ENTAS DE TELEOPERACON COLABORA-
the estimated pose of our method with the estimated pe$en  Ap| ICACION AL CONTROL COOPERA-
using laser data recorded during exploration. In ordgg,o pg ROBOTS), and project PCT-G54016977-2005
to calculate the pose based on laser measurements, IR, pacION QUORUM: PARQUE CIENTFICO Y
method exposed in [3] was used. Figure 3(a) shows A& onESARIAL DE LA UNIVERSIDAD MIGUEL
error in localization for each movement of the robot dulfERNANDEZ. Titulo:  ROBOTS COOPERATIVOS
ing exploration using 00 particles. PARA LA VIGILANCIA E INSPECCION DE EDIFI-

In addition, we have compared both approaches to dafgys E INSTALACIONES INDUSTRIALES).
association as described in Section 4.. To do this, we

have made a number of simulations varying the number

of particles used in each simulation. The process WRseferences

repeated using both data association methods. As can

be seen in Figure 3(b) for the same number of particleg] O. wijk and H. I. Christensen. Localization and
better localization results are obtained when the squared navigation of a mobile robot using natural point
Mahalanobis distance is used, thus improving the quality landmarkd extracted from sonar daRobotics and

of the estimated map. Autonomous Systerg31):31-42, 2000.
Finally, our maps typically consist of abolit00 land-

marks, a much more compact representation than the pfg} S. Thrun. A probabilistic online mapping algorithm
sented in [6], where the map contains typically around for teams of mobile robotdnternational Journal of
10.000 landmarks. Robotics Resear¢l20(5):335-363, 2001.

9. EXPERIMENTAL RESULTS
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Figure 1: The images depict the same landmark (marked with a circle) viewed from different viewpoints.
The squared FEuclidean distance between consecutive images is between 0.03 and 0.06. In contrast to that,
the squared Euclidean distance between non-consecutive images is between 0.3 and 0.4, which is around
one order of magnitude larger.
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Figure 2: Figure (a) compares two SIFT vectors corresponding to close views of the same point. Figure
(b) compares two SIFT vectors corresponding to separate views of the same point. As can be seen, the
SIFT descriptor does not provide total invariance to viewpoint changes.
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Figure 3: Figure (a) shows the absolute position error during the SLAM process. Figure (b) shows the
error in localization when varying the number M of particles. The RMS error in odometry is shown as a
dotted line. The results using Equation (4.1) are shown as a dashed line and results using Equation (4.2)

are shown as a continuous line.
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Figure 4: The figure shows a map created using 100 particles. Each black point represents a landmark.
We also show superimposed the ground truth path estimated using laser range data (continuous) and the

estimated path using our approach (dashed).



